Mapping Toolbox™
User's Guide

7

MATLAB

R2021a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Mapping Toolbox™ User's Guide
© COPYRIGHT 1997-2021 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

May 1997
October 1998
November 2000
July 2002
September 2003
January 2004
April 2004

June 2004
October 2004
March 2005
August 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021

First printing
Second printing
Third printing
Online only
Online only
Online only
Online only
Fourth printing
Online only
Fifth printing
Sixth printing
Online only
Online only
Seventh printing
Online only
Eighth printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 1.0

Version 1.1

Version 1.2 (Release 12)

Revised for Version 1.3 (Release 13)
Revised for Version 1.3.1 (Release 13SP1)
Revised for Version 2.0 (Release 13SP1+)
Revised for Version 2.0.1 (Release 13SP1+)
Revised for Version 2.0.2 (Release 14)
Revised for Version 2.0.3 (Release 14SP1)
Revised for Version 2.1 (Release 14SP2)
Minor revision for Version 2.1

Revised for Version 2.2 (Release 14SP3)
Revised for Version 2.3 (Release 2006a)
Revised for Version 2.4 (Release 2006b)
Revised for Version 2.5 (Release 2007a)
Revised for Version 2.6 (Release 2007b)
Revised for Version 2.7 (Release 2008a)
Revised for Version 2.7.1 (Release 2008b)
Revised for Version 2.7.2 (Release 2009a)
Revised for Version 3.0 (Release 2009b)
Revised for Version 3.1 (Release 2010a)
Revised for Version 3.2 (Release 2010b)
Revised for Version 3.3 (Release 2011a)
Revised for Version 3.4 (Release 2011b)
Revised for Version 3.5 (Release 2012a)
Revised for Version 3.6 (Release 2012b)
Revised for Version 3.7 (Release 2013a)
Revised for Version 4.0 (Release 2013b)
Revised for Version 4.0.1 (Release 2014a)
Revised for Version 4.0.2 (Release 2014b)
Revised for Version 4.1 (Release 2015a)
Revised for Version 4.2 (Release 2015b)
Revised for Version 4.3 (Release 2016a)
Revised for Version 4.4 (Release 2016b)
Revised for Version 4.5 (Release 2017a)
Revised for Version 4.5.1 (Release 2017b)
Revised for Version 4.6 (Release 2018a)
Revised for Version 4.7 (Release 2018b)
Revised for Version 4.8 (Release 2019a)
Revised for Version 4.9 (Release 2019b)
Revised for Version 4.10 (Release 2020a)
Revised for Version 5.0 (Release 2020b)
Revised for Version 5.1 (Release 2021a)

Contents

Getting Started

Mapping Toolbox Product Description 1-2
Acknowledgments 1-3
Create Your First World Map 1-4
Tour Boston with the Map Viewer App 1-9

Openthe Map VIEWETr APD . . . ot ittt e e e e e e 1-9
Getting More Help 1-23

Ways to Get Mapping Toolbox Help 1-23

Understanding Map Data

What Isa Map? e e e e 2-2
What Is Geospatial Data? 2-3
Vector Geodatat 2-4
Inspect and Display Vector Map Data 2-5
RasterGeodata 2-7
Digital Elevation Data, 2-7
Remotely Sensed Image Data 2-7
Display Shaded Relief Map Using RasterData 2-8
Combine Vector and Raster Geodata on the SameMap 2-10
Combining Raster Data and Vector Data on the Same Map 2-10
Create and Display Polygons 2-12
Simple Polygon oo 2-12
Polygons with Holes or Multiple Regions 2-13
Polygons Using Geographic Coordinates 2-15
Filled Region of Polygons Using Geographic Coordinates 2-17
Segments Versus Polygons 2-20

vi

Contents

Geographic Data Structures
Shapefiles
The Contents of Geographic Data Structures
Examining a Geographic Data Structure
How to Construct Geographic Data Structures
Mapping Toolbox Version 1 Display Structures

Georeferenced RasterData
Reference Objects
Referencing Matrices i
Referencing Vectors e

Constructa Global DataGrid
Precompute the SizeofaDataGrid

Geolocated Data Grids
Define Geolocated Data Grid i

Geographic Interpretations of Geolocated Grids
Type 1: Values Associated with the Upper Left Grid Coordinate
Type 2: Values Centered Within Four Adjacent Coordinates
Ordering of Cells i e
Transform Regular to Geolocated Grids
Transforming Geolocated to Regular Grids

Spatially Reference Imported Rasters
Differentiate Between Cells and Postings
Spatially ReferenceanImage,
Spatially Reference an Elevation Grid

Mosaic Spatially Referenced Raster Tiles
Mosaic Rastersof Cells i
Mosaic Rasters of Postings

Unprojecting a Digital Elevation Model (DEM)

Georeferencing an Image to an Orthotile Base Layer

Find Geospatial DataOnline

Find Vector Geodatao,

Find Geospatial RasterData
Download Data0 i
UseWeb Map Service Data,

Functions that Read and Write Geospatial Data

Export VectorGeodata

Exporting Vector Datato KML

Export KML Files for Viewing in Earth Browsers
Generate a Single Placemark Using kmlwritepoint

2-73
2-74
2-76
2-76
2-77
2-78

2-81

Generate Placemarks from Addresses 2-94

Export Point Geostructs to Placemarks 2-94
Select Shapefile DatatoRead 2-97
Example 1: Predicate Function in Separate File 2-97
Example 2: Predicate as Function Handle 2-98
Example 3: Predicate as Anonymous Function 2-98

Example 4: Predicate (Anonymous Function) Defined Within Cell Array . 2-99
Example 5: Parametrizing the Selector; Predicate as Nested Function . . 2-99

Exporting Images and Raster Grids to GeoTIFF 2-101

Converting Coastline Data (GSHHG) to Shapefile Format 2-116

Understanding Geospatial Geometry

3|

The Shapeofthe Earth 3-2
Ellipsoid Shape e 3-2
Geoid Shape 3-2

Reference Spheroids 3-4
referenceSphere Objects 3-4
referenceEllipsoid Objects 3-6
World Geodetic System 1984 3-8
Ellipsoid Vectors i 3-9
oblateSpheroid Objects 3-10

Work with Reference Spheroids 3-11
Map Projections i e 3-11
CUrveS @NA ATEAS . . v v v v e e e e e e e e e e e e 3-12
3-D Coordinate Transformationsc.uunnnnnn. 3-12

Latitude and Longitude, 3-13
Plot Latitude and Longitude 3-13

Relationship Between Points on Sphere 3-15

Length and Distance Units 3-16
Choosing Unitsof Length 3-16
Converting Unitsof Length 3-16

Compute Conversion Ratio Between Units of Length 3-17

Angle Representations and Angular Units 3-18
Radiansand Degreesc.o i 3-18
Default and Variable Angle Units 3-19
Degrees, Minutes, and Seconds, 3-19
Converting Angle Units that Varyat Run Time 3-20

Angles as Binary and Formatted Numbers 3-22
Formatting Latitudes and Longitudes 3-22

viii

Contents

Convert from Linear Measurements to Spherical Measurements 3-23

Distances on the Sphere 3-24
Arc Length as an Angle in the distance and reckon Functions 3-25
Summary: Available Distance and Angle Conversion Functions 3-25

Great Circles 3-27

Rhumb Lines 3-28

Azimuth 3-29
Calculate Azimuth i 3-29

Elevation 3-31

Generate Vector Data for Points Along Great Circle or Rhumb Line Tracks

... 3-32
Reckoning e 3-34
Calculate Distance Between Two Points in Geographic Space 3-35
Small Circles e 3-36
Calculate Vector Data for Points Along a Small Circle 3-37
Generate Small Circles 3-38
Measure Area of Spherical Quadrangles 3-40
Plotting a 3-D Dome as a Mesh Overa Globe 3-41
Choose a 3-D Coordinate System 3-47

Earth-Centered Earth-Fixed Coordinates 3-47
Geodetic Coordinates it e 3-48
East-North-Up Coordinates 3-49
North-East-Down Coordinates, 3-49
Azimuth-Elevation-Range Coordinates 3-50
TPS .o e 3-51
Vectors in 3-D Coordinate Systems 3-52
TIDS oo 3-53
Find Ellipsoidal Height from Orthometric Height 3-55
Find Ellipsoidal Height from Orthometric and Geoid Height 3-57

Creating and Viewing Maps

4

Introduction to Mapping Graphics 4-2

Continent, Country, Region, and State Maps Made Easy 4-3

Set Background Colors for Map Displays 4-4
Create Simple Maps Usingworldmap 4-5
Create Simple Maps Usingusamapc00.v.... 4-7
The Map AXeSo e 4-11
Tips to Working with Map AXes, 4-11
Access and Change Map Axes Properties 4-13
Map Limit Properties 4-19
Specify Map Projection Origin and Frame Limits Automatically 4-20
Create Cylindrical Projection Using Map Limit Properties 4-23
Create Conic Projection Using Map Limit Properties 4-25
Create Southern Hemisphere Conic Projection 4-26
Create North-Polar Azimuthal Projection 4-27
Create South-Polar Azimuthal Projection 4-29
Create Equatorial Azimuthal Projection 4-30
Create General Azimuthal Projection 4-31
Create Long Narrow Oblique Mercator Projection 4-32
Switch Between Projections 4-34
Change Projection Updating Meridian and Parallel Labels 4-34
Change Projection Resetting Frame Limits 4-36
Reprojection of Graphics Objects 4-40
Auto-Reprojection of Mapped Objects and Its Limitations 4-40
Reprojectability of Maps Generated Using geoshow 4-41
Create Maps Usinggeoshow 4-43
Creating Maps Using MAPSHOW 4-50
Change Map Projections Using geoshow 4-68
Change Map Projection with Vector Data Using geoshow 4-68
Change Map Projection with Raster Data Using geoshow 4-69
Use Geographic and Nongeographic Objects in Map Axes 4-72
The Map Frame i 4-75
Plot Regions of Robinson Frame and Grid Using Map Limits 4-77
Map and Frame Limits 4-82
The Map Grid e 4-83
Control Grid Spacingo vt 4-83
Layer Gridsottt 4-83
Limit Grid Linesot 4-83
Label Gridso oot 4-84

ix

X

Contents

Summary of Polygon Display Functions 4-86

Display Vector Data as Pointsand Lines 4-87
Display Vector Maps as Lines or Patches 4-91
Types of Data Grids and Raster Display Functions 4-98
Fit Gridded Data to the Graticule 4-99
Fit Gridded Data to Fine and Coarse Graticules 4-99
Create 3-D Displays with RasterData 4-103
Create Map Displays with GeographicData 4-106
Creating Map Displays with Data in Projected Coordinate Reference
System e 4-116
Pick Locations Interactively 4-125
Create an Interactive Map for Selecting Point Features 4-127
Create Small Circle and Track Annotations on Maps Interactively 4-133
Interactively Display Text AnnotationsonaMap 4-135
Work with ObjectsbyName 4-136
Manipulate Displayed Map Objects By Name 4-136

Making Three-Dimensional Maps

S|

Sourcesof Terrain Data, 5-2
Digital Terrain Elevation Data from NGAt 5-2
Digital Elevation Model Files from USGS 5-2

Determine and Visualize Visibility Across Terrain 5-3
Compute Lineof Sight 5-3
Light a Terrain MapofaRegion 53-3
Surface Relief Shading 5-8
Create Monochrome Shaded ReliefMap 5-8
Colored Surface Shaded Relief 5-13
Create Colored Shaded Relief Map 5-13
Relief Mapping with Light Objects 5-17
[luminate Color 3-D Relief Maps with Light Objects 5-17

Drape Dataon ElevationMaps 5-24

Combine Elevation Maps with Other Kindsof Data 5-24
Drape Data over Terrain with Different Gridding 5-24
Drape Geoid Heights Over Topography 5-25

Combine Dissimilar Grids by Converting Regular Grid to Geolocated Data
Grid 5-30

Drape Geolocated Grid on Regular Data Grid via Texture Mapping 5-36

The Globe Display Compared with the Orthographic Projection 5-39
Access Basemaps and Terrain for Geographic Globe 5-45
Use Installed Basemapt 5-45
Download Basemapsovii it e 5-45
Add Custom Basemapsoviii i e 5-45
Access TerTain i it e 5-45
Specify Basemaps and Terrain, 5-46
Create Interactive Basemap Picker 5-47
Visualize Aircraft Line-of-Sight Over Terrain 5-49
Visualize UAV Flight Pathon 2-Dand 3-DMaps 5-58

Customizing and Printing Maps

6|

Inset Maps e 6-2
Graphic Scales e 6-9
North ArTows e 6-15
Thematic Maps i i 6-18
Choropleth Maps i i 6-18
Stem Maps . ..o 6-19
Contour Maps 6-19
Scatter Maps 6-20
Create Choropleth Map of Population Density 6-21
Contour Colormaps 6-24
Colormaps for Political Maps0..... 6-27
Explore Colormaps for Political Maps 6-27
Labeling Colorbars ot 6-29
Editing Colorbarsc i e 6-30
Scale Maps for Printing 6-31

xi

xii

Contents

Manipulating Geospatial Data

7

Extract and Join Polygons or Line Segments 7-2
Link Line Segments with Common Endpoints into Polygons 7-4
Geographic Interpolation of Vectors 7-5
Interpolate Vertices Between Known Data Points 7-7
Interpolate Coordinates at Specific Locations 7-8
Vector Intersections i 7-9
Calculate Intersections of Small Circles 7-11
Calculate Intersection of Rhumb Line Tracks 7-12
Calculate Intersections of VectorData 7-13
Calculate Area of Geographic Polygons 7-15
Polygon Set Logic e 7-16
Overlay Polygons Using SetLogic 7-17
Remove Longitude Coordinate Discontinuities at Date Line Crossings
... 7-22
Polygon Buffer Zomnes 7-26
Generate Buffer Internalto Polygon 7-26
Trim Vectors to Preserve Polygonal Patches 7-28
Simplify Vector Coordinate Data 7-31
Simplify Polygon and LineData, 7-32
Convert Vector Data to Raster Format 7-37
Creating Data Grids from VectorData 7-37
Rasterize Polygons Interactively 7-42
Data Grids as Logical Variables 7-44
Compute Elevation Profile Along Straight Line 7-45
Compute Gradient, Slope, and Aspect from Regular Data Grid 7-48

Using Map Projections and Coordinate Systems

8|

Map Projections and Distortions 8-2
Use Inverse Projection to Recover Geographic Coordinates 8-2
Projection Distortions 8-2

Quantitative Properties of Map Projections 8-1

The Three Main Families of Map Projections 8-5
Unwrapping the SpheretoaPlane 8-5
Cylindrical Projections 8-5
Conic Projectionst 8-6
Azimuthal Projections 8-7

Projection Aspect 8-9
The Orientation Vector 8-9
Control the Map Projection Aspect with an Orientation Vector 8-11

Projection Parameters 8-16
Projection Characteristics Maps CanHave 8-16

Visualize Spatial Error Using Tissot Indicatrices 8-22
Visualize Projection Distortions using Tissot Indicatrices 8-22

Visualize Projection Distortions Using Isolines 8-26

Quantify Map Distortions at Point Locations 8-30
Use distortcalc to Determine Map Projection Geometric Distortions 8-30

Rotational Transformations onthe Globe 8-34
Reorient Vector Data withrotatem 8-34
Reorient Gridded Data, 8-36

Createa UTM Map i e 8-38
Createa UTM Mapt e 8-38

Set UTM Parameters Interactively 8-42

Work in UTM Withouta Displayed Map 8-45

Use the Transverse Aspect to Map Across UTM Zones 8-47

Summary and Guide to Projections 8-49
Cylindrical Projections i 8-49
Pseudocylindrical Projections 8-52
Conic Projectionst i 8-56
Pseudoconic Projections e 8-57
Polyconic Projections i 8-58
Azimuthal Projections i 8-59
Pseudoazimuthal Projections 8-61
Modified Azimuthal Projections 8-61

Transform Coordinates to a Different Projected CRS 8-62

xiii

xiv

Contents

Project and Display RasterData 8-65
Project RasterData 8-65
Unproject RasterData 8-66

9

Basic WMS Terminology i .. 9-2
Basic Workflow for Creating WMS Maps 9-3
Workflow Summary e 9-3
Create a Map of Elevationin Europe 9-3
Search the WMS Database 9-5
Introduction to the WMS Database 9-5
Find Temperature Data in the WMS Database 9-5
Refine Your Search 9-7
Refine Search by Text i 9-7
Refine Search by Geographic Limits 9-7
Update Your Layer i 9-8
Retrieve Your Map 9-10
Map Retrieval Methods 9-10
Understand Coordinate Reference System Codes 9-10
Retrieve Your Map withwmsread 9-11
Use wmsread with Optional Parameters 9-12
AddaLegendtoYourMap, 9-12
Retrieve Your Map with WebMapServer.getMap 9-19
Modify Your Map Request 9-24
Set Map Request Geographic Limitsand Time 9-24
Edit Web Map Request URL Manually 9-25
Overlay Multiple Layers i, 9-27
Create Composite Map of Multiple Layers from One Server 9-27
Combine Layers from One Server with Data from Other Sources 9-28
Drape Orthoimagery Over DEM 9-29
Animate Data Layers i 9-33
Create Movie of Terra/MODIS Mapso ii i 9-33
Create Animated GIF File of WMS Mapscviiinnn... 9-34
Animate Time-Lapse Radar Observations 9-36
Display Animation of Radar Images over GOES Backdrop 9-39
Retrieve Data from Web Map Server 9-41
Merge Elevation Data with Rasterized Vector Data 9-42
Display Merged Elevation and Bathymetry Layer (SRTM30 Plus) 9-44
Drape WMS Imagery onto ElevationData 9-46

Save Your Favorite Servers 9-49

Explore Other Layers using a Capabilities Document 9-50
Write WMS Imagestoa KMLFile 9-53
Search for Layers Outside the Database 9-55
Troubleshoot WMS Servers 9-56
Connection EITorsot 9-56
Wrong Scale 9-57
Problems with Geographic Limits 9-58
Problems with Server Changing LayerName 9-58
Non-EPSG:4326 Coordinate Reference Systems 9-58
Map Not Returned i 9-59
Unsupported WMS Version0 .. 9-60
Other Unrecoverable Server Errors, 9-60
Troubleshoot Access to the Hosted WMS Database 9-61
Introduction to Web Map Display 9-62
Web Map Coordinate Systems 9-64
Basic Workflow for DisplayingWeb Maps 9-65
Workflow Summary it e 9-65
DisplayaWeb Map 9-66
SelectaBase Layer Mapc.i ittt 9-67
Specifya Custom Base Layer uuu... 9-69
Specify a WMS LayerasaBaseLayer 9-71
Add an Overlay Layertothe Map 9-73
Add Line, Polygon, and Marker Overlay Layers to Web Maps 9-75
Remove Overlay LayersonaWebMap 9-81
NavigateaWeb Map i 9-85
CloseaWeb Map i 9-87
Annotate a Web Map with Measurement Information 9-88

Compositing and Animating Web Map Service (WMS) Meteorological

LayersS . .. e 9-92
Troubleshoot Common Problems withWebMaps 9-107
Why Does My Web Map Contain Empty Tiles? 9-107
Why Does My Web Map Lose Detail When I Zoom In? 9-107

xvi

Contents

Mapping Applications

10|

Geographic Statistics for Point Locations on a Sphere 10-2
Geographic Meansttt 10-2
Geographic Standard Deviation 10-3

Equal-Areas in Geographic Statistics 10-6
Geographic Histograms 10-6
Converting to an Equal-Area Coordinate System 10-7

Navigation e 10-9
What Is Navigation? i 10-9
Conventions for Navigational Functions 10-9

Fix Position 10-11
Some Possible Situations 10-11
Using naviix i 10-14
A Numerical Example of Usingnavfix 10-16

Plan the Shortest Path, 10-20

Display Navigational Tracks 10-23

Dead Reckoning i 10-26

Drift Correction 10-30

TIme Zones 10-32

Map Projections — Alphabetical List

11|

Getting Started

This chapter provides step-by-step examples of basic Mapping Toolbox capabilities and guides you
toward examples and documentation that can help answer your questions. For an alphabetical list of
functions click on MATLAB Functions link at bottom of main Mapping Toolbox page.

“Mapping Toolbox Product Description” on page 1-2
“Acknowledgments” on page 1-3

“Create Your First World Map” on page 1-4

“Tour Boston with the Map Viewer App” on page 1-9
“Getting More Help” on page 1-23

1 Getting Started

Mapping Toolbox Product Description

1-2

Analyze and visualize geographic information

Mapping Toolbox provides algorithms and functions for transforming geographic data and creating
map displays. You can visualize your data in a geographic context, build map displays from more than
60 map projections, and transform data from a variety of sources into a consistent geographic
coordinate system.

Mapping Toolbox supports a complete workflow for managing geographic data. You can import vector
and raster data from a wide range of file formats and web map servers. The toolbox lets you process
and customize data using trimming, interpolation, resampling, coordinate transformations, and other
techniques. Data can be combined with base map layers from multiple sources in a single map
display. You can export data in file formats such as shapefile, GeoTIFE and KML.

Acknowledgments

Acknowledgments

This software was originally developed and maintained through Version 1.3 by Systems Planning and
Analysis, Inc. (SPA), of Alexandria, Virginia.

Except where noted, the information contained in example and sample data files (found in
matlabroot/examples/map/data and matlabroot/toolbox/map/mapdata) is derived from
publicly available digital data sets. These data files are provided as a convenience to Mapping
Toolbox users. MathWorks® makes no claims that any of this data is free of defects or errors, or that
the representations of geographic features or names are up to date or authoritative.

1-3

1 Getting Started

Create Your First World Map

1-4

This example shows how to use the Mapping Toolbox to create a world map. Geospatial data can be
voluminous, complex, and difficult to process. Mapping Toolbox functions handle many of the details
of loading and displaying geospatial data, and use built-in data structures that facilitate data storage.
Spatial data refers to data describing location, shape, and spatial relationships. Geospatial data is
spatial data that is in some way georeferenced, or tied to specific locations on, under, or above the
surface of a planet.

Create an empty map axes, ready to hold the data of your choice. The function worldmap
automatically selects a reasonable choice for your map projection and coordinate limits. To display a
world map, the function chose a Robinson projection centered on the prime meridian and the equator
(0° latitude, 0° longitude).

worldmap world

80

0
1804 W 135 W 90 W 45 W 0 45 E 90 E 135 E 18p E

90

Import low-resolution world coastline data. The coastline data is a set of discrete vertices that, when
connected in the order given, approximate the coastlines of continents, major islands, and inland
seas. The vertex latitudes and longitudes are stored as vectors in a MAT-file. Load the MAT-file and
view the variables in the workspace.

load coastlines
whos

Name Size Bytes C(lass Attributes

Create Your First World Map

coastlat 9865x1 78920 double
coastlon 9865x1 78920 double

Determine how many separate elements are in the coastline data vectors. Even though there is only
one vector of latitudes, coastlat, and one vector of longitudes, coastlon, each of these vectors
contain many distinct polygons, forming the worlds coastlines. These vectors use NaN separators and
NaN terminators to divide each vector into multiple parts.

[latcells, loncells] = polysplit(coastlat, coastlon);
numel(latcells)

ans = 241

Plot the coastline data on the map axes using the plotm function. plotm is the geographic equivalent
of the MATLAB plot function. It accepts coordinates in latitude and longitude, transforms them to x
and y via a specified map projection, and displays them in a figure axes. In this example, worldmap
uses the Robinson projection.

plotm(coastlat, coastlon)

0
1

Create a new map axes for plotting data over Europe. This time, specify a return argument for the
worldmap function to get a handle to the figure's axes. The axes object on which map data is
displayed is called a map axes. In addition to the graphics properties common to any MATLAB axes
object, a map axes object contains additional properties covering map projection type, projection
parameters, map limits, etc. The getm and setm functions and others allow you to access and modify
these properties.

1-5

1 Getting Started

1-6

h = worldmap('Europe');

0" 15" E

Determine which map projection worldmap is using.
getm(h, 'MapProjection')

ans =
'eqdconic’

Add data to the map of Europe by using the geoshow function to import and display several sample

shapefiles. Note how the geoshow function can plot data directly from files onto a map axes without
first importing it into the workspace. To change the color of the marker, use the MarkerEdgeColor
property and, for some markers, the MarkerFaceColor property.

geoshow('landareas.shp', 'FaceColor', [0.15 0.5 0.15])
geoshow('worldlakes.shp', 'FaceColor', 'cyan')
geoshow('worldrivers.shp', 'Color', 'blue')
geoshow('worldcities.shp', 'Marker', '.',...
'MarkerkEdgeColor', 'magenta')

Create Your First World Map

Place a label on the map to identify the Mediterranean Sea.

labellLat 35;
labellLon = 14;
textm(labelLat, labellLon, 'Mediterranean Sea')

1-7

1 Getting Started

1-8

Tour Boston with the Map Viewer App

Tour Boston with the Map Viewer App

The Map Viewer app is an interactive tool for browsing map data. With it you can:

Assemble layers of vector and raster geodata and render them in 2-D
Import, reorder, symbolize, hide, and delete data layers

Identify coordinate locations

List data attributes

Display selected data attributes as data tips (signposts that identify attribute values, such as place
names or route numbers)

The following example illustrates these capabilities.

Open the Map Viewer App

1

Open the Map Viewer app. On the Apps tab, in the Image Processing and Computer Vision

@

section, click Map Viewer MaPViEWer yoyu can also start the Map Viewer using the mapview
command. The Map Viewer opens with a blank canvas. (No data is present.)

Note that The Map Viewer is designed primarily for working with data sets that refer to a
projected map coordinate system (as opposed to a geographic, latitude-longitude system), so the
coordinate axes are named X and Y.

Import map data. In the Map Viewer, select the File menu and then choose Import From File.
Navigate to the matlabroot/examples/map/data folder, where matlabroot represents your
MATLAB® installation folder, and open the GeoTIFF file boston. tif.

The file opens in the Map Viewer. The image is a visible red, green, and blue composite from a
georeferenced IKONOS-2 panchromatic/multispectral product created by GeoEye. Copyright ©
GeoEye, all rights reserved. For further information about the image, refer to the text files
boston.txt and boston metadata.txt. To open boston. txt, type the following at the
command line:

open 'boston.txt'

Set the map scale in the Map Viewer. To do this, you must first set the map distance units. Click
the Map units menu at the bottom center and select US Survey Feet.

Scale: Unitz Mot Set
Map unitz. |None v.
]
Mone —
Kilometers
Meters

MNautical Miles

Internaticnal Feet

US Survey Feet k‘

1-9

1 Getting Started

4

Set the map scale. Type 1:25000 in the Scale box, which is above the Map units menu, and
press Enter. The Map Viewer now looks like this.

e

E Map Viewer 1: View 1

File Edit View Inset Tools Layers Help

e &

Dlaad| TN\ Re | |E

X Scale: 1:25000 Active layer:
s [Map ymits: |15 Survey Feet ¥ boston sl

1-10

~

Set map scale.

Get the map coordinates for a location on the map, interactively. Place the cursor over a location
on the map. The example puts the cursor over the bridge that goes over the pond in Boston
Garden. The map coordinates for this location are shown at the lower left as 772,423.18 feet
easting (X), 2,954,372.40 feet northing (Y), in Massachusetts State Plane coordinates.

Import a vector data layer. For this example, import a line shapefile that contains data about the
streets and highways in the central Boston area.

boston roads = shaperead('boston roads.shp');

The shaperead function returns the data as a geographic data structure.

Convert the X and Y coordinate fields of boston roads.shp from meters to U.S. survey feet. As
is frequently the case when overlaying geodata, the coordinate system used by
boston roads.shp (in units of meters) does not completely agree with the one for the satellite

Tour Boston with the Map Viewer App

image, boston. tif (in units of feet). If you were to ignore this, the two data sets would be out
of registration by a large distance.

surveyFeetPerMeter = unitsratio('survey feet', 'meter');

for k = 1l:numel(boston roads)
boston roads(k).X = surveyFeetPerMeter * boston roads(k).X;
boston roads(k).Y = surveyFeetPerMeter * boston roads(k).Y;

end

The unitsratio function computes conversion factors between a variety of units of length.

8 In the Map Viewer File menu, select Import From Workspace > Vector Data > Geographic
Data Structure.

Import vector data.

Edit View Insert Tools Layers Help

mportFom .. [N\ |8 @ | A

Import From Workspace ! Raster Data 'm»mmm

Mew Yiew

Vector Data ! Map Coordinates...
Save As Raster Map R
Print...

X Scale: 1:25000 Active layer:

¥: Map units: |5 Survey Feet x| boston x|

In the Import Vector Data dialog box, select the variable boston roads as the data to import
from the workspace, and click OK.

1-11

1 Getting Started

le Import Vector Data | = |£|[é]w
Geographic Data Structure
boston roads -
oK] [Cancel] [Apply

You could clear the workspace now if you wanted, because all the data that the Map Viewer
needs is now loaded into it.

9 After the Map Viewer finishes importing the roads layer, it selects a random color and renders all
the shapes with that color as solid lines. The view looks like this.

4] Map Viewer 1: View 1 E=S Bl ==
File Edit View Insert Tools Layers Help k]

@BZaaf tN\Re aR

X: 765478.75 Scale: | 1:25000 Active layer:

¥ & 2_953‘_1_35.1_!3 Map units: :US Survey Fest z | boston v_‘

Being random, the color you see for the road layer may differ.

10 Explore the attributes of the vector layer. First, make the vector layer the active layer using the
Active layer menu at the bottom right. Select boston roads. You can designate any layer to be
the active layer; it does not need to be the topmost layer. By default, the first layer imported is
active. Changing the active layer has no visual effect on the map. Doing so allows you to query
attributes of the layer you select. For example, once you make the vector layer the active layer,

1-12

Tour Boston with the Map Viewer App

the Info tool button near the right end of the toolbar becomes enabled. Select the Info tool, the
cursor changes to a cross-hairs shape. Click any location on the map to view attributes of the

selected object.

Click to use Info tool.
Fi

P

4| Map

Wiewer 1: View 1

File Edit View Inset Tools Layers Help

b

L
' 1
L=

RAM| TN\ BB REH

. E boston_m.ads'fea...

STREETHNAME :
'MASSACHUSETTS AVENUE'
RET NUMEER: 'ZA'

CLASS: 3
ADMIN TYFE: 3
LENGTH: 380.727¢
INDEX: 1724

X 76858552 | i i 1:25000

Y::- 2554554.52 .: Map units: |_,|5 Survey Feet v

Active layer:

boston_roads -

11

W
Click on any location in map to get information about that location.

The selected road is Massachusetts Avenue (Route 2A). As the above figure shows, the
boston_roads vectors have six attributes, including an implicit INDEX attribute added by the
Map Viewer. Use this tool to explore other roads. Dismiss open Info windows by clicking their

close boxes.

Use a data tip to annotate the map with other attribute values. From the Layers menu, select

boston_roads > Set Label Attribute.

1-13

1 Getting Started

Click to select datatip.

i

. 4 Map Viewer 1: View 1

% 772575.08
v:| 205790072

boston

Bounding Box

To Top
To Bottom
Move Up

Move Down

Remowve

Set Symbol Spec...

Set Label Attribute..

Scale: 1:25000

Map units: |US Survey Feet w

Active layer:

: boston_roads

File Edit View Inset Tools | Layers | Help o
'-ifxi ! [:3 [:3 @l '3{ {ﬂ'? | T \! boston_roads i: v | Active
| v | Visible L

From the list in the Attribute Names dialog, select CLASS and click OK.

1-14

Tour Boston with the Map Viewer App

E Attribute Mames EI@

STREETNAME -
RT_MUMBER

ADMIN_TYPE
LENGTH
INDEX

12 From the Tools menu, select the Datatip tool. A dialog box appears to remind you how to change
attributes. Click OK to dismiss the box.

E Datatip Tool Usage l} Ell =] '@
The current label attribute is the "CLASS" attribute.
To set another label attribute:
->Select the active layer from the Layers menu

->5elect Set Label Attribute

o

Don't show this message again:
In thiz se=sion
|:| Ever again

The cursor assumes a cross-hairs (+) shape. Click on a road segment in the map and the data tip
tool puts a small marker on the road that contains a numeric identifier that indicates the

administrative class. The class of the road crossing the Charles river we explored earlier is of
class 3.

1-15

1 Getting Started

o

File Edit View Inset Tools Layers Help

.E-ilu"l,ap'!."iéwer.'l.: View1 I} ..

sbaa® TN\ Fe|ax

X _ Scale: 1:25000 Active layer:

Ll | Map units: |US Survey Fest ¥ |boston_roads sl

Datatip indicating class or road segment.

13 You can change how the roads are rendered by identifying an attribute to which to key line
symbology. Color roads according to their CLASS attribute, which takes on the values 1:6. Do this
by creating a symbolspec in the workspace. A symbolspec is a cell array that associates attribute
names and values to graphic properties for a specified geometric class (' Point",
'MultiPoint', 'Line’, 'Polygon’, or 'Patch"'). To create a symbolspec for line objects (in
this case roads) that have a CLASS attribute, type:

roadcolors = makesymbolspec('Line’,

{'CLASS',1, 'Color',[1 1 1]}, {'CLASS',2,'Color',[1 1 0]},
{'CLASS',3,'Color',[0 1 0]}, {'CLASS',4,'Color',[0 1 1]},
{'CLASS',5,'Color',[1 @ 1]}, {'CLASS',6,'Color',[0 0 1]})
The following output appears:

roadcolors =
ShapeType: 'Line'
Color: {6x3 cell}

1-16

Tour Boston with the Map Viewer App

14 The Map Viewer recognizes and imports symbolspecs from the workspace. To apply the one you
just created, from the Layers menu, select boston_roads > Set Symbol Spec. From the Layer
Symbols dialog, select the roadcolors symbolspec you just created and click OK.

7] Layer Symbols e ® s

Choose a layer symbolization structure for the
boston_roads layer.

o

readcolors

| oK | | Cancel |

After the Map Viewer has read and applied the symbolspec, the map looks like this.

1-17

1 Getting Started

-~

4 Map Viewer 1: View 1 =[S

File Edit View Insert Tools Layers Help o

oIk DRaO TN\ o &=

X TT3725.25 Scale: 1:25000 Active layer:

L 2858553.38 _ Map units: |US Survey Fest - boston_roads -

15 Remove the data tips before going on. To dismiss data tips, right-click one of them and select
Delete all data tips from the menu that appears.

16 Add another layer, a set of points that identifies 13 Boston landmarks. As you did with the
boston roads layer, import it from a shapefile:

boston placenames = shaperead('boston placenames.shp');

17 Convert the coordinates of these landmarks to units of survey feet before importing them into
Map Viewer. The locations for these landmarks are given in meters.

surveyFeetPerMeter = unitsratio('survey feet', 'meter');
for k = 1:numel(boston placenames)
boston placenames(k).X = ...
surveyFeetPerMeter * boston placenames(Kk).X;
boston placenames(k).Y cee
surveyFeetPerMeter * boston placenames(k).Y;

end

18 From the File menu, select Import From Workspace > Vector Data > Geographic Data
Structure. Choose boston placenames as the data to import from the workspace and click
OK.

1-18

Tour Boston with the Map Viewer App

19 The boston_placenames markers are symbolized as small x markers, but these markers do not
show up over the orthophoto. To solve this problem, create a symbolspec for the markers to
represent them as red filled circles. At the MATLAB command line, type:

places makesymbolspec('Point', {'Default', 'Marker','o",
'MarkerEdgeColor', 'r', 'MarkerFaceColor','r'})

The Default keyword causes the specified symbol to be applied to all point objects in a given
layer unless specifically overridden by an attribute-coded symbol in the same or a different
symbolspec.

20 To activate this symbolspec, pull down the Layers menu, select boston_placenames, slide right,
and select Set Symbol Spec. In the Layer Symbols dialog that appears, highlight places and
click OK. The Map Viewer reads the workspace variable places; the cross marks turn into red

circles. Note that a layer need not be active in order for you to apply a symbolspec to it.

21 To see the name of a Boston place name, make boston placenames the currently active layer
(using the Active layer menu, and then select Datatip from the Tools menu. The cursor changes
to a cross-hair shape. Click any red circle and the tool places a data tip annotation on the map

with the name of the location.

-

4 Map Viewer 1: View 1
File Edit View Inset Tools Layers Help

SihDeaad TN\|Ee | aE

1:25000

Scale:
Map units:

Active layer:

-

US Survey Fest boston_placenames *

1-19

1 Getting Started

22 Zoom in on Beacon Hill for a closer view of the Massachusetts State House and Boston Common.
Select the Zoom in tool; move the (magnifier) cursor until the X readout is approximately
774,011 and the Y readout is roughly 2,955, 615; and click once to enlarge the view. The scale
changes to about 1:12,500 and the map appears as below.

.

4 Map Viewer 1: View 1 o | B [

File Edit View Inset Tools Layers Help &
s hdea TN\ 50]E

X Scale: 1:12500 Active layer:

L Map units: 1S Survey Feet - boston_placenames *

1-20

23 From the Tools menu, choose Select Annotations to change from the Datatip tool back to the
original cursor. Right-click any of the data tips and select Delete all datatips from the pop-up
context menu. This clears the place names you added to the map.

24 Select an area of interest to save as an image file. Click the Select area tool, and then hold the
mouse button down as you draw a selection rectangle. If you do not like the selection, repeat the
operation until you are satisfied. If you know what ground coordinates you want, you can use the
coordinate readouts to make a precise selection. The selected area appears as a red rectangle.

Note The Select area tool - is not supported in MATLAB Online™. To view a particular region
on the map, use the Zoom in, Zoom out, and Pan tools instead.

Tour Boston with the Map Viewer App

Click Select Area tool. Use cursor to select area.

| /

o

orT: Vicw 3 e

View Insert Tools Laye Help ~

4] Map Vi
File Edit

s h@aad T \NX|Bo|RE

X 775244 35 Scale: 112500 Active layer:

Y 285435068 Map units: |US Survey Fest x| | boston_placenames -

25 In order to be able to save a file in the next step, change your working folder to a writable folder.

26 Save your selection as an image file. From the File menu, select Save As Raster Map >
Selected Area to open an Export to File dialog.

In the Export to File dialog, navigate to a folder where you want to save the map image, and save
the selected area's image as a . tif file, calling it central boston.tif. (PNG and JPG formats
are also available.) A world file, central _boston.tfw, is created along with the TIE.

Whenever you save a raster map in this manner, two files are created:

* Animage file (file.tif, file.png, or file.jpg)

* An accompanying world file that georeferences the image (file.tfw, file.pgw, or
file.jgw)

The following steps show you how to read world files and display a georeferenced image outside
of mapview.

1-21

1 Getting Started

1-22

27

28

Read in the saved image and its colormap with the MATLAB function imread, create a reference
object for it by reading in central boston.tfw with worldfileread, and display the map
with mapshow:

[X,cmap] = imread('central boston.tif');

R = worldfileread('central boston.tfw', 'planar',size(X));
figure

mapshow (X, cmap,R) ;

4 Figure1 [l s]
File Edit View Insert Tools Desktop Window Help N

NEHL |} RRTDEL- | (0E|aD

2.956

28555

2855

7716 772 7726 V.73 7736 V.74 7745 775
5
x10

See the documentation for mapshow for another example of displaying a georeferenced image.

Experiment with other tools and menu items. For example, you can annotate the map with lines,
arrows, and text; fit the map to the window; draw a bounding box for any layer; and print the
current view. You can also spawn a new Map Viewer using New View from the File menu. A new
view can duplicate the current view, cover the active layer's extent, cover all layer extents, or
include only the selected area, if any.

When you are through with a viewing session, close the Map Viewer using the window's close
box or select Close from the File menu. For more information about the Map Viewer, see the
mapview reference page.

Getting More Help

Getting More Help

Ways to Get Mapping Toolbox Help

Help is available for individual commands and classes of Mapping Toolbox commands:

help functionname for help on a specific function, often including examples

doc functionname to read a function's reference page in the Help browser, including examples
and illustrations

help map for a list of functions by category

mapdemos for a list of Mapping Toolbox examples

maps to see a list of all Mapping Toolbox map projections by class, name, and ID
maplist to return a structure describing all Mapping Toolbox map projections
projlist to list map projections supported by projfwd and projinv

1-23

Understanding Map Data

“What Is a Map?” on page 2-2

“What Is Geospatial Data?” on page 2-3

“Vector Geodata” on page 2-4

“Inspect and Display Vector Map Data” on page 2-5

“Raster Geodata” on page 2-7

“Display Shaded Relief Map Using Raster Data” on page 2-8
“Combine Vector and Raster Geodata on the Same Map” on page 2-10
“Create and Display Polygons” on page 2-12

“Segments Versus Polygons” on page 2-20

“Geographic Data Structures” on page 2-22

“Georeferenced Raster Data” on page 2-30

“Construct a Global Data Grid” on page 2-32

“Precompute the Size of a Data Grid” on page 2-34

“Geolocated Data Grids” on page 2-35

“Geographic Interpretations of Geolocated Grids” on page 2-39
“Spatially Reference Imported Rasters” on page 2-42

“Mosaic Spatially Referenced Raster Tiles” on page 2-46
“Unprojecting a Digital Elevation Model (DEM)” on page 2-50
“Georeferencing an Image to an Orthotile Base Layer” on page 2-61
“Find Geospatial Data Online” on page 2-73

“Find Vector Geodata” on page 2-74

“Find Geospatial Raster Data” on page 2-76

“Functions that Read and Write Geospatial Data” on page 2-78
“Export Vector Geodata” on page 2-81

“Exporting Vector Data to KML’ on page 2-82

“Export KML Files for Viewing in Earth Browsers” on page 2-93
“Select Shapefile Data to Read” on page 2-97

“Exporting Images and Raster Grids to GeoTIFF” on page 2-101
“Converting Coastline Data (GSHHG) to Shapefile Format” on page 2-116

2 Understanding Map Data

What Is a Map?

2-2

Mapping Toolbox software manipulates electronic representations of geographic data. It lets you
import, create, use, and present geographic data in various forms and to various ends. In the digital
network era, it is easy to think of geospatial data as maps and maps as data, but you should take care
to note the differences between these concepts.

The simplest (although perhaps not the most general) definition of a map is a representation of
geographic data. Most people today generally think of maps as two-dimensional; to the ancient
Egyptians, however, maps first took the form of lists of place names in the order they would be
encountered when following a given road. Today such a list would be considered as map data rather
than as a map. When most people hear the word "map" they tend to visualize two-dimensional
renditions such as printed road, political, and topographic maps, but even classroom globes and
computer graphic flight simulation scenes are maps under this definition.

In this toolbox, map data is any variable or set of variables representing a set of geographic locations,
properties of a region, or features on a planet's surface, regardless of how large or complex the data
is, or how it is formatted. Such data can be rendered as maps in a variety of ways using the functions
and user interfaces provided.

What Is Geospatial Data?

What Is Geospatial Data?

Geospatial data comes in many forms and formats, and its structure is more complicated than tabular
or even nongeographic geometric data. It is, in fact, a subset of spatial data, which is simply data that
indicates where things are within a given coordinate system. Mileposts on a highway, an engineering
drawing of an automobile part, and a rendering of a building elevation all have coordinate systems,
and can be represented as spatial data when properly quantified (digitized). Such coordinate systems,
however, are local and not explicitly tied or oriented to the Earth's surface; thus, most digital
representations of mileposts, machine parts, and buildings do not qualify as geospatial data (also
called geodata).

What sets geospatial data apart from other spatial data is that it is absolutely or relatively positioned
on a planet, or georeferenced. That is, it has a terrestrial coordinate system that can be shared by
other geospatial data. There are many ways to define a terrestrial coordinate system and also to
transform it to any number of local coordinate systems, for example, to create a map projection.
However, most are based on a framework that represents a planet as a sphere or spheroid that spins
on a north-south axis, and which is girded by an equator (an imaginary plane midway between the
poles and perpendicular to the rotational axis).

Geodata is coded for computer storage and applications in two principal ways: vector and raster
representations. It has been said that "raster is faster but vector is corrector." There is truth to this,
but the situation is more complex. For more information, see “Vector Geodata” on page 2-4 and
“Raster Geodata” on page 2-7.

2-3

2 Understanding Map Data

Vector Geodata

2-4

Vector data (in the computer graphics sense rather than the physics sense) can represent a map.
Such vectors take the form of sequences of latitude-longitude or projected coordinate pairs
representing a point set, a linear map feature, or an areal map feature. For example, points
delineating the boundary of the United States, the interstate highway system, the centers of major
U.S. cities, or even all three sets taken together, can be used to make a map. In such representations,
the geographic data is in vector format and displays of it are referred to as vector maps. Such data
consists of lists of specific coordinate locations (which, if describing linear or areal features, are
normally points of inflection where line direction changes), along with some indication of whether
each is connected to the points adjacent to it in the list.

In the Mapping Toolbox environment, vector data consists of sequentially ordered pairs of geographic
(latitude, longitude) or projected (x,y) coordinate pairs (also called tuples). Successive pairs are
assumed to be connected in sequence; breaks in connectivity must be delineated by the creation of
separate vector variables or by inserting separators (usually NaNs) into the sets at each breakpoint.
For vector map data, the connectivity (topological structure) of the data is often only a concern
during display, but it also affects the computation of statistics such as length and area.

For an example of vector data, see “Inspect and Display Vector Map Data” on page 2-5. For further
information on how Mapping Toolbox software manages map projections, see the Getting Started
topic. For details on data structures that the toolbox uses to represent vector geodata, see
“Geographic Data Structures” on page 2-22.

Inspect and Display Vector Map Data

Inspect and Display Vector Map Data

This example shows how to display vector map data and examine vector data values.

Load vector data set MAT-file of world coastlines and look at the variables created in the workspace.
The variables coastlat and coastlon are vectors which together form a vector map of the
coastlines of the world.

load coastlines

whos
Name Size Bytes C(lass Attributes
coastlat 9865x1 78920 double
coastlon 9865x1 78920 double

View a map of this vector data. The example presents the map using a Mercator projection. A map
projection displays the surface of a sphere (or a spheroid) in a two-dimensional plane. Points on the
sphere are geometrically projected to a plane surface. There are many possible ways to project a
map, all of which introduce various types of distortions.

axesm mercator
framem
plotm(coastlat,coastlon)

Inspect the first 20 coordinate values of the coastline vector data set.

2-5

2 Understanding Map Data

[coastlat(1l:20) coastlon(1:20)]
ans = 20x2

-83.8300 -180.0000
-84.3300 -178.0000
-84.5000 -174.0000
-84.6700 -170.0000
-84.9200 -166.0000
-85.4200 -163.0000
-85.4200 -158.0000
-85.5800 -152.0000
-85.3300 -146.0000
-84.8300 -147.0000

To see where these coastline vector points fall on the map, plot them in red. As you might have
deduced by looking at the first column of the data, there is only one continent that lies below -80
latitude: Antarctica.

plotm(coastlat(1:20),coastlon(1:20),'r")

Raster Geodata

Raster Geodata

You can map data represented as a matrix (a 2-D MATLAB array) in which each row-and-column
element corresponds to a rectangular patch of a specific geographic area, with implied topological
connectivity to adjacent patches. This is commonly referred to as raster data. Raster is actually a
hardware term meaning a systematic scan of an image that encodes it into a regular grid of pixel
values arrayed in rows and columns.

When data in raster format represents the surface of a planet, it is called a data grid, and the data is
stored as an array or matrix. The toolbox leverages the power of MATLAB matrix manipulation in
handling this type of map data. This documentation uses the terms raster data and data grid
interchangeably to talk about geodata stored in two-dimensional array form.

A raster can encode either an average value across a cell or a value sampled (posted) at the center of
that cell. While geolocated data grids explicitly indicate which type of values are present (see
“Geolocated Data Grids” on page 2-35), external metadata/user knowledge is required to be able to
specify whether a regular data grid encodes averages or samples of values. To see an example, view
“Display Shaded Relief Map Using Raster Data” on page 2-8.

Digital Elevation Data

When raster geodata consists of surface elevations, the map can also be referred to as a digital
elevation model/matrix (DEM), and its display is a topographical map. The DEM is one of the most
common forms of digital terrain model (DTM), which can also be represented as contour lines,
triangulated elevation points, quadtrees, octree, or otherwise.

The topo60c MAT-file, which contains global terrain data, is an example of a DEM. In this 180-by-360
matrix, each row represents one degree of latitude, and each column represents one degree of
longitude. Each element of this matrix is the average elevation, in meters, for the one-degree-by-one-
degree region of the Earth to which its row and column correspond.

Remotely Sensed Image Data

Raster geodata also encompasses georeferenced imagery. Like data grids, images are organized into
rows and columns. There are subtle distinctions, however, which are important in certain contexts.
One distinction is that an image may contain RGB or multispectral channels in a single array, so that
it has a third (color or spectral) dimension. In this case a 3-D array is used rather than a 2-D (matrix)
array. Another distinction is that while data grids are stored as class double in the toolbox, images
may use a range of MATLAB storage classes, with the most common being uint8, uint16, double,
and logical. Finally, for grayscale and RGB images of class double, the values of individual array
elements are constrained to the interval [0 1].

In terms of georeferencing—converting between column/row subscripts and 2-D map or geographic
coordinates—images and data grids behave the same way (which is why both are considered to be a
form of raster geodata). However, when performing operations that process the values raster
elements themselves, including most display functions, it is important to be aware of whether you are
working with an image or a data grid, and for images, how spectral data is encoded.

2-7

2 Understanding Map Data

Display Shaded Relief Map Using Raster Data

2-8

This example shows how to generate a shaded relief map using a raster data set, also known as a
data grid. Note that the content, symbolization, and the projection of the map are completely
independent. The structure and content of the topo60c data grid are the same no matter how you
display it, although how it is projected and symbolized can affect its interpretation.

Load elevation raster data and a geographic cells reference object.

load topo60Oc

Create a map axes object using a sinusoidal projection. Display the data using a shaded relief map.
One way to do this is to use geoshow and apply a colormap appropriate for elevation data using
demcmap.

axesm sinusoid
geoshow(topo60c,topo60OcR, 'DisplayType', 'texturemap')
demcmap (topo60c)

Create a new map axes object using a Hammer projection. Then, display the elevation data as a
lighted shaded relief map using meshlsrm. By default, the meshlsrm function applies a colormap
appropriate for elevation data and illuminates the map from the east.

figure
axesm hammer
meshlsrm(topo60c, topo60cR)

Display Shaded Relief Map Using Raster Data

2-9

2 Understanding Map Data

Combine Vector and Raster Geodata on the Same Map

2-10

Vector map variables and data grid variables are often used or displayed together. For example,
continental coastlines in vector form might be displayed with a grid of temperature data to make the
latter more useful. When several map variables are used together, regardless of type, they can be
referred to as a single map. To do this, of course, the different data sets must use the same
coordinate system (i.e., geographic coordinates on the same ellipsoid or an identical map projection).

Combining Raster Data and Vector Data on the Same Map

This example shows how to combine raster data and vector data on the same map using the geoshow
function.

First, load elevation raster data and a geographic cells reference object. Get the coordinates of
coastlines as vectors.

load topo60Oc
load coastlines

Create a map axes object that uses the Robinson projection. Then, display the raster and apply a
colormap appropriate for elevation data.

axesm robinson
geoshow(topo60c,topo60OcR, 'DisplayType', 'texturemap')
demcmap (topo60c)

Combine Vector and Raster Geodata on the Same Map

Display the vectors in red on top of the elevation map.

geoshow(coastlat, coastlon, 'Color','r")

2-11

2 Understanding Map Data

Create and Display Polygons

Polygons represent geographic objects that cover area, such as continents, islands, and lakes. They
may contain holes or multiple regions. Create a polygon by listing vertices that define its boundaries
without intersecting. The order of the vertices determines what parts of the polygon are filled. List
external boundaries clockwise and internal boundaries counterclockwise, such that the inside of the
polygon is always to the right of the boundary.

107

Simple Polygon

Display a simple polygon with one region and no holes. First, list its vertices in a clockwise order.
Close the polygon by repeating the first vertex at the end of the list.

x1
yl

[063410];
[01320];

Display the vertices as a polygon using the mapshow function by specifying 'DisplayType' as
"polygon’.

mapshow(x1l,yl, 'DisplayType', 'polygon")

2-12

Create and Display Polygons

2587

Polygons with Holes or Multiple Regions

Define polygons with multiple regions or holes by separating the boundaries with NaN values. List the
vertices of external boundaries in a clockwise order and the vertices of internal boundaries in a
counterclockwise order.

X2

4
y2 3

[0 186 0NaN1421NaN56735];
[06 820NaN1351NaN3576 3];

These vectors define a polygon with one external boundary and two internal boundaries. The

boundaries are separated using NaN values. Verify the vertex order of the boundaries using the
ispolycw function. The ispolycw function returns 1 when the vertices are in a clockwise order.

ispolycw(x2,y2)
ans = 1x3 logical array

1 0 0

Display the polygon. The internal boundaries create holes within the polygon.

figure
mapshow(x2,y2, 'DisplayType', 'polygon')

2-13

2 Understanding Map Data

Now, list the vertices for a polygon with two nonintersecting regions. One of the regions has a hole.
Verify the vertex order of the boundaries using ispolycw.

x3=[01560NaN15421NaN76887];
y3 =067 20NaN13651NaN47874];
ispolycw(x3,y3)

ans = 1x3 logical array

1 0 1

Display the polygon. The external boundaries create two nonintersecting regions and the internal
boundary creates a hole.

figure
mapshow(x3,y3, 'DisplayType', 'polygon")

2-14

Create and Display Polygons

Polygons Using Geographic Coordinates

In general, you can use geographic coordinates when you define polygons over small regions and call
functions such as ispolycw. This is true except in cases where the polygon wraps a pole or crosses
the Antimeridian.

For example, display the state of Michigan on a map using polygons with geographic coordinates.
First, read the vertices of the state boundaries.

states = shaperead('usastatehi', 'UseGeoCoords',true);
michigan = states(22);

lat = michigan.lLat;

lon = michigan.Lon;

Count the boundaries and verify their vertex order. To use ispolycw with geographic coordinates,
list the longitude vector as the first argument and the latitude vector as the second argument. The 1-
by-6 output array means there are six boundaries. Each element of the array is 1, which means that
each boundary is the exterior boundary of its own region.

ispolycw(lon,lat)
ans = 1x6 logical array

1 1 1 1 1 1

2-15

2 Understanding Map Data

Display the polygon on a map using the geoshow function, specifying 'DisplayType' as
'polygon’.

usamap 'Michigan’
geoshow(lat, lon, 'DisplayType', 'polygon")

5|:I_|:|:: N

475 N

450° N a

i

425 N

40.0° N

90.0°W 875 W B50 W 825 W

Clip the polygon to the latitude and longitude limits of Isle Royale National Park using the maptrimp
function. Display the clipped polygon on a new map.

latlim = [47.8 48.2];
lonlim = [-89.3 -88.4];
[latT,lonT] = maptrimp(lat,lon,latlim,lonlim);

figure

usamap(latlim, lonlim)
geoshow(latT, lonT, 'DisplayType', 'polygon")

2-16

Create and Display Polygons

482 N

481 N

48.0 N

479 N

478 N
89.3° W89.2 W83.1 W8o0 WBBD WBBEB WEBS7 WBB6 WBBS5 WBB4 W

Filled Region of Polygons Using Geographic Coordinates

When you display a polygon on the Earth, the boundary divides the Earth into two regions. Both of
these regions have finite area, so either could be the inside region of the polygon.

) (g

As a result, when you project the vertices of a polygon onto a map using the geoshow function, the
filled region may be different than you expect. Change which region is filled by reversing the order of
the vertices.

For example, display a small polygon on a world map.

2-17

2 Understanding Map Data

lat2 = [0 10 40 30 0];
lon2 = [0 20 30 10 0O];
figure

worldmap('world")
geoshow(lat2,lon2, 'DisplayType', 'polygon")

0 45 E O0E 135E 180 E

The outside region of the polygon is filled. Reverse the order of the vertices by applying the flip
function to the coordinate vectors. Then, display the polygon again.

lat2f = flip(lat2);
lon2f = flip(lon2);
figure

worldmap('world")
geoshow(lat2f,lon2f, 'DisplayType', 'polygon')

2-18

Create and Display Polygons

0 45 E 90 E 135 E 18p E

The inside region of the polygon is filled instead.

See Also
geoshow | ispolycw | mapshow | polyshape | worldmap

2-19

2 Understanding Map Data

Segments Versus Polygons

Geographic objects represented by vector data might or might not be formatted as polygons. Imagine
two variables, latcoast and loncoast, that correspond to a sequence of points that caricature the
coast of the island of Great Britain. If this data returns to its starting point, then a polygon describing
Great Britain exists. This data might be plotted as a patch or as a line, and it might be logically
employed in calculations as either.

Now suppose that you want to represent the Anglo-Scottish border, proceeding from the west coast at
Solway Firth to the east coast at Berwick-upon-Tweed. This data can only be properly defined as a
line, defined by two or more points, which you can represent with two more variables, latborder
and lonborder. When plotted together, the two pairs of variables can form a map. The patch of
Great Britain plus the line showing the Scottish border might look like two patches or regions, but
there is no object that represents England and no object that represents Scotland, either in the
workspace or on the map axes.

In order to represent both regions properly, the Great Britain polygon needs to be split at the two
points where the border meets it, and a copy of latborder and lonborder concatenated to both
lines (placing one in reverse order). The resulting two polygons can be represented separately (e.g.,
in four variables named latengland, lonengland, latscotland, and lonscotland) or in two
variables that define two polygons each, delineated by NaNs (e.g., Llatuk, Lonuk).

+ 7 =

Border line

Polygon of Great Britain Polygon and line together
(still one polygon)

The distinction between line and polygon data might not appear to be important, but it can make a
difference when you are performing geographic analysis and thematic mapping. For example,
polygon data can be treated as line data and displayed with functions such as 1inem, but line data
cannot be handled as polygons unless it is restructured to make all objects close on themselves, as
described in “Link Line Segments with Common Endpoints into Polygons” on page 7-4.

See Also
geoshow | polymerge

2-20

Segments Versus Polygons

More About
. “Create and Display Polygons” on page 2-12

2-21

2 Understanding Map Data

Geographic Data Structures

2-22

In examples provided in prior chapters, geodata was in the form of individual variables. Mapping
Toolbox software also provides an easy means of displaying, extracting, and manipulating collections
of vector map features organized in geographic data structures.

A geographic data structure is a MATLAB structure array that has one element per geographic
feature. Each feature is represented by coordinates and attributes. A geographic data structure that
holds geographic coordinates (latitude and longitude) is called a geostruct, and one that holds map
coordinates (projected x and y) is called a mapstruct. Geographic data structures hold only vector
features and cannot be used to hold raster data (regular or geolocated data grids or images).

Shapefiles

Geographic data structures most frequently originate when vector geodata is imported from a
shapefile. The Environmental Systems Research Institute designed the shapefile format for vector
geodata. Shapefiles encode coordinates for points, multipoints, lines, or polygons, along with non-
geometrical attributes.

A shapefile stores attributes and coordinates in separate files; it consists of a main file, an index file,
and an xBASE file. All three files have the same base name and are distinguished by the

extensions .shp, .shx, and .dbf, respectively. (For example, given the base name

"concord roads' the shapefile file names would be 'concord roads.shp',

‘concord roads.shx', and 'concord roads.dbf"').

The Contents of Geographic Data Structures

The shaperead function reads vector features and attributes from a shapefile and returns a
geographic data structure array. The shaperead function determines the names of the attribute
fields at run-time from the shapefile xBASE table or from optional, user-specified parameters. If a
shapefile attribute name cannot be directly used as a field name, shaperead assigns the field an
appropriately modified name, usually by substituting underscores for spaces.

Geographic Data Structures

Fields in a Geographic Data Structure

Field Name Data Type Description Comments
Geometry character vector |One of the following shape types: |Fora 'PolyLine’, the
'Point', 'MultiPoint’, value of the Geometry
‘Line', or 'Polygon’. field is simply 'Line".
BoundingBox 2-by-2 numerical |Specifies the minimum and Omitted for shape type
array maximum feature coordinate 'Point’.

values in each dimension in the
following form:

min(X) min(Y)
max(X) max(Y)

X, Y, Lon, or Lat 1-by-N array of |Coordinate vector.
class double

Attr character vector |Attribute name, type, and value. |Optional. There are
or scalar number usually multiple
attributes.

The shaperead function does not support any 3-D or "measured" shape types: 'PointZ’,
'"PointM’', 'MultipointZ', 'MultipointM', 'PolyLineZ', 'PolyLineM', 'PolygonZ’,
"PolylineM', or 'Multipatch'. Also, although 'Null Shape' features can be present in a
'"Point', '"Multipoint’', 'PolyLine"', or 'Polygon' shapefile, they are ignored.

PolyLine and Polygon Shapes

In geographic data structures with Line or Polygon geometries, individual features can have
multiple parts—disconnected line segments and polygon rings. The parts can include
counterclockwise inner rings that outline "holes." For an illustration of this, see “Create and Display
Polygons” on page 2-12. Each disconnected part is separated from the next by a NaN within the X and
Y (or Lat and Lon) vectors. You can use the isShapeMultipart function to determine if a feature
has NaN-separated parts.

Each multipoint or NaN-separated multipart line or polygon entity constitutes a single feature and
thus has one character vector or scalar double value per attribute field. It is not possible to assign
distinct attributes to the different parts of such a feature; any character vector or numeric attribute
imported with (or subsequently added to) the geostruct or mapstruct applies to all the feature's parts
in combination.

Mapstructs and Geostructs

By default, shaperead returns a mapstruct containing X and Y fields. This is appropriate if the data
set coordinates are already projected (in a map coordinate system). Otherwise, if the data set
coordinates are unprojected (in a geographic coordinate system), use the parameter-value pair
'UseGeoCoords ', true to make shaperead return a geostruct having Lon and Lat fields.

Coordinate Types. If you do not know whether a shapefile uses geographic coordinates or map
coordinates, here are some things you can try:

» If the shapefile includes a projection file (.prj), use shapeinfo to get information about the
coordinate reference system. If the CoordinateReferenceSystem field of the returned
structure is a projcrs object, you have map coordinates. If the field is a geocrs object, you have
geographic coordinates.

2-23

2 Understanding Map Data

2-24

» If the shapefile does not include a projection file, use shapeinfo to obtain the BoundingBox. By
looking at the ranges of coordinates, you may be able to tell what kind of coordinates you have.

* Ask your data provider.

The geoshow function displays geographic features stored in geostructs, and the mapshow function
displays geographic features stored in mapstructs. If you try to display a mapstruct with geoshow,
the function issues a warning and calls mapshow. If you try to display a geostruct with mapshow, the
function projects the coordinates with a Plate Carree projection and issues a warning.

Examining a Geographic Data Structure

Here is an example of an unfiltered mapstruct returned by shaperead:

S = shaperead('concord roads.shp')

The output appears as follows:

S:

609x1 struct array with fields:
Geometry
BoundingBox
X
Y
STREETNAME
RT_NUMBER
CLASS
ADMIN TYPE
LENGTH

The shapefile contains 609 features. In addition to the Geometry, BoundingBox, and coordinate
fields (X and Y), there are five attribute fields: STREETNAME, RT NUMBER, CLASS, ADMIN TYPE, and
LENGTH.

Look at the 10th element:
S(10)
The output appears as follows:

ans =
Geometry: 'Line'
BoundingBox: [2x2 double]
X: [1x9 double]
Y: [1x9 double]
STREETNAME: 'WRIGHT FARM'
RT _NUMBER: "'
CLASS: 5
ADMIN TYPE: 0
LENGTH: 79.0347

This mapstruct contains 'Line' features. The tenth line has nine vertices. The values of the first two
attributes are character vectors. The second happens to be an empty character vector. The final three
attributes are numeric. Across the elements of S, X and Y can have various lengths, but STREETNAME
and RT_NUMBER must always contain character vectors, and CLASS, ADMIN TYPE and LENGTH must
always contain scalar doubles.

Geographic Data Structures

In this example, shaperead returns an unfiltered mapstruct. If you want to filter out some attributes,
see “Select Shapefile Data to Read” on page 2-97 for more information.

How to Construct Geographic Data Structures

Functions such as shaperead or gshhs return geostructs when importing vector geodata. However,
you might want to create geostructs or mapstructs yourself in some circumstances. For example, you
might import vector geodata that is not stored in a shapefile (for example, from a MAT-file, from an
Microsoft® Excel® spreadsheet, or by reading in a delimited text file). You also might compute vector
geodata and attributes by calling various MATLAB or Mapping Toolbox functions. In both cases, the
coordinates and other data are typically vectors or matrices in the workspace. Packaging variables
into a geostruct or mapstruct can make mapping and exporting them easier, because geographic data
structures provide several advantages over coordinate arrays:

» All associated geodata variables are packaged in one container, a structure array.

* The structure is self-documenting through its field names.

* You can vary map symbology for points, lines, and polygons according to their attribute values by
constructing a symbolspec for displaying the geostruct or mapstruct.

* A one-to-one correspondence exists between structure elements and geographic features, which
extends to the children of hggroup objects constructed by mapshow and geoshow.

Achieving these benefits is not difficult. Use the following example as a guide to packaging vector
geodata you import or create into geographic data structures.

Making Point and Line Geostructs

The following example first creates a point geostruct containing three cities on different continents
and plots it with geoshow. Then it creates a line geostruct containing data for great circle
navigational tracks connecting these cities. Finally, it plots these lines using a symbolspec.

1 Begin with a small set of point data, approximate latitudes and longitudes for three cities on
three continents:

latparis = 48.87084; lonparis = 2.41306; % Paris coords
latsant = -33.36907; lonsant = -70.82851; % Santiago
latnyc = 40.69746; lonnyc = -73.93008; % New York City

2 Build a point geostruct; it needs to have the following required fields:

* Geometry (in this case 'Point"')

Lat (for points, this is a scalar double)

Lon (for points, this is a scalar double)

The first field by convention is Geometry (dimensionality).
As Geometry is the same for all elements, assign it with deal:
Cities(1:3).Geometry] = deal('Point');

— o o°

% Add the latitudes and longitudes to the geostruct:

Cities(1l).Lat = latparis; Cities(1l).Lon = lonparis;
Cities(2).Lat = latsant; Cities(2).Lon = lonsant;
Cities(3).Lat = latnyc; Cities(3).Lon = lonnyc;

Add city names as City fields. You can name optional fields
anything you like other than Geometry, Lat, Lon, X, or Y.

[
)
[

)

2-25

2 Understanding Map Data

Cities(1l).Name = 'Paris';
Cities(2).Name = 'Santiago’;
Cities(3).Name = 'New York';

% Inspect your completed geostruct and its first member
Cities

Cities =
1x3 struct array with fields:
Geometry
Lat
Lon
Name

Cities(1)

ans =
Geometry: 'Point'
Lat: 48.8708
Lon: 2.4131
Name: 'Paris'

3 Display the geostruct on a Mercator projection of the Earth's land masses stored in the
landareas. shp shapefile, setting map limits to exclude polar regions:

axesm('mercator', 'grid', 'on', 'MapLatLimit',[-75 75]); tightmap;
% Map the geostruct with the continent outlines
geoshow('landareas.shp')

% Map the City locations with filled circular markers
geoshow(Cities, 'Marker','o"', ...
'MarkerFaceColor', 'c', 'MarkerkdgeColor', 'k');

% Display the city names using data in the geostruct field Name.
% Note that you must treat the Name field as a cell array.
textm([Cities(:).Lat],[Cities(:).Lon], ...

{Cities(:).Name}, 'FontWeight', 'bold');

2-26

Geographic Data Structures

Next, build a Line geostruct to package great circle navigational tracks between the three cities:

% Call the new geostruct Tracks and give it a line geometry:
[Tracks(1l:3).Geometry] = deal('Line');

Create a text field identifying kind of track each entry is.

Here they all will be great circles, identified as 'gc'

s (character vector used by certain functions to signify great circle arcs)
trackType = 'gc';

[Tracks.Type] = deal(trackType);

° o° o°

A\

% Give each track an identifying name

Tracks(1l).Name = 'Paris-Santiago';

[Tracks(1l).Lat Tracks(1l).Lon] = ...
track2(trackType, latparis, lonparis, latsant, lonsant);

Tracks(2).Name = 'Santiago-New York';
[Tracks(2).Lat Tracks(2).Lon] = ...
track2(trackType, latsant, lonsant, latnyc, lonnyc);

Tracks(3).Name = 'New York-Paris';
[Tracks(3).Lat Tracks(3).Lon] = ...
track2(trackType, latnyc, lonnyc, latparis, lonparis);

Compute lengths of the great circle tracks:
The distance function computes distance and azimuth between

given points, in degrees. Store both in the geostruct.
for j = l:numel(Tracks)

[dist az] = ...
distance(trackType,Tracks(j).Lat(1),..
Tracks(j).Lon(1),.
Tracks(j).Lat(end),
Tracks(j).Lon(end));
[Tracks(j).Length] = dist;
[Tracks(j).Azimuth] = az;
end
% Inspect the first member of the completed geostruct
Tracks(1)
ans =
Geometry: 'Line'

Type: 'gc'

Name: 'Paris-Santiago'
Lat: [100x1 doublel]
Lon: [100x1 doublel]

Length: 104.8274
Azimuth: 235.8143

Map the three tracks in the line geostruct:

On cylindrical projections like Mercator, great circle tracks
are curved except those that follow the Equator or a meridian.

o® o°

Graphically differentiate the tracks by creating a symbolspec;
key line color to track length, using the 'summer' colormap.
Symbolspecs make it easy to vary color and linetype by
attribute values. You can also specify default symbologies.

o® o° o o°

2-27

2 Understanding Map Data

colorRange = makesymbolspec('Line’,...
{'Length',[min([Tracks.Lengthl])
max([Tracks.Length])],...
'Color',winter(3)});
geoshow(Tracks, 'SymbolSpec',colorRange);

You can save the geostructs you just created as shapefiles by calling shapewrite with a file
name of your choice, for example:

shapewrite(Cities, 'citylocs');
shapewrite(Tracks, 'citytracks');

Making Polygon Geostructs

Creating a geostruct or mapstruct for polygon data is similar to building one for point or line data.
However, if your polygons include multiple, NaN-separated parts, recall that they can have only one
value per attribute, not one value per part. Each attribute you place in a structure element for such a
polygon pertains to all its parts. This means that if you define a group of islands, for example with a
single NaN-separated list for each coordinate, all attributes for that element describe the islands as a
group, not particular islands. If you want to associate attributes with a particular island, you must
provide a distinct structure element for that island.

Be aware that the ordering of polygon vertices matters. When you map polygon data, the direction in
which polygons are traversed has significance for how they are rendered by functions such as
geoshow, mapshow, and mapview. Proper directionality is particularly important if polygons contain
holes. The Mapping Toolbox convention encodes the coordinates of outer rings (e.g., continent and
island outlines) in clockwise order; counterclockwise ordering is used for inner rings (e.g., lakes and
inland seas). Within the coordinate array, each ring is separated from the one preceding it by a NaN.

When plotted by mapshow or geoshow, clockwise rings are filled. Counterclockwise rings are
unfilled; any underlying symbology shows through such holes. To ensure that outer and inner rings
are correctly coded according to the above convention, you can invoke the following functions:

* 1ispolycw — True if vertices of polygonal contour are clockwise ordered

2-28

Geographic Data Structures

* poly2cw — Convert polygonal contour to clockwise ordering
* poly2ccw — Convert polygonal contour to counterclockwise ordering

* poly2fv — Convert polygonal region to face-vertex form for use with patch in order to properly
render polygons containing holes

Three of these functions check or change the ordering of vertices that define a polygon, and the
fourth one converts polygons with holes to a completely different representation.

For an example of working with polygon geostructs, see “Converting Coastline Data (GSHHG) to
Shapefile Format” on page 2-116.

Mapping Toolbox Version 1 Display Structures

Prior to Version 2, when geostructs and mapstructs were introduced, a different data structure was
employed when importing geodata from certain external formats to encapsulate it for map display
functions. These display structures accommodated both raster and vector map data and other kinds
of objects, but lacked the generality of current geostructs and mapstructs for representing vector
features and are being phased out of the toolbox. However, you can convert display structures that
contain vector geodata to geostruct form using updategeostruct. For more information about
Version 1 display structures and their usage, see “Version 1 Display Structures” in the reference page
for displaym. Additional information is located in reference pages for updategeostruct,
extractm, and mlayers.

See Also
shapeinfo | shaperead

More About
. “Create and Display Polygons” on page 2-12

2-29

2 Understanding Map Data

Georeferenced Raster Data

2-30

Raster geodata consists of georeferenced data grids and images that are stored as matrices or
objects in the MATLAB workspace. While raster geodata looks like any other matrix of real numbers,
what sets it apart is that it is georeferenced, either to the globe or to a specified map projection, so
that each pixel of data occupies a known patch of territory on the planet.

All regular data grids require a reference object, matrix, or vector, that specify the placement and
resolution of the data set. Geolocated data grids do not require a separate reference object, as they
explicitly identify the geographic coordinates of all rows and columns. For details on geolocated
grids, see “Geolocated Data Grids” on page 2-35.

Reference Objects

A spatial reference object encapsulates the relationship between a geographic or planar coordinate
system and a system of intrinsic coordinates anchored to the columns and rows of a 2-D spatially
referenced raster grid or image. A reference object for raster data that is referenced to a geographic
latitude-longitude system can be a GeographicCellsReference or
GeographicPostingsReference object. A referencing object for raster data referenced to a planar
(projected) map coordinate system can be a MapCellsReference or MapPostingsReference
object. Unlike the older referencing matrix and vector representations (described below), a reference
object is self-documenting, providing a rich set of properties to describe both the intrinsic and
extrinsic geometry. The use of reference objects is preferred, but some referencing matrix and vector
functionality continues to be supported for the purpose of compatibility.

Referencing Matrices

A referencing matrix is a 3-by-2 matrix of doubles that describes the scaling, orientation, and
placement of the data grid on the globe. For a given referencing matrix, R, one of the following
relations holds between rows and columns and coordinates (depending on whether the grid is based
on map coordinates or geographic coordinates, respectively):

[x y] = [row col 1] * R, or
[long lat] = [row col 1] * R

Convert a referencing matrix to a raster reference object using the refmatToGeoRasterReference
or refmatToMapRasterReference functions.

Referencing Vectors

In many instances (when the data grid or image is based on latitude and longitude and is aligned with
the geographic graticule), a referencing matrix has more degrees of freedom than the data requires.
In such cases, you may encounter a more compact representation, a three-element referencing
vector. A referencing vector defines the pixel size and northwest origin for a regular, rectangular data
grid:

refvec = [cells-per-degree north-lat west-lon]

This variable is often called refvec (or maplegend). The first element, cells-per-degree, describes
the angular extent of each grid cell (e.g., if each cell covers five degrees of latitude and longitude,
cells-per-degree would be specified as 0.2). Note that if the latitude extent of cells differs from their
longitude extent you cannot use a referencing vector, and instead must specify a referencing object or

Georeferenced Raster Data

matrix. The second element, north-lat, specifies the northern limit of the data grid (as a latitude), and
the third element, west-lon, specifies the western extent of the data grid (as a longitude). In other
words, north-lat, west-lon is the northwest corner of the data grid. Note, however, that cell (1,1) is
always in the southwest corner of the grid. This need not be the case for grids or images described by
referencing objects or matrices.

Convert a referencing vector to a geographic raster reference object using the
refvecToGeoRasterReference function.

2-31

2 Understanding Map Data

Construct a Global Data Grid

2-32

Imagine an extremely coarse map of the world in which each cell represents 60°. Such a map matrix

would be 3-by-6.
1 Create a 3-by-6 grid:

miniZ = [1 23 456; 78910 11 12; 13 14 15 16 17 18];

2 Now make a referencing object:

miniR = georasterref('RasterSize', size(miniZ),
'Latlim', [-90 901, 'Lonlim', [-180 180])

Your output appears like this:

miniR =

GeographicCellsReference with properties:

LatitudeLimits: [-90 90]
LongitudeLimits: [-180 180]
RasterSize: [3 6]
RasterInterpretation: 'cells'
ColumnsStartFrom: 'south'
RowsStartFrom: 'west'
CellExtentInLatitude: 60
CellExtentInLongitude: 60
RasterExtentInLatitude: 180
RasterExtentInLongitude: 360
XIntrinsicLimits: [0.5 6.5]
YIntrinsicLimits: [0.5 3.5]
CoordinateSystemType: 'geographic'
AngleUnit: 'degree'
3 Set up an equidistant cylindrical map projection:
figure('Color', 'white")
ax = axesm('MapProjection', 'eqdcylin');
axis off
setm(ax, 'GLineStyle','-', 'Grid','on','Frame', 'on')
4 Draw a graticule with parallel and meridian labels at 60° intervals:
setm(ax, 'MlabellLocation', 60, 'PlabellLocation',[-30 3017, ...
'MLabelParallel', 'north', 'MeridianLabel','on’',...
'ParallelLabel', 'on', 'MlineLocation',60, ...
'PlineLocation',[-30 30])
5 Map the data using geoshow and display with a color ramp and legend:

geoshow(miniZ, miniR, 'DisplayType', 'texturemap');

colormap('autumn')
colorbar

Construct a Global Data Grid

180°W 1200W B0 W G0E 120E 180 E

Note that the first row of the matrix is displayed at the bottom of the map, while the last row is
displayed at the top.

2-33

2 Understanding Map Data

Precompute the Size of a Data Grid

Before making a large, memory-taxing data grid, you should first determine what its size will be. If
you know the latitude and longitude limits of a region, you can calculate the size of the raster by
creating a referencing object, for any desired map resolution and scale.

Specify the latitude and longitude limits for the region. This example calculates the size of a map of
the continental U.S. at a scale of 10 cells per degree.

latlim
lonlim

[25 50];
[-130 -60];

Specify the extent of the data grid using cells per degree.

cellsPerDegree = 10;
extent = 1/cellsPerDegree;

Construct a referencing object and verify that the size of the raster is reasonable (in this case, 250 by
700 cells).

R = georefcells(latlim,lonlim,extent,extent);
R.RasterSize

ans = 1x2

250 700

2-34

Geolocated Data Grids

Geolocated Data Grids

In addition to regular data grids, the toolbox provides another format for geodata: geolocated data
grids. These multivariate data sets can be displayed, and their values and coordinates can be queried,
but unfortunately much of the functionality supporting regular data grids is not available for
geolocated data grids.

Regular data grids cover simple, regular quadrangles, that is, geographically rectangular and aligned
with parallels and meridians. Geolocated data grids, in addition to these rectangular orientations, can
have other shapes as well.

Define Geolocated Data Grid

To define a geolocated data grid, you must define three variables: a matrix of indices or values
associated with the mapped region, a matrix giving cell-by-cell latitude coordinates, and a matrix
giving cell-by-cell longitude coordinates.

Load a MAT-file containing an irregularly shaped geolocated data grid called mapmtx.

load mapmtx

View the variables created from this MAT-file. Two geolocated data grids are in this data set, each
requiring three variables. The values contained in map1l correspond to the latitude and longitude
coordinates, respectively, in 1t1 and 1g1l. Notice that all three matrices are the same size. Similarly,
map2, 1t2, and 1g2 together form a second geolocated data grid. These data sets were extracted
from the topo60c data grid. Neither of these maps is regular, because their columns do not run
north to south.

whos

Name Size Bytes (lass Attributes
description 1x54 108 char

191 50x50 20000 double

192 50x50 20000 double

1t1 50x50 20000 double

1t2 50x50 20000 double

mapl 50x50 20000 double

map2 50x50 20000 double

source 1x43 86 char

Display the grids one after another to see their geography.

close all

axesm mercator

gridm on

framem on

hl surfm(1tl, lgl,mapl);
h2 surfm(1t2,1g2,map2);

2-35

2 Understanding Map Data

Showing coastlines will help to orient you to these skewed grids. Notice that neither grid is a regular
rectangle. One looks like a diamond geographically, the other like a trapezoid. The trapezoid is
displayed in two pieces because it crosses the edge of the map. These shapes can be thought of as the
geographic organization of the data, just as rectangles are for regular data grids. But, just as for
regular data grids, this organizational logic does not mean that displays of these maps are necessarily
a specific shape.

load coastlines
plotm(coastlat,coastlon, 'r')

2-36

Geolocated Data Grids

Now change the view to a polyconic projection with an origin at 0°N, 90°E. As the polyconic
projection is limited to a 150° range in longitude, those portions of the maps outside this region are
automatically trimmed.

setm(gca, 'MapProjection', 'polycon', 'Origin', [0 90 0])

2-37

2 Understanding Map Data

2-38

Geographic Interpretations of Geolocated Grids

Geographic Interpretations of Geolocated Grids

Mapping Toolbox software supports three different interpretations of geolocated data grids:

+ First, a map matrix having the same number of rows and columns as the latitude and longitude
coordinate matrices represents the values of the map data at the corresponding geographic points
(centers of data cells).

* Next, a map matrix having one fewer row and one fewer column than the geographic coordinate
matrices represents the values of the map data within the area formed by the four adjacent
latitudes and longitudes.

* Finally, if the latitude and longitude matrices have smaller dimensions than the map matrix, you
can interpret them as describing a coarser graticule, or mesh of latitude and longitude cells, into
which the blocks of map data are warped.

This section discusses the first two interpretations of geolocated data grids. For more information on
the use of graticules, see “The Map Grid” on page 4-83.

Type 1: Values Associated with the Upper Left Grid Coordinate

As an example of the first interpretation, consider a 4-by-4 map matrix whose cell size is 30-by-30
degrees, along with its corresponding 4-by-4 latitude and longitude matrices:

Z=1...

1 2 3 4;

5 6 7 8;

9 10 11 12;

13 14 15 16];

lat = [...

30 30 30 30;
0 0 0 0;

-30 -30 -30 -30;
-60 -60 -60 -60];

90;...
90;...
90;...
920];

Display the geolocated data grid with the values of map shown at the associated latitudes and
longitudes:

figure('Color', 'white', 'Colormap',autumn(64))
axesm('pcarree','Grid','on', 'Frame','on', ...

'PLineLocation', 30, 'PLabellLocation',30)
mlabel; plabel; axis off; tightmap

h = geoshow(lat,lon,Z, 'DisplayType', 'surface');

set(h, 'ZData',zeros(size(Z)))

ht = textm(lat(:),lon(:),num2str(Z(:)),
'Color', 'blue', 'FontSize',614);

colorbar('southoutside')

2-39

2 Understanding Map Data

o ﬁj’ v*avsn:° wzn_’ mn’_ WEDi Wanf W D: 30_“ E 50_“ E 90:“ E12q“ E15E!+ S=
B0 M
30 M

0 : : : : : : :
gl 5 e 101112
] ; é é é é 13m44 15“15“%

90" 3

Notice that only 9 of the 16 total cells are displayed. The value displayed for each cell is the value at
the upper left corner of that cell, whose coordinates are given by the corresponding lat and lon
elements. By convention, the last row and column of the map matrix are not displayed, although they
exist in the CData property of the surface object.

Type 2: Values Centered Within Four Adjacent Coordinates

For the second interpretation, consider a 3-by-3 map matrix with the same lat and lon variables:

delete(h)
delete(ht)

h = geoshow(lat,lon,Z3by3, 'DisplayType', 'texturemap');

tlat = [.
15 15 15
-15 -15 -15;
-45 -45 -45];

tlon = [...
15 45 75;
15 45 75;
15 45 74];

textm(tlat(:),tlon(:),num2str(Z3by3(:)),
'Color', 'blue', 'FontSize', 14)

Display a surface plot of the map matrix, with the values of map shown at the center of the associated
cells:

2-40

Geographic Interpretations of Geolocated Grids

o B M50 20 W0 WD W30 W O 30 E B0 E B0 E120° FIS0 E1AD E

B0 N| _______ T - _______ T o
30N - - . . . '
0
I s

B0 S

o0’ 5

All the map data is displayed for this geolocated data grid. The value of each cell is the value at the
center of the cell, and the latitudes and longitudes in the coordinate matrices are the boundaries for
the cells.

Ordering of Cells

You may have noticed that the first row of the matrix is displayed as the top of the map, whereas for a
regular data grid, the opposite was true: the first row corresponded to the bottom of the map. This
difference is entirely due to how the lat and lon matrices are ordered. In a geolocated data grid, the
order of values in the two coordinate matrices determines the arrangement of the displayed values.

Transform Regular to Geolocated Grids

When required, a regular data grid can be transformed into a geolocated data grid. This simply
requires that a pair of coordinate matrices be computed at the desired spatial resolution from the
regular grid. For example, load elevation raster data and a geographic cells reference object. Then,
create a latitude-longitude grid for the data by calling the geographicGrid function.

load topo60c
[lat,lon] = geographicGrid(topo60cR);

Transforming Geolocated to Regular Grids
Conversely, a regular data grid can also be constructed from a geolocated data grid. The coordinates

and values can be embedded in a new regular data grid. The function that performs this conversion is
geoloc2grid; it takes a geolocated data grid and a cell size as inputs.

2-41

2 Understanding Map Data

Spatially Reference Imported Rasters

2-42

To associate the elements of a raster with geospatial locations, the raster must be accompanied by
spatial referencing information such as the geographic or world limits, the distance between
recorded samples, and the extent of individual cells. When a supported raster data file contains
spatial referencing information, you can use the readgeoraster function to import the data as an
array and the referencing information as a raster reference object. If the data file does not contain
referencing information, then you can import the data as an array and create a reference object using
the georefcells, georefpostings, maprefcells, or maprefpostings function. The creation
function you use depends on characteristics of the raster data.

* georefcells — The raster is a grid of quadrangular cells referenced to geographic latitude and
longitude coordinates.

+ georefpostings — The raster is a grid of posting point samples referenced to geographic
coordinates.

+ maprefcells — The raster is a grid of rectangular cells referenced to projected world x- and y-
coordinates.

* maprefpostings — The raster is a grid of posting point samples referenced to projected
coordinates.

Differentiate Between Cells and Postings

This image shows differences between a projected raster of cells and a projected raster of posting
points. Both rasters have elements that are spaced 1 meter apart, with the raster covering x-values in
the range [40,50] in meters and y-values in the range [20,28] in meters. The raster of cells is 8-by-10
and the raster of postings is 9-by-11. The boundary of the raster of cells is made up of the outermost
boundaries of the outermost cells and the boundary of the raster of postings is made up of sampling
points along the edges of the raster.

Raster of Cells Raster of Posting Points

28 28
IR AR AR R AR B BN AN)

27 27
(I AR AR R AR B BN AR)

26 26
(I AR A R AR B BN A)

25 25
(IR AR BE R AR R BN AR)

24 24
e o oo |(o|o /o 0 o e

23 23
oo e|e(o|eo 0 o e

22 22
(IR AR AR R AR B BN AR)

21 21
(IR AR B R AR B BN AR)

20 20

PR PP PRE PRI RO PR PRSP

If you do not know whether your raster is a grid of cells or a grid of posting points, you can try the
following:

* Ask your data provider.

» Search the metadata for information about the spatial registration or interpretation of the data.
Metadata for rasters of cells can contain phrases such as "pixels" or "pixel is area." Metadata for
rasters of posting points can contain phrases such as "grid", "node", or "pixel is point."

* Consider what the data represents. Images are typically made of cells, while elevation grids are
typically made of posting points.

* Consider the size of the raster. If the dimensions of the raster are round numbers, such as a raster
of size [1000 1000], then the raster is probably made of cells. If the dimensions of the raster are

Spatially Reference Imported Rasters

round numbers plus one, such as a raster of size [1001 1001], then the raster is probably made
of posting points.

Spatially Reference an Image

This example shows how to import an image, spatially reference the image by creating a reference
object, then display the image on a map.

Import an image as an array by using the imread function. The array is of size 500-by-500-by-3 and
specifies the red, green, and blue components of the image.

A = imread('boston _common.jpg');
To spatially reference the image, you must determine the following:

* Whether the image is referenced to geographic or projected coordinates
* Whether the image is made up of cells or posting points

Information included in the file boston_common. txt indicates that the image is referenced to
projected coordinates and is made up of cells. Therefore, you can create a reference object by using
the maprefcells function. Specify the x- and y-limits, also included in the file

boston_common. txt, using world coordinates.

xlimits = [235150 236150];
ylimits = [900100 901100];
R = maprefcells(xlimits,ylimits,size(A));

Define the first row of A as the northernmost edge of the image by setting the ColumnsStartFrom
property of the reference ohject to 'north'. Otherwise, the ColumnsStartFrom property defaults
to 'south’'.

R.ColumnsStartFrom = 'north';
Display the spatially referenced image on a map by using the mapshow function.

mapshow(A,R)

2-43

2 Understanding Map Data

2-44

2.3562 2.354 2.356 2.358 2.36

%107

The data used in this example is derived from data provided by MassGIS (Bureau of Geographic
Information). See the file boston common.txt for more details.

Spatially Reference an Elevation Grid

This example shows how to import elevation data, spatially reference the data by creating a reference
object, then display the data on a map.

Load elevation data as an array.

load elevation n39 wl06.mat
To spatially reference the data, you must determine the following:

* Whether the data is referenced to geographic or projected coordinates
* Whether the data is made of cells or posting points

Information in the file elevation n39 wl06.txt indicates that the data set is referenced to
geographic coordinates and is made up of posting points. Therefore, you can create a reference
object for the data by using the georefpostings function. Specify the latitude and longitude limits,
also included in the file boston _common. txt, using degrees.

latlim = [39 40];
lonlim = [-106 -105];
R = georefpostings(latlim,lonlim,size(elevation n39 wl06));

Spatially Reference Imported Rasters

Create map axes by specifying the latitude and longitude limits of the data. Then, display the data as
a surface by using the geoshow function. Apply a colormap appropriate for elevation data by using
the demcmap function.

usamap(R.LatitudeLimits,R.LongitudeLimits)
geoshow(elevation n39 wl06,R, 'DisplayType', 'surface"')
demcmap(elevation n39 wl06)

400 N

395 N

39.0° N

106.0° W 1055 W 105.00 W

The data set used in this example is derived from data provided by the U.S. Geological Survey. See
the file elevation n39 wl06.txt for more details.

See Also

Functions
georefcells | georefpostings | maprefcells | maprefpostings | readgeoraster

Objects
GeographicCellsReference | GeographicPostingsReference | MapCellsReference |
MapPostingsReference

2-45

2 Understanding Map Data

Mosaic Spatially Referenced Raster Tiles

2-46

Geospatial raster data providers commonly package data as adjacent tiles. For example, SRTM Void
Filled elevation data is packaged into 1-degree-by-1-degree tiles. To analyze data spread across
several tiles, such as when calculating line-of-sight visibility, you must mosaic the tiles into a single
raster.

The processes for combining rasters of cells and rasters of posting points are different. For
information on differentiating rasters made up of cells and posting points, see “Spatially Reference
Imported Rasters” on page 2-42.

Before mosaicking tiles, you must ensure that the tiles are adjacent and that the tile boundaries align.
Otherwise, elements of the mosaicked raster can be spatially referenced to the wrong locations.

Mosaic Rasters of Cells

This example shows how to import two adjacent raster data files made of cells, mosaic the data into a
single raster, and display the mosaicked raster on a map.

The files used in this example, concord ortho e.tif and concord ortho w.tif, contain east-
west adjacent images with concord_ortho_e.tif to the east of concord ortho w.tif. The cell
extents and world y-limits of the images are identical.

Import the images using the readgeoraster function. The outputs eastA and westA are arrays that
contain the image data, and the outputs westR and eastR are MapCellsReference objects that
contain spatial referencing information.

[eastA,eastR]
[westA,westR]

readgeoraster('concord ortho e.tif');
readgeoraster('concord ortho w.tif');

Create a mosaicked raster by combining the arrays. The images are adjacent and are made up of
cells, so the eastern boundary of westA aligns with the western boundary of eastA.

mosaicA = [westA eastAl]l;

Spatially reference the mosaicked raster by creating a raster reference object. You can create a
reference object for a projected raster of cells by using the maprefcells function.

Specify the world x- and y-limits of the raster. The x-limits of the mosaicked raster are the minimum x-
limit of the western raster and the maximum x-limit of the eastern raster. The world y-limits of the
mosaicked raster are the same as the y-limits of the imported rasters. Create the reference object.

xlimits = [westR.XWorldLimits(1l) eastR.XWorldLimits(2)1;
ylimits = westR.YWorldLimits;
mosaicR = maprefcells(xlimits,ylimits,size(mosaicA));

The columns of arrays imported using the readgeoraster function start from the north. Therefore,
set the ColumnsStartFrom property of the reference object to 'north'.

mosaicR.ColumnsStartFrom = 'north';
Display the mosaicked image on a map by using the mapshow function.

mapshow(mosaicA,mosaicR, 'DisplayType', 'image')

Mosaic Spatially Referenced Raster Tiles

9.115

2.07 2.075 2.08 2.085 2.09 2.095 2.1 2.105 2.1
5
w10

Mosaic Rasters of Postings

This example shows how to import two adjacent raster data files made of posting points, mosaic the
data into a single raster, and display the mosaicked raster on a map.

The files used in this example, n39 w106 3arc_v2.dtl and n40 wl06 3arc v2.dtl, contain
north-south adjacent elevation grids with n39 w106 3arc v2.dt1 to the south of

n40 wl06 3arc_v2.dtl. The northern latitude limit of the grid in n39 w106 3arc_v2.dt1 is the
same as the southern latitude limit of the grid in n40 w106 3arc_v2.dtl. The spacing of posting
points and the longitude limits of the grids are identical.

Import the grids using the readgeoraster function. The outputs southZ and northZ are arrays of
type double that contain the elevation data, and the outputs southR and northR are
GeographicPostingsReference objects that contain spatial referencing information.

[southZ, southR]
[northZ,northR]

readgeoraster('n39 wl06 3arc v2.dtl', 'OutputType', 'double');
readgeoraster('n40 wl06 3arc v2.dtl', 'OutputType', 'double');

Create a mosaicked raster by combining the arrays. The boundaries of posting point rasters are made
up of the outermost posting points, and the columns of arrays imported using the readgeoraster
function start from the north. Therefore, the southernmost row of northzZ and the northernmost row
of southZ are the same. To avoid a duplicate row in the mosaicked raster, remove the southernmost
row of northZ before combining the arrays.

2-47

2 Understanding Map Data

2-48

northZ(end,:) = [1;
mosaicZ = [northZ; southZ];

Spatially reference the mosaicked raster by creating a raster reference object. You can create a
reference object for a geographic raster of posting points by using the georefpostings function.

Specify the latitude and longitude limits of the raster. The latitude limits are the minimum latitude of
the southern raster and the maximum latitude of the northern raster. The longitude limits of the
mosaicked raster are the same as the longitude limits of the imported rasters. Create the reference
object.

latlim [southR.LatitudeLimits(1) northR.LatitudeLimits(2)];
lonlim southR.LongitudelLimits;
mosaicR = georefpostings(latlim, lonlim,size(mosaicZ));

Set the ColumnsStartFrom and GeographicCRS properties of the reference object so that they
match the properties of the imported reference objects.

mosaicR.ColumnsStartFrom = southR.ColumnsStartFrom;
mosaicR.GeographicCRS = southR.GeographicCRS;

Display the mosaicked raster on a map. Create a map axes by specifying the latitude and longitude
limits of the data. Then, display the data as a surface by using the geoshow function. Apply a
colormap appropriate for elevation data by using the demcmap function.

usamap(mosaicR.LatitudeLimits,mosaicR.LongitudelLimits)
geoshow(mosaicZ,mosaicR, 'DisplayType', 'surface')
demcmap (mosaicZ)

410 N

405 N

400 N

395 N

390 N

106.0° W 1055 W 105.0 W

Mosaic Spatially Referenced Raster Tiles

The elevation data used in this example is from the U.S. Geological Survey.

See Also

Functions
georefcells | georefpostings | maprefcells | maprefpostings | readgeoraster

Objects
GeographicCellsReference | GeographicPostingsReference | MapCellsReference |
MapPostingsReference

Related Examples
. “Spatially Reference Imported Rasters” on page 2-42

2-49

2 Understanding Map Data

Unprojecting a Digital Elevation Model (DEM)

2-50

This example shows how to convert a USGS DEM into a regular latitude-longitude grid having
comparable spatial resolution. U.S. Geological Survey (USGS) 30-meter Digital Elevation Models
(DEMSs) are regular grids (raster data) that use the UTM coordinate system. Using such DEMs in
applications may require reprojecting and resampling them. You can readily apply the approach show
here to projected map coordinate systems other than UTM and to other DEMs and most types of
regular data grids.

First, set the output display format to LongG so that the output displays more decimal places. Get the
current output format so that you can restore it at the end of the example.

currentFormat = get(0, 'format');
format longG

Step 1: Import the DEM and its Metadata

This example uses a USGS DEM for a quadrangle 7.5-arc-minutes square located in the White
Mountains of New Hampshire, USA. Import the data and a map cells reference object using the
readgeoraster function. Get additional metadata using the georasterinfo function.

[Z,R] = readgeoraster('MtWashington-ft.grd', 'OutputType', 'double');
info = georasterinfo('MtWashington-ft.grd');

Replace missing data with NaN values.

info.MissingDataIndicator;
standardizeMissing(Z,m);

m
pA
Step 2: Get Projection Information

Get information about the projected coordinate reference system by querying the ProjectedCRS
property of the reference object. The result is a projcrs object. Then, get the ellipsoid for the
coordinate reference system.

p = R.ProjectedCRS;
ellipsoid = p.GeographicCRS.Spheroid

ellipsoid =
referenceEllipsoid with defining properties:

Code: 7008
Name: 'Clarke 1866
LengthUnit: ‘'meter!’
SemimajorAxis: 6378206.4
SemiminorAxis: 6356583.8
InverseFlattening: 294.978698213898
Eccentricity: 0.0822718542230038

and additional properties:

Flattening
ThirdFlattening
MeanRadius
SurfaceArea

Unprojecting a Digital Elevation Model (DEM)

Volume

Step 3: Determine which UTM Zone to Use and Construct a Map Axes

From the Name property of the projcrs object, you can tell that the DEM is gridded in a Universal
Transverse Mercator (UTM) coordinate system.

p.Name

ans =

"UTM Zone 19, Northern Hemisphere"

To find the UTM zone, first locate the center of the DEM in UTM coordinates. Then, convert the
coordinates to latitude-longitude.

[M,N] = size(Z);

xCenterIntrinsic (1 + N)/2;

yCenterIntrinsic (1 + M)/2;

[xCenter,yCenter] = intrinsicToWorld(R,xCenterIntrinsic,yCenterIntrinsic);
[latCenter,lonCenter] = projinv(p,xCenter,yCenter)

latCenter =

44.3124367104673

lonCenter =

-71.3126432693478

Find the UTM zone for the DEM by using the utmzone function.

utmZone = utmzone(latCenter,lonCenter)

utmZone

'19T!

Use the zone and ellipsoid to create a map axes.

figure

axesm('utm', 'zone',utmZone, 'geoid',ellipsoid)
axis off

gridm

mlabel on

plabel on

framem on

2-51

2 Understanding Map Data

72 W WO @O BB BF @6 W

48 N
47Nl { SOUTE I E

46 N

45 N
44 N

43 Ml

az’ Nl j” ?””””””;

41 N

40 N

Note: if you can visually place the approximate location of New Hampshire on a world map, then you
can confirm this result with the utmzoneui GUI.

utmzoneui(actualZone)
Step 4: Display the Original DEM on the Map Axes
Use mapshow (rather than geoshow or meshm) to display the DEM on the map axes because the data
are gridded in map (x-y) coordinates.

mapshow(Z,R, 'DisplayType', 'texturemap')
demcmap(Z)

2-52

Unprojecting a Digital Elevation Model (DEM)

48
47"
46
45
44"
43"
42"
41

40

The DEM covers such a small part of this map that it may be hard to see (look between 44 and 44

72 W WO @O BB BF @6 W

M

degrees North and 72 and 71 degrees West), because the map limits are set to cover the entire UTM

zone. You can reset them (as well as the map grid and label parameters) to get a closer look.

setm
setm
setm
setm

—~ o~ —~ —~

gca, 'MapLatLimit',[44.2 44.4], 'MapLonLimit',[-71.4 -71.2])
gca, 'MLabelLocation',0.05, '"MLabelRound", -2)
gca, 'PLabelLocation',0.05, 'PLabelRound", -2)
gca, 'PLinelLocation',0.025, 'MLineLocation',0.025)

2-53

2 Understanding Map Data

2-54

7135 W71.30° W71.25° W1 20° W

4435 N

4430 N

4425 N

4420 N

When it is viewed at this larger scale, narrow wedge-shaped areas of uniform color appear along the
edge of the grid. These are places where Z contains the value NaN, which indicates the absence of
actual data. By default they receive the first color in the color table, which in this case is dark green.
These null-data areas arise because although the DEM is gridded in UTM coordinates, its data limits
are defined by a latitude-longitude quadrangle. The narrow angle of each wedge corresponds to the
non-zero "grid declination" of the UTM coordinate system in this part of the zone. (Lines of constant x
run precisely north-south only along the central meridian of the zone. Elsewhere, they follow a slight
angle relative to the local meridians.)

Step 5: Define the Output Latitude-Longitude Grid

The next step is to define a regularly-spaced set of grid points in latitude-longitude that covers the
area within the DEM at about the same spatial resolution as the original data set.

First, you need to determine how the latitude changes between rows in the input DEM (i.e., by
moving northward by 30 meters).

rng = R.CellExtentInWorldY; % In meters, consistent with p.LengthUnit
latcrad = deg2rad(latCenter); % latCenter in radians

% Change in latitude, in degrees
dLat = rad2deg(meridianfwd(latcrad, rng,ellipsoid) - latcrad)

dLat =

Unprojecting a Digital Elevation Model (DEM)

0.000269984939366415

The actual spacing can be rounded slightly to define the grid spacing to be used for the output
(latitude-longitude) grid.

gridSpacing =

1/4000;

% In other words, 4000 samples per degree

To set the extent of the output (latitude-longitude) grid, start by finding the corners of the DEM in
UTM map coordinates.

xCorners
yCorners

xCorners

310380
310380
320730
320730

yCorners =

4901880
4916040
4916040
4901880

R.XWorldLimits(
R.YWorldLimits(

[
[

==

12 2]
2 21]

)
)

Then convert the corners to latitude-longitude. Display the latitude-longitude corners on the map (via

the UTM projection) to check that the results are reasonable.

[latCorners, lonCorners] = projinv(p,xCorners, yCorners)
hCorners = geoshow(latCorners,lonCorners, 'DisplayType', 'polygon’', ...

'FaceColor', 'none', 'EdgeColor', 'red');

latCorners =

44
44
44
44

lonCorners =

-71
-71
-71
-71

.2474175605687
.3747915486804
.3774240601986
.2500384686392

.3749065609587
.3800513603087
.2502438233865
.2453790282992

2-55

2 Understanding Map Data

7135 W71.30° W71.25° W1 20° W

4435 N

4430 N

4425 N

4420 N

Next, round outward to define an output latitude-longitude quadrangle that fully encloses the DEM
and aligns with multiples of the grid spacing.

latSouth = gridSpacing * floor(min(latCorners)/gridSpacing)
lonWest = gridSpacing * floor(min(lonCorners)/gridSpacing)
latNorth = gridSpacing * ceil(max(latCorners)/gridSpacing)
lonEast = gridSpacing * ceil(max(lonCorners)/gridSpacing)
glatlim = [latSouth latNorth];

glonlim = [lonWest lonEast];

dlat = 100*gridSpacing;

dlon = 100*gridSpacing;

[latquad, lonquad] = outlinegeoquad(qlatlim, qlonlim, dlat, dlon);

hquad = geoshow(latquad, lonquad,
'DisplayType', 'polygon', 'FaceColor', 'none', 'EdgeColor’', 'blue');

snapnow;

latSouth =

44.24725

lonWest =

2-56

Unprojecting a Digital Elevation Model (DEM)

-71.38025

latNorth =
44,3775

lonEast =

-71.24525

7135 W71.30° W71.25 Wr120° W

4435 N

4430 N

44 25 N

4420 N

Finally, construct a geographic raster referencing ohject for the output grid. It supports
transformations between latitude-longitude and the row and column subscripts. In this case, use of a

world file matrix, W, enables exact specification of the grid spacing.

W = [gridSpacing 0 lonWest + gridSpacing/2;
0 gridSpacing latSouth + gridSpacing/2]
W —
0.00025 0 -71.380125
0 0.00025 44 .247375

2-57

2 Understanding Map Data

2-58

nRows
nCols

round((latNorth - latSouth) / gridSpacing)
round(wrapTo360(lonEast - lonWest) / gridSpacing)

nRows

521

nCols =

540

Rlatlon = georasterref (W, [nRows nCols], 'cells');
Rlatlon.GeographicCRS = p.GeographicCRS

Rlatlon =
GeographicCellsReference with properties:

LatitudeLimits: [44.24725 44.3775]
LongitudeLimits: [-71.38025 -71.24525]
RasterSize: [521 540]
RasterInterpretation: 'cells'
ColumnsStartFrom: 'south'
RowsStartFrom: 'west'
CellExtentInLatitude: 1/4000
CellExtentInLongitude: 1/4000
RasterExtentInLatitude: 0.13025
RasterExtentInLongitude: 0.135
XIntrinsicLimits: [0.5 540.5]
YIntrinsicLimits: [0.5 521.5]
CoordinateSystemType: 'geographic'
GeographicCRS: [1x1 geocrs]
AngleUnit: 'degree'

Rlatlon fully defines the number and location of each cell in the output grid.

Step 6: Map Each Output Grid Point Location to UTM X-Y

Finally, you're ready to make use of the map projection, applying it to the location of each point in the
output grid. First compute the latitudes and longitudes of those points, stored in 2-D arrays.

[rows,cols] = ndgrid(1l:nRows, 1:nCols);
[lat,lon] = intrinsicToGeographic(Rlatlon,cols, rows);

Then apply the projection to each latitude-longitude pair, arrays of UTM x-y locations having the same
shape and size as the latitude-longitude arrays.

[XI,YI] = projfwd(p,lat,lon);

At this point, XI(1i,j) and YI(1i,j) specify the UTM coordinate of the grid point corresponding to
the i-th row and j-th column of the output grid.

Unprojecting a Digital Elevation Model (DEM)

Step 7: Resample the Original DEM
The final step is to use the MATLAB interp2 function to perform bilinear resampling.

At this stage, the value of projecting from the latitude-longitude grid into the UTM map coordinate
system becomes evident: it means that the resampling can take place in the regular X-Y grid, making
interp2 applicable. The reverse approach, unprojecting each (X,Y) point into latitude-longitude,
might seem more intuitive but it would result in an irregular array of points to be interpolated -- a
much harder task, requiring use of the far more costly griddata function or some rough equivalent.

[rows,cols] = ndgrid(1:M,1:N);

[X,Y] = intrinsicToWorld(R,cols, rows);

method = 'bilinear';

extrapval = NaN;

Zlatlon = interp2(X,Y,Z,XI,YI,method,extrapval);

View the result in the projected axes using geoshow, which will re-project it on the fly. Notice that it
fills the blue rectangle, which is aligned with lines of latitude and longitude. (In contrast, the red
rectangle, which outlines the original DEM, aligns with UTM x and y.) Also notice NaN-filled regions
along the edges of the grid. The boundaries of these regions appear slightly jagged, at the level of a
single grid spacing, due to round-off effects during interpolation. Move the red quadrilateral and blue
quadrangle to the top, to ensure that they are not hidden by the raster display.

geoshow(Zlatlon,Rlatlon, 'DisplayType', 'texturemap')
uistack([hCorners hquad], 'top')

71.35 W71.30 W7125 Wri20™ W

4435 N

44 30 N

4425 N

4420 N

Restore the original output display format.

2-59

2 Understanding Map Data

2-60

format(currentFormat)
Credits

MtWashington-ft.grd (and supporting files):

United States Geological Survey (USGS) 7.5-minute Digital Elevation
Model (DEM) for the Mt. Washington quadrangle, with elevation in
meters. http://edc.usgs.gov/products/elevation/dem.html

For more information, run:

>> type MtWashington-ft.txt
See Also

demcmap | georasterref | intrinsicToGeographic | intrinsicToWorld |
refmatToMapRasterReference

Georeferencing an Image to an Orthotile Base Layer

Georeferencing an Image to an Orthotile Base Layer

This example shows how to register an image to an earth coordinate system and create a new
"georeferenced" image. It requires Image Processing Toolbox™ in addition to Mapping Toolbox™.

In this example, all georeferenced data are in the same earth coordinate system, the Massachusetts
State Plane system (using the North American Datum of 1983 in units of meters). This defines our
"map coordinates." The georeferenced data include an orthoimage base layer and a vector road layer.

The data set to be georeferenced is a digital aerial photograph covering parts of the village of West
Concord, Massachusetts, collected in early spring, 1997.

Step 1: Render Orthoimage Base Tiles in Map Coordinates

The orthoimage base layer is structured into 4000-by-4000 pixel tiles, with each pixel covering
exactly one square meter in map coordinates. Each tile is stored as a TIFF image with a world file.
The aerial photograph of West Concord overlaps two tiles in the orthoimage base layer. (For
convenience, this example actually works with two 2000-by-2000 sub-tiles extracted from the larger
4000-by-4000 originals. They have the same pixel size, but cover only the area of interest.)

Read the two orthophoto base tiles required to cover the extent of the aerial image.

[baseImagel, cmapl]
[baseImage2, cmap2]

= imread('concord ortho w.tif");
= imread('concord ortho e.tif");

Read the world files for the two tiles

currentFormat = get(0, 'format');
format short g

R1 = worldfileread('concord ortho w.tfw', 'planar',size(baselmagel))
R2 = worldfileread('concord ortho e.tfw', 'planar',size(baselmage2))
Rl =

MapCellsReference with properties:

R2

XWorldLimits: [207000 209000]
YWorldLimits: [911000 913000]
RasterSize: [2000 2000]
RasterInterpretation: 'cells'
ColumnsStartFrom: 'north'
RowsStartFrom: 'west'
CellExtentInWorldX: 1
CellExtentInWorldY: 1
RasterExtentInWorldX: 2000
RasterExtentInWorldY: 2000
XIntrinsicLimits: [0.5 2000.5]
YIntrinsicLimits: [0.5 2000.5]
TransformationType: 'rectilinear’
CoordinateSystemType: 'planar'’
ProjectedCRS: []

2-61

2 Understanding Map Data

2-62

MapCellsReference with

properties:

XWorldLimits: [209000 211000]
YWorldLimits: [911000 913000]
RasterSize: [2000 2000]
RasterInterpretation: 'cells'
ColumnsStartFrom: 'north'
RowsStartFrom: 'west'
CellExtentInWorldX: 1
CellExtentInWorldY: 1
RasterExtentInWorldX: 2000
RasterExtentInWorldY: 2000
XIntrinsicLimits: [0.5 2000.5]
YIntrinsicLimits: [0.5 2000.5]
TransformationType: 'rectilinear’
CoordinateSystemType: 'planar'
ProjectedCRS: []

Display the images in their correct spatial positions.

mapshow(baseImagel,cmapl,R1)

axl = gca;

mapshow(ax1,baseImage2, cmap2,R2)

title('Map View, Massachusetts State Plane Coordinates');
xlabel('Easting (meters)');

ylabel('Northing (meters)');

Morthing (meters)
w

w0 -

=i 2

%) n

o
=
=
tn

9.11 %

207 2.07V5 2.08 2,105 211

2095 21
Easting (meters) %102

2.085 2.09

Georeferencing an Image to an Orthotile Base Layer

Step 2: Register Aerial Photograph to Map Coordinates

This step uses functions cpselect, cpstruct2pairs, fitgeotrans, and imwarp, and method
projective2d/transformPointsForward, from the Image Processing Toolbox together with map
raster reference objects from Mapping Toolbox. Together, they enable georegistration based on
control point pairs that relate the aerial photograph to the orthoimage base layer.

Read the aerial photo.

inputImage = imread('concord aerial sw.jpg');
figure

imshow(inputImage)

title('Unregistered Aerial Photograph')

Unregistered Aerial Photograph

Both orthophoto images are indexed images but cpselect only takes grayscale images, so convert
them to grayscale.

baseGrayl
baseGray?2

= im2uint8(ind2gray(baselImagel, cmapl));

= im2uint8(ind2gray(baseImage2,cmap2));

Downsample the images by a factor of 2, then pick two separate sets of control point pairs: one for
points in the aerial image that appear in the first tile, and another for points that appear in the
second tile. Save the control point pairs to the base workspace as control point structures named
cpstructl and cpstruct2.

2-63

2 Understanding Map Data

2-64

n = 2; % downsample by a factor n
load mapexreg.mat % load some points that were already picked

Optionally, edit or add to the pre-picked points using cpselect. Note that you need to work
separately on the control points for each orthotile.

cpselect(inputImage(l:n:end,1l:n:end,1),...
baseGrayl(l:n:end,1l:n:end),cpstructl);

cpselect(inputImage(l:n:end,1l:n:end,1),...
baseGray2(l:n:end,1l:n:end),cpstruct2);

This tool helps you pick pairs of corresponding control points. Control points are landmarks that you
can find in both images, like a road intersection, or a natural feature. Three pairs of control points
have already been picked for each orthophoto tile. If you want to proceed with these points, go to
Step 3: Infer and apply geometric transformation. If you want to add some additional pairs of points,
do so by identifying landmarks and clicking on the images. Save control points by choosing the File
menu, then the Save Points to Workspace option. Save the points, overwriting variables
cpstructl and cpstruct2.

Step 3: Infer and Apply Geometric Transformation
Extract control point pairs from the control point structures.

[inputl, basel]
[input2,base2]

cpstruct2pairs(cpstructl);
cpstruct2pairs(cpstruct2);

Account for downsampling by factor n.

inputl = n*inputl - 1;
input2 = n*input2 - 1;
basel = n*basel - 1;
base2 = n*base2 - 1;

Transform base image coordinates into map (State Plane) coordinates.

[x1, yl]
[x2, y2]

intrinsicToWorld(R1l, basel(:,1), basel(:,2))
intrinsicToWorld(R2, base2(:,1), base2(:,2))

’
’

Combine the two sets of control points and infer a projective transformation. (The projective
transformation should be a reasonable choice, since the aerial image is from a frame camera and the
terrain in this area is fairly gentle.)

input = [inputl; input2];
spatial = [x1 yl; x2 y2];

tform

fitgeotrans(input,spatial, 'projective’)

tform =
projective2d with properties:
T: [3x3 double]

Dimensionality: 2

Compute and plot (2D) residuals.

Georeferencing an Image to an Orthotile Base Layer

residuals = transformPointsForward(tform, input)

figure
plot(residuals(:,1),residuals(:,2),'+")
title('Control Point Residuals');
xlabel('Easting offset (meters)');
ylabel('Northing offset (meters)');
xlim([-4 41)

ylim([-4 4])

axis equal

- spatial;

Control Point Residuals

4 T T T T T

ra
T

=4
T

Morthing offset (meters)
L =)
+

_‘4 i i i i i
-4 -3 -2 -1 0

1

2 3 4 5

Easting offset (meters)

Predict corner locations for the registered image, in map coordinates, and connect them to show the

image outline.

mInput = size(inputImage,l);
nInput = size(inputlImage,?2);
inputCorners = 0.5 ...
+ [0 0;

0 mInput;

nInput mInput;

nInput 0;

0 0l;

outputCornersSpatial = transformPointsForward(tform, inputCorners);

outputCornersX
outputCornersyY

outputCornersSpatial(:,1);
outputCornersSpatial(:,2);

2-65

2 Understanding Map Data

figure(axl.Parent)
line(outputCornersX,outputCornersyY, 'Color', 'w")

9.115

9.11 b o T - e i ¥
2.07 2075 2.08 2.085 2.09 2.095 21 21056 211

Easting (meters) %102

Calculate the average pixel size of the input image (in map units).

pixelSize = [hypot(

outputCornersX(2) - outputCornersx(l), .
outputCornersY(2) - outputCornersY(l)) / mInput,
hypot(

outputCornersX(4) - outputCornersX(5),
outputCornersY(4) - outputCornersY(5)) / nInput]

pixelSize =

0.90963 0.89054

Variable pixelSize gives a starting point from which to select a width and height for the pixels in
our georegistered output image. In principle we could select any size at all for our output pixels.
However, if we make them too small we waste memory and computation time, ending up with a big
(many rows and columns) blurry image. If we make them too big, we risk aliasing the image as well
as needlessly discarding information in the original image. In general we also want our pixels to be
square. A reasonable heuristic is to select a pixel size that is slightly larger than max (pixelSize)
and is a "reasonable" number (i.e., 0.95 or 1.0 rather than 0.9096). Here we chose 1, which means
that each pixel in our georegistered image will cover one square meter on the ground. It's "nice" to
have georegistered images that align along integer map coordinates for display and analysis.

2-66

Georeferencing an Image to an Orthotile Base Layer

outputPixelSize = 1;
Choose world limits that are integer multiples of the output pixel size.

xWorldLimits = outputPixelSize ...
* [floor(min(outputCornersX) / outputPixelSize),
ceil(max(outputCornersX) / outputPixelSize)]

yWorldLimits = outputPixelSize ...
* [floor(min(outputCornersY) / outputPixelSize),
ceil(max(outputCornersY) / outputPixelSize)]

xWorldLimits =

208154 209693
yWorldLimits =

911435 912583

Display a bounding box for the registered image.

line(xWorldLimits([1 1 2 2 1]),yWorldLimits([2 1 1 2 2]),'Color','red")

o
=
[+
tn
g

Morthing {meters)
w
=

9.115

207 2075 208 2085 209 2095 21 2105 211
Easting (meters) w107

The dimensions of the registered image will be as follows:

2-67

2 Understanding Map Data

2-68

mOutput
nOutput

mOutput

nOutput

Create an Image Processing Toolbox referencing object for the registered image.

R

1148

1539

imref2d ([mOutput nOutput],xWorldLimits,yWorldLimits)

diff(yWorldLimits) / outputPixelSize
diff(xWorldLimits) / outputPixelSize

imref2d with properties:

XWorldLimits: [208154 209693]
YWorldLimits: [911435 912583]
ImageSize: [1148 1539]
PixelExtentInWorldX: 1
PixelExtentInWorldY: 1
ImageExtentInWorldX: 1539
ImageExtentInWorldY: 1148
XIntrinsicLimits: [0.5 1539.5]
YIntrinsicLimits: [0.5 1148.5]

Create a map raster reference object, which is the Mapping Toolbox counterpart to an Image
Processing Toolbox referencing object.

Rmap = maprasterref('RasterSize',R.ImageSize,

'"XWorldLimits',R.XWorldLimits, 'YWorldLimits',R.YWorldLimits,
"ColumnsStartFrom', 'north')

Rmap =

MapCellsReference with

properties:

XWorldLimits: [208154 209693]
YWorldLimits: [911435 912583]
RasterSize: [1148 1539]
RasterInterpretation: 'cells'
ColumnsStartFrom: 'north'
RowsStartFrom: 'west'
CellExtentInWorldX: 1
CellExtentInWorldY: 1
RasterExtentInWorldX: 1539
RasterExtentInWorldY: 1148
XIntrinsicLimits: [0.5 1539.5]
YIntrinsicLimits: [0.5 1148.5]
TransformationType: 'rectilinear’

Georeferencing an Image to an Orthotile Base Layer

CoordinateSystemType: 'planar'’
ProjectedCRS: []

Apply the geometric transformation using imwarp. Flip its output so that the columns run from north
to south.

registered = flipud(imwarp(inputImage, tform, 'OutputView', R));
figure

imshow(registered)

format(currentFormat)

You can write the registered image as a TIFF with a world file, thereby georeferencing it to our map
coordinates.

imwrite(registered, 'concord aerial sw reg.tif');
worldfilewrite(Rmap,getworldfilename('concord aerial sw reg.tif'));

2-69

2 Understanding Map Data

2-70

Step 4: Display the Registered Image in Map Coordinates

Display the registered image on the same (map coordinate) axes as the orthoimage base tiles. The
registered image does not completely fill its bounding box, so it includes null-filled triangles. Create
an alpha data mask to make these fill areas render as transparent.

alphaData = registered(:,:,1);
alphaData(alphaData~=0) = 255;

figure

mapshow(baseImagel, cmapl,R1)

ax2 = gca;

mapshow(ax2,baseImage2,cmap2,R2)

title('Map View, Massachusetts State Plane Coordinates');
xlabel('Easting (meters)');

ylabel('Northing (meters)');

mInput = mapshow(ax2,registered,Rmap);
mInput.AlphaData = alphaData;

d=]
=i
2
%3]

Morthing (meters)
o
X

9.115

207 2075 208 2085 209 2095 2.1 2105 211
Easting (meters) 107

You can assess the registration by looking at features that span both the registered image and the
orthophoto images.

Step 5: Overlay Vector Road Layer (from Shapefile)

Use shapeinfo and shaperead to learn about the attributes of the vector road layer. Render the
roads on the same axes and the base tiles and registered image.

Georeferencing an Image to an Orthotile Base Layer

roadsfile = 'concord roads.shp';
roadinfo = shapeinfo(roadsfile);
roads = shaperead(roadsfile);

Create symbolization based on the CLASS attribute (the type of road). Note that very minor roads
have CLASS values equal to 6, so don't display them.

roadspec = makesymbolspec('Line',{'CLASS',6,'Visible', 'off'});

mapshow(ax2, roads, 'SymbolSpec', roadspec, 'Color', 'cyan')

+10° Map View, Massachusetts State Plane Coordinates

w
i
[
tn
T

o

==

P2

o
T

o
=&
=
o

T

w
-
=
n
T

2.065 2.07 2.075 2.08 2.085 2.09 2.095 21 2105 211 2115
Easting (meters) « 102

Observe that the roads line up quite well with the roads in the images. Two obvious linear features
in the images are not roads but railroads. The linear feature that trends roughly east-west and
crosses both base tiles is the Fitchburg Commuter Rail Line of the Massachusetts Bay Transportation
Agency. The linear feature that trends roughly northwest-southeast is the former Framingham-Lowell

secondary line.

Credits

concord orthow w.tif, concord ortho e.tif, concord roads.shp:
Office of Geographic and Environmental Information (MassGIS),
Commonwealth of Massachusetts Executive Office of Environmental Affairs

http://www.state.ma.us/mgis

For more information, run:

2-71

2 Understanding Map Data

>> type concord ortho.txt
>> type concord_roads.txt

concord_aerial sw,jpg
Visible color aerial photograph courtesy of mPower3/Emerge.
For more information, run:

>> type concord aerial sw.txt

See Also

MapCellsReference | cpstruct2pairs | fitgeotrans | im2uint8 | imread | imref2d |
intrinsicToWorld | maprasterref | transformPointsForward | worldfileread

2-72

Find Geospatial Data Online

Find Geospatial Data Online

Many vector and raster data formats have been developed for storing geospatial data. With Mapping
Toolbox you can read geodata files in general purpose formats (e.g., Esri® shapefile, GeoTIFF, and
SDTS DEM) that a variety of mapping and image processing applications also read and write. You can
also read files that are in a variety of special formats designed to exchange specific sets or kinds of
geodata (e.g., GSHHG, VMAPO, DEM, and DTED files). You can order, and in many cases, download
such data over the Internet.

Mapping Toolbox provides generalized sample data in the form of data files for the entire Earth and
its major regions, as well as some higher resolution files covering small areas. These data sets are
frequently used in the code examples provided in the Mapping Toolbox documentation. You can find
them in matlabroot/examples/map/data and matlabroot/toolbox/map/mapdata. You can list
them, along with their metadata, by typing the following at the command line:

ls(fullfile(matlabroot, 'examples', 'map', 'data'))
ls(fullfile(matlabroot, 'toolbox"', 'map', 'mapdata'))

In addition, the worlddatamap function, available on MATLAB Central, allows you to use worldmap
to map a region using data from a shapefile or data grid. Examples of worlddatamap and world
vector data in shapefile format are available under the heading worlddatamap Examples.

For information about a small but useful subset of geodata resources on the Internet, see the
following topics:

Note MathWorks does not warrant the accuracy, timeliness, or fitness for use of any data set listed in
these topics, and makes no endorsement of any data vendor mentioned.

* “Find Vector Geodata” on page 2-74 — Lists URLs from which you can obtain vector (point, line,
or polygon) geospatial data sets and data products, such as Esri shape files.

* “Find Geospatial Raster Data” on page 2-76 — Lists URLs from which you can obtain raster
(gridded) geospatial data sets and data products, such as Digital Terrain Elevation Data (DTED).
This topic also covers raster maps from Web Map Service servers.

Note If you are viewing this documentation installed locally (controlled by your Documentation
location preference), you should also consult “Find Geospatial Data Online” on page 2-73 on the
MathWorks website for possible updates and corrections.

2-73

https://www.mathworks.com/matlabcentral/fileexchange/7550-worlddatamap
https://www.mathworks.com/matlabcentral/fileexchange/7550-worlddatamap

2 Understanding Map Data

Find Vector Geodata

This table contains some commonly used vector (point, line, or polygon) geospatial data sets that are
available over the Internet. The table includes the names of Mapping Toolbox functions that read
specific kinds of data. Click any numbered footnote in the right column to access data sets and
associated documentation on the Web. Note, however, that Web addresses (URLs) for data can
disappear or change, making some of the links unusable.

Note If you are using a Macintosh and the links in this table do not work, open the Mapping Toolbox
documentation in a separate Web browser and view this section there. When you open the
documentation, search for "Finding Vector Geodata" to find this topic.

Vector Data Set or Data
Product

Data Provider

Import Functions

Internet URLs for Documentation
and Data (HTTP or FTP)

Canadian provincial and |NOAA shapeinfo Documentation link: [1]

Mexican state boundaries shaperead Canada data link: [2]

in zipped shapefile format Mexico data link: [3]

Esri shapefiles Esri and many shapeinfo Documentation link: [1]

other sources shaperead For data links, see entries for TIGER,

U.S. National Atlas, and U.S.
coastlines.

Global Self-Consistent NOAA/ gshhs Doc and data link: [1]

Hierarchical High- NGDC Data (older versions): [2]

Resolution Geography

(GSHHG)

TIGER/Line® files U.S. Census shapeinfo Documentation and data link: [1]

Bureau shaperead Data (for 2000, in shapefile format):

[2]

TIGER cartographic U.S. Census shapeinfo Doc and Data link: [1]

boundary files Bureau shaperead This site contains downloadable
boundary files for census
geographies in Esri Ungenerate,
E00, and shapefile formats. Use
shapefile format when importing to
Mapping Toolbox.

U.S. coastlines, historical |NOAA shapeinfo Documentation, metadata, and data

data shaperead in shapefile format: [1]

World coastlines from NGDC/ load Data link: [1]

various sources USGS

Abbreviations for data providing organizations used in the preceding table:

* Esri (Environmental Sciences Research Institute)
* NGDC (National Geophysical Data Center)

» NIST (National Institute of Standards and Technology)
* NOAA (National Oceanic and Atmospheric Administration)

2-74

https://www.weather.gov/gis/AWIPSShapefiles
https://www.nohrsc.noaa.gov/data/vector/master/prv_ca.tar.gz
https://www.nohrsc.noaa.gov/data/vector/master/st_mx.tar.gz
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
https://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html
https://www.ngdc.noaa.gov/mgg/shorelines/data/gshhs/oldversions/
https://www.census.gov/programs-surveys/geography/technical-documentation/complete-technical-documentation/tiger-geo-line.html
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html
https://shoreline.noaa.gov/
https://www.ngdc.noaa.gov/mgg/shorelines/shorelines.html

Find Vector Geodata

» USGS (U.S. Geological Survey)
See Also

More About
. “Find Geospatial Data Online” on page 2-73

2-75

2 Understanding Map Data

Find Geospatial Raster Data

In this section...

“Download Data” on page 2-76
“Use Web Map Service Data” on page 2-77

Get geospatial raster data over the Internet by downloading it or by accessing the Web Map Service
(WMS) database.

Download Data

Find and download geospatial raster data using resources such as the ones in these tables. For
information about supported file formats, see readgeoraster and worldfileread.

Note If you are using a Macintosh and the links on this page do not work, open the Mapping Toolbox
documentation in a separate browser and view this section there. You can find this topic by searching
for "Find Geospatial Raster Data".

2-76

Elevation

Resource Provider Examples of Products and
Data Sets

EarthExplorer US Geological Survey (USGS) |DTED, GMTED2010, GTOPO30

The National Map Download
Application

USGS

3DEP

Data.gov

US General Services
Administration

DTED, 3DEP GMTED2010

ETOPO1 Global Relief Model

National Oceanic and
Atmospheric Administration
(NOAA) and National Centers
for Environmental Information
(NCEI)

ETOPO1 (use GeoTIFF format)

GMTED2010 Viewer

USGS

GMTED2010

The Global Land One-km Base
Elevation Project

NOAA and NCEI

GLOBE

Global Topography Scripps Institution of Smith and Sandwell
Oceanography

Land Cover Classification

Resource Provider Examples of Products and

Data Sets

EarthExplorer USGS GLCC, AVHRR

Digital Coast Data Access NOAA Office for Coastal C-CAP Regional Land Cover and

Viewer Management Change

https://earthexplorer.usgs.gov/
https://viewer.nationalmap.gov/basic/
https://viewer.nationalmap.gov/basic/
https://www.data.gov/
https://www.ngdc.noaa.gov/mgg/global/global.html
https://topotools.cr.usgs.gov/gmted_viewer/viewer.htm
https://www.ngdc.noaa.gov/mgg/topo/globe.html
https://www.ngdc.noaa.gov/mgg/topo/globe.html
https://topex.ucsd.edu/marine_topo/mar_topo.html
https://earthexplorer.usgs.gov/
https://coast.noaa.gov/dataviewer/#/
https://coast.noaa.gov/dataviewer/#/

Find Geospatial Raster Data

Resource Provider Examples of Products and
Data Sets

Data.gov US General Services GLCC, AVHRR

Administration

Imagery

Resource Provider Examples of Products and
Data Sets

EarthExplorer USGS Landsat

Digital Coast Data Access NOAA Office for Coastal High-Resolution Orthoimagery

Viewer Management

Data.gov

US General Services
Administration

Landsat

Use Web Map Service Data

Mapping Toolbox includes a built-in database of prequalified Web Map Service (WMS) servers and
layers. Search the WMS database for layers using the wmsfind function. Read layers from the
database using the wms read function.

See Also

readgeoraster |worldfileread

2-77

https://www.data.gov/
https://earthexplorer.usgs.gov/
https://coast.noaa.gov/dataviewer/#/
https://coast.noaa.gov/dataviewer/#/
https://www.data.gov/

2 Understanding Map Data

Functions that Read and Write Geospatial Data

The following table lists Mapping Toolbox functions that read geospatial data products and file
formats and write geospatial data files. Note that the geoshow and mapshow functions and the
mapview GUI can read and display both vector and raster geodata files in several formats. Click
function names to see their details in the Mapping Toolbox reference documentation. The Type of
Coordinates column describes whether the function returns or writes data in geographic ("geo") or
projected ("map") coordinates, or as geolocated data grids (which, for the functions listed, all contain
geographic coordinates). Some functions can return either geographic or map coordinates,
depending on what the file being read contains; these functions do not signify what type of
coordinates they return (in the case of shaperead, however, you can specify whether the structure it
returns should have X and Y or Lon and Lat fields).

Function Description Type of Data Type of
Coordinates
avhrrgoode Read data products derived from the raster geolocated
Advanced Very High Resolution Radiometer
(AVHRR) and stored in the Goode
Homosoline projection: Global Land Cover
Classification (GLCC) or Normalized
Difference Vegetation Index (NDVI)
avhrrlambert Read AVHRR GLCC and NDVI data products |raster geolocated
stored in the Lambert Conformal Conic
projection
dcwdata Read selected data from the Digital Chart of |vector geo
the World (DCW)
dcwgaz Search for entries in the DCW gazette vector geo
dcwread Read a DCW file vector geo
dcwrhead Read a DCW file header properties geo
demdataui GUI for interactively selecting data from raster geo
various Digital Elevation Models (DEMs)
dteds List DTED data grid file names for a file names geo
specified latitude-longitude quadrangle
egm9bgeoid Read 15-minute gridded geoid heights from |raster geo
the EGM96 geoid model
fipsname Read Federal Image Processing Standards |FIPS names and |geo
(FIPS) names for Topographically identifiers
Integrated Geographic Encoding and
Referencing (TIGER) thinned boundary files
georasterinfo Get information about data files in formats |raster map
such as Esri Binary Grid, Esri GridFloat,
DTED, GeoTIFF, and GPX geo
geotiffinfo Get information about GeoTIFF files properties map
geo

2-78

Functions that Read and Write Geospatial Data

Function Description Type of Data Type of
Coordinates
geotiffwrite Write GeoTIFF file raster map
geo
getworldfilename Derive a world file name from an image file |file name geo
name
map
globedems List GLOBE data file names for a specified |file names geo
latitude-longitude quadrangle
gshhs Read Global Self-Consistent Hierarchical vector geo
High-Resolution Geography (GSHHG) data
gtopo30s List GTOPO30 data file names for a file names geo
specified latitude-longitude quadrangle
kmlwrite Write vector coordinates and attributes to a |vector points geo
file in KML format and attributes
readfk5 Read data from the Fifth Fundamental vector astro
Catalog of Stars
readgeoraster Read data in formats such as Esri Binary raster geo
Grid, Esri GridFloat, DTED, GeoTIFF, and
GPX map
sdtsinfo Get information about SDTS data set properties geo
shapeinfo Get information about the geometry and properties geo
attributes of geographic features stored in a
shapefile (a set of ".shp", ".shx" and ".dbf" map
files)
shaperead Read geographic feature coordinates and |vector geo
associated attributes from a shapefile
map
shapewrite Write geospatial data and associated vector geo
attributes in shapefile format
map
usgsdems List USGS digital elevation model (DEM) file names map
file names covering a specified latitude-
longitude quadrangle
vmapOdata Extract selected data from the Vector Map |vector geo
Level 0 (VMAPO) CD-ROMs
vmapOread Read a VMAPO file vector geo
vmapOrhead Read VMAPO file headers properties geo
vmapOui Activate GUI for interactively selecting vector geo
VMAPO data
worldfileread Read a world file and return a referencing |georeferencing |geo
matrix information
worldfilewrite Export a referencing matrix into an georeferencing |geo
equivalent world file information

2-79

2 Understanding Map Data

2-80

The MATLAB environment provides many general file reading and writing functions (for example,
imread, imwrite, urlread, and urlwrite) which you can use to access geospatial data you want
to use with Mapping Toolbox software. For example, you can read a TIFF image with imread and its
accompanying world file with worldfileread to import the image and construct a referencing
matrix to georeference it. See the Mapping Toolbox example “Georeferencing an Image to an
Orthotile Base Layer” on page 2-61 for an example of how you can do this.

Export Vector Geodata

Export Vector Geodata

When you want to share geodata you are working with, Mapping Toolbox functions can export it two
principal formats, shapefiles and KML files. Shapefiles are binary files that can contain point, line,
vector, and polygon data plus attributes. Shapefiles are widely used to exchange data between
different geographic information systems. KML files are text files that can contain the same type of
data, and are used mainly to upload geodata the Web. The toolbox functions shapewrite and
kmlwrite export to these formats.

To format attributes, shapewrite uses an auxiliary structure called a DBF spec, which you can
generate with the makedbfspec function. Similarly, you can provide attributes to kmlwrite to
format as a table by providing an attribute spec, a structure you can generate using the
makeattribspec function or create manually.

For examples of and additional information about reading and writing shapefiles and DBF specs, see
the documentation for shapeinfo, shaperead, shapewrite, and makedbfspec. The example
provided in “How to Construct Geographic Data Structures” on page 2-25 also demonstrates
exporting vector data using shapewrite. For information about creating KML files, see “Export KML
Files for Viewing in Earth Browsers” on page 2-93.

2-81

2 Understanding Map Data

Exporting Vector Data to KML

2-82

This example shows how to structure geographic point, line, and polygon vector data and export it to
a Keyhole Markup Language (KML) file. KML is an XML-based markup language designed for
visualizing geographic data on Web-based maps or "Earth browsers", such as Google Earth™, Google
Maps™, NASA WorldWind, and the ESRI® ArcGIS™ Explorer.

The following functions write geographic data to a KML file:

* kmlwritepoint Write geographic points to KML file

* kmlwriteline Write geographic line to KML file

* kmlwritepolygon Write geographic polygon to KML file
* kmlwrite Write geographic data to KML file

Define an Output Folder for the KML Files

This example creates several KML files and uses the variable kmlFolder to denote their location.
The value used here is determined by the output of the tempdir command, but you could easily
customize this.

kmlFolder = tempdir;

Create a cell array of the KML file names used in this example in order to optionally remove them
from your KML output folder when the example ends.

kmlFilenames = {};

Create a Function Handle to Open an Earth Browser

A KML file can be opened in a variety of "Earth browsers", Web maps, or an editor. You can customize
the following anonymous function handle to open a KML file. Executing this function handle launches
the Google Earth browser, which must be installed on your computer. You can use the application by
assigning the variable useApplication to true in your workspace or assign it to true here.

useApplication = exist('useApplication', 'var') && useApplication;

if useApplication

if ispc
% On Windows(R) platforms display the KML file with:
openKML = @(filename) winopen(filename);

elseif ismac
% 0On Mac platforms display the KML file with:
cmd = 'open -a Google\ Earth ';
openKML = @(filename) system([cmd filename]);

else
% On Linux platforms display the KML file with:
cmd = 'googleearth ';
openKML = @(filename) system([cmd filename]);
end
else

% No "Earth browser" is installed on the system.
openKML = @(filename) disp('');
end

https://www.mathworks.com/help/map/ref/kmlwritepoint.html
https://www.mathworks.com/help/map/ref/kmlwriteline.html
https://www.mathworks.com/help/map/ref/kmlwritepolygon.html
https://www.mathworks.com/help/map/ref/kmlwrite.html

Exporting Vector Data to KML

Example 1: Write Single Point to KML File
This example writes a single point to a KML file.

Assign latitude and longitude values for Paderborn, Germany.

lat
lon

51.715254;
8.75213;

Use kmlwritepoint to write the point to a KML file.

filename = fullfile(kmlFolder, 'Paderborn.kml');
kmlwritepoint(filename,lat,lon);

Open the KML file.

openKML (filename)

Add filename to kmlFilenames.
kmlFilenames{end+1} = filename;

Example 2: Write Single Point to KML File with Icon and Description

This example writes a single point to a KML file. The placemark includes an icon and a description
with HTML markup.

Assign latitude and longitude coordinates for a point that locates the headquarters of MathWorks® in
Natick, Massachusetts.

lat
lon

42.299827;
-71.350273;

Create a description for the placemark. Include HTML tags in the description to add new lines for the
address.

description = sprintf('%s
%s</br>
%s</br>",

'3 Apple Hill Drive', 'Natick, MA. 01760',
"https://www.mathworks.com');

Assign iconFilename to a GIF file on the local system's network.

iconDir = fullfile(matlabroot, 'toolbox', 'matlab', 'icons');
iconFilename = fullfile(iconDir, 'matlabicon.gif');

Assign the name for the placemark.

name = 'The MathWorks, Inc.';

Use kmlwritepoint to write the point and associated data to the KML file.
filename = fullfile(kmlFolder, 'MathWorks.kml");
kmlwritepoint(filename, lat,lon, 'Description',description, 'Name', name,

'Icon',iconFilename);

Open the KML file.

openKML (filename)

2-83

2 Understanding Map Data

2-84

Add filename to kmlFilenames.
kmlFilenames{end+1} = filename;
Example 3: Write Multiple Points to KML File

This example writes the locations of major European cities to a KML file, including the names of the
cities, and removes the default description table.

Assign the latitude, longitude bounding box.

latlim
lonlim

[30; 75];
[-25; 45];

Read the data from the worldcities shapefile into a geostruct array.

cities = shaperead('worldcities.shp', 'UseGeoCoords',true,
'BoundingBox', [lonlim, latlim]);

Convert to a geopoint vector.
cities = geopoint(cities);

Use kmlwrite to write the geopoint vector to a KML file. Assign the name of the placemark to the
name of the city. Remove the default description since the data has only one attribute.

filename = fullfile(kmlFolder, 'European Cities.kml');
kmlwrite(filename,cities, 'Name',cities.Name, 'Description',{});

Open the KML file.

openKML (filename)

Add filename to kmlFilenames.
kmlFilenames{end+1} = filename;

Example 4: Write Multiple Points to KML File with Modified Attribute Table

This example writes placemarks at the locations of tsunami (tidal wave) events, reported over several
decades and tagged geographically by source location, to a KML file.

Read the data from the tsunamis shapefile.

tsunamis = shaperead('tsunamis', 'UseGeoCoords',true);
Convert to a geopoint vector.

tsunamis = geopoint(tsunamis);

Sort the attributes.

tsunamis = tsunamis(:, sort(fieldnames(tsunamis)));
Construct an attribute specification.

attribspec = makeattribspec(tsunamis);

Modify the attribute specification to:

Exporting Vector Data to KML

+ Display Max_Height, Cause, Year, Location, and Country attributes
* Rename the Max_ Height field to Maximum Height

* Highlight each attribute label with a bold font

* Set to zero the number of decimal places used to display Year

* We have independent knowledge that the height units are meters, so we will add that to the
Height format specifier

desiredAttributes = {'Max Height', 'Cause', 'Year', 'Location', 'Country'};
allAttributes = fieldnames(attribspec);

attributes = setdiff(allAttributes, desiredAttributes);
attribspec = rmfield(attribspec, attributes);

attribspec.Max Height.AttributeLabel = 'Maximum Height";
attribspec.Max Height.Format = '%.1f Meters';
attribspec.Cause.AttributeLabel = 'Cause";
attribspec.Year.AttributeLabel = 'Year";
attribspec.Year.Format = '%.0f';
attribspec.Location.AttributelLabel = 'Location";
attribspec.Country.AttributeLabel = 'Country";

Use kmlwrite to write the geopoint vector containing the selected attributes and source locations to
a KML file.

filename = fullfile(kmlFolder, 'Tsunami Events.kml');
name = tsunamis.lLocation;
kmlwrite(filename, tsunamis, 'Description',attribspec, 'Name', name)

Open the KML file.

openKML (filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 5: Write Single Point with a LookAt Virtual Camera to KML File

This example writes a single point with a LookAt virtual camera near Machu Picchu, Peru

Use a geopoint vector to define a LookAt virtual camera.

lat -13.163111;

lon -72.544945;

lookAt = geopoint(lat,lon);
lookAt.Range = 1500;
lookAt.Heading = 260;
lookAt.Tilt = 67;

Use kmlwritepoint to write the point location and LookAt information.
filename = fullfile(kmlFolder, 'Machu Picchu.kml');
alt = 2430;

name = 'Machu Picchu';
kmlwritepoint(filename,lat,lon,alt, 'LookAt', lookAt, 'Name',h name);

Open the KML file.

openKML (filename)

2-85

2 Understanding Map Data

Add filename to kmlFilenames.
kmlFilenames{end+1} = filename;

Example 6: Write Single Point with a Camera to KML File

This example writes a single point with a camera view of the Washington Monument in Washington
D.C to a KML file. The marker is placed at the ground location of the camera.

Construct the camera.

camlat = 38.889301;
camlon = -77.039731;
camera = geopoint(camlat, camlon);

camera.Altitude = 500;
camera.Heading = 90;

camera.Tilt = 45;
camera.Roll = 0;

Use kmlwritepoint to write the point location and Camera information.

name = 'Camera ground location';

lat = camera.lLatitude;

lon = camera.Longitude;

filename = fullfile(kmlFolder, 'WashingtonMonument.kml');
kmlwritepoint(filename, lat,lon, 'Camera', camera, 'Name',name)

Open the KML file.

openKML (filename)

Add filename to kmlFilenames.
kmlFilenames{end+1} = filename;

Example 7: Write Address Data to KML File
This example writes unstructured address data to a KML file.

Create a cell array containing names of several places of interest in the Boston area.

names = {'Boston',
'Massachusetts Institute of Technology',
'Harvard University',
'Fenway Park',
'"North End'};

Create a cell array containing addresses for the places of interest in the Boston area.
addresses = { ...

'Boston, MA', ...

'77 Massachusetts Ave, Cambridge, MA 02139',

'Massachusetts Hall, Cambridge MA 02138',

'4 Yawkey Way, Boston, MA',
'134 Salem St, Boston, MA'};

Use a Google Maps icon for each of the placemarks.

icon = 'http://maps.google.com/mapfiles/kml/paddle/red-circle.png’;

2-86

Exporting Vector Data to KML

Use kmlwrite to write the cell array of addresses to the KML file.

filename = fullfile(kmlFolder, 'Places of Interest.kml');
kmlwrite(filename,addresses, 'Name',names, 'Icon',icon, 'IconScale',1.5);

Open the KML file.

openKML (filename)

Add filename to kmlFilenames.
kmlFilenames{end+1} = filename;
Example 8: Write Single Line to KML File

This example writes a single line connecting the top of Mount Washington to the Mount Washington
Hotel in Carroll, New Hampshire, to a KML file.

Assign coordinate values for the region of interest.

lat _Mount Washington
lon Mount Washington

44.270489039;
-71.303246453;

lat Mount Washington Hotel
lon Mount Washington Hotel

44.258056;
-71.440278;

lat
lon

[lat Mount Washington lat Mount Washington Hotell];
[Lon Mount Washington lon Mount Washington Hotell];

Set the altitude to 6 feet, for the approximate height of a person.
alt = 6 * unitsratio('meters', 'feet');

Add a camera viewpoint from the Mount Washington Hotel.

clat = lat(2);

clon lon(2);
camera = geopoint(clat,clon, 'Altitude',2,'Tilt"',90, 'Roll',0, 'Heading',90);

Use kmlwriteline to write the arrays to a KML file.
filename = fullfile(kmlFolder, 'Mount Washington.kml');
name = 'Mount Washington';

kmlwriteline(filename, lat, lon,alt, 'Name',name, 'Color', 'k', 'Width',3,
'Camera',camera, 'AltitudeMode', 'relativeToGround');

Open the KML file.

openKML (filename)

Add filename to kmlFilenames.
kmlFilenames{end+1} = filename;

Example 9: Write GPS Track Log to KML File

This example writes a GPS track log to a KML file.

2-87

2 Understanding Map Data

2-88

Read the track log from the GPX file. The data in the track log was obtained from a GPS wristwatch
held while gliding over Mount Mansfield in Vermont, USA, on August 28, 2010.

track = gpxread('sample mixed', 'FeatureType', 'track');

Use kmlwriteline to write the track log to a KML file. The elevation values obtained by the GPS are
relative to sea level.

filename = fullfile(kmlFolder, 'GPS Track Log.kml');

lat = track.Latitude;
lon = track.Longitude;
alt = track.Elevation;

name = 'GPS Track Log';

kmlwriteline(filename, lat, lon,alt, 'Name',name, 'Color','k', 'Width',2,
'"AltitudeMode', 'relativeToSealevel');

Open the KML file.

openKML (filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 10: Write Circles to KML File

This example writes circles as lines around London City Airport to a KML file. The example includes a
LookAt virtual camera.

Assign latitude and longitude values for the center of the feature.

1ato
lon®

51.50487;
.05235;

Assign azimuth to [] to compute a complete small circle. Use the WGS84 ellipsoid.

azimuth = [1;
spheroid = wgs84Ellipsoid;

Compute small circles of 3000, 2000, and 1000 meter radius. Assign a color value of 'blue’,
'green', and 'red' for each circle. Assign an elevation value of 100 meters (above ground) for each
circle. Use a line geoshape vector to contain the data.

radius 3000:-1000:1000;
colors {'blue','green','red'};
elevation = 100;
circles = geoshape(0,0, 'Name','"', 'Color',"'"', 'Elevation',6elevation);
for k = 1:length(radius)
[lat, lon] = scirclel(lat0@,lon0, radius(k),azimuth,spheroid);
circles(k).Latitude = lat;

circles(k).Longitude = lon;

circles(k).Name = [num2str(radius(k)) ' Meters'];
circles(k).Color = colors{k};
circles(k).Elevation = elevation;

end

Use a geopoint vector to define a LookAt virtual camera with a viewpoint from the east of the airport
and aligned with the runway.

Exporting Vector Data to KML

lat 51.503169;

lon 0.105478;

range = 3500;

heading = 270;

tilt = 60;

lookAt = geopoint(lat,lon, 'Range',range, 'Heading',heading, 'Tilt"',tilt);

Use kmlwrite to write the geoshape vector containing the circles and associated data to a KML file.

filename = fullfile(kmlFolder, 'Small Circles.kml');
kmlwrite(filename,circles, 'AltitudeMode’, 'relativeToGround', 'Width',?2,
"Name',circles.Name, 'Color',circles.Color, 'LookAt"',lookAt);

Open the KML file. Using Google Earth, the LookAt view point is set when clicking on either one of
the 1000 Meters, 2000 Meters, or 3000 Meters strings in the Places list.

openKML (filename)

Add filename to kmlFilenames.
kmlFilenames{end+1} = filename;

Example 11: Write Circular Polygons to KML File

This example writes circular polygons around London City Airport to a KML file. It includes a LookAt
virtual camera and uses the same data calculated in step 9.

Change the Geometry property value of the geoshape vector to 'polygon'. The polygons are drawn
in the same order as the geoshape vector and are indexed from largest to smallest radii, thus each
polygon will be visible in the browser.

circles.Geometry = 'polygon’;

Change the elevation of each polygon.

circles.Elevation = 1000:1000:3000;

Use a geopoint vector to define a LookAt virtual camera with a viewpoint from the east of the airport,
aligned with the runway, and with a view of all three polygons.

lat 51.501587;

lon 0.066147;

range = 13110;

heading = 270;

tilt = 60;

lookAt = geopoint(lat,lon, 'Range',range, 'Heading',heading, 'Tilt',tilt);

Use kmlwrite to write the polygon geoshape vector containing the circular polygons and associated
data to a KML file. Extrude the polygons to the ground. Set the polygon edge color to black and
assign a face alpha value to provide visibility inside the polygon.

filename = fullfile(kmlFolder, 'Small Circle Polygons.kml');

name = circles.Name;

color = circles.Color;

kmlwrite(filename,circles, 'AltitudeMode’', 'relativeToGround', 'Extrude',true,
"Name',name, 'FaceColor',color, 'EdgeColor', 'k', 'FaceAlpha', .6, 'LookAt"', lookAt);

Open the KML file. Using Google Earth, the LookAt view point is set when clicking on either one of
the 1000 Meters, 2000 Meters, or 3000 Meters strings in the Places list.

2-89

2 Understanding Map Data

openKML (filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 12: Write Polygon Data from Shapefile to KML file

This example writes polygon data from the usastatelo shapefile to a KML file. The polygon faces
are set with a color appropriate for political regions. The polygon faces are set with an alpha value to
provide visibility inside the polygon.

states = shaperead('usastatelo', 'UseGeoCoords',true);
states = geoshape(states);
colors = polcmap(length(states));

name = states.Name;

filename = fullfile(kmlFolder, 'usastatelo.kml');

kmlwrite(filename,states, 'Name',name, 'FaceColor',colors, 'FaceAlpha', .6,
'"EdgeColor', 'k")

Open the KML file.

openKML (filename)

Add filename to kmlFilenames.
kmlFilenames{end+1} = filename;

Example 13: Write Polygon Contours to KML File

This example contours a grid in a local coordinate system, returns the contours in a geographic
system, and writes the polygon contours to a KML file.

Create a grid in a local system.

-150000:10000:150000;

0:10000:300000;

mesh, ymesh] = meshgrid(X/50000, (Y - 150000)/50000);
= 8 + peaks(xmesh, ymesh);

X
Y
[x
Z

Define a local geodetic origin near Frankfurt, Germany and an ellipsoidal height.

lat® = 50.108;
lon® = 8.6732;
ho = 100;

Define contour levels.

levels = 0:2:18;

Contour the grid and return the output in a polygon geoshape vector.

[~, contourPolygons] = geocontourxy(X,Y,Z,1at0,lon0,ho, 'LevellList', levels);

Output the contours to a KML file. Set the faces with an alpha value. Set CutPolygons to false
since the altitude values are not uniform. Clamp the polygons to the ground.

colors = parula(length(contourPolygons));
filename = fullfile(kmlFolder, 'Contour Polygons.kml');

2-90

Exporting Vector Data to KML

kmlwrite(filename, contourPolygons, 'FaceColor',colors, 'FaceAlpha',.6, ..
'"EdgeColor', 'k', 'CutPolygons', false, 'AltitudeMode’, 'clampToGround')

Open the KML file.

openKML (filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 14: Write Polygon with Inner Ring to KML File

This example constructs a polygon with an inner ring around the Eiffel Tower and writes the polygon
to a KML file. The polygon's altitude is set to 500 meters above ground.

lato 48.858288;

lon® = 2.294548;

outerRadius .02;

innerRadius .01;

[latl, lonl] scirclel(l1at0,lon0®,outerRadius);
[lat2,lon2] scirclel(lat0,lon0®,innerRadius);
[lon2,lat2] poly2ccw(lon2,lat2);

lat = [latl; NaN; lat2];
lon = [lonl; NaN; lon2];
alt = 500;

filename = fullfile(kmlFolder, 'EiffelTower.kml"');

Export the polygon to a KML file. Set the edge color to black, the face color to cyan, and the face
alpha value.

kmlwritepolygon(filename,lat,lon,alt, 'EdgeColor', 'k', 'FaceColor','c',
'FaceAlpha', .5)

Open the KML file.

openKML (filename)

Add filename to kmlFilenames.
kmlFilenames{end+1} = filename;

Delete Generated KML Files

Optionally, delete the new KML files from your KML output folder.

if ~useApplication
for k = 1:length(kmlFilenames)
delete(kmlFilenames{k})
end
end

Data Set Information

The data in worldcities.shp is from the Digital Chart of the World (DCW) browser layer, published
by the U.S. National Geospatial-Intelligence Agency (NGA), formerly the National Imagery and
Mapping Agency (NIMA). For more information about the data set, use the command type
worldcities. txt.

2-91

2 Understanding Map Data

2-92

The data in tsunamis.shp is from the Global Tsunami Database, U.S. National Geospatial Data
Center (NGDC), National Oceanic and Atmospheric Administration (NOAA). For more information
about the data set, use the command type tsunamis.txt.

The data in usastatelo.shp is based on data from the CIA World DataBank II and the U.S. Census
Bureau site "State and County QuickFacts". For more information about the data set, use the
command type usastatelo.txt. For an updated link to the U.S. Census Bureau site "State and
County QuickFacts", see https://www.census.gov/quickfacts/fact/table/US/PST045219.

See Also
kmlwrite | kmlwriteline | kmlwritepoint | kmlwritepolygon

https://www.census.gov/quickfacts/fact/table/US/PST045219

Export KML Files for Viewing in Earth Browsers

Export KML Files for Viewing in Earth Browsers

Keyhole Markup Language (KML) is an XML dialect for formatting 2-D and 3-D geodata for display in
"Earth browsers," such as Google Earth™ mapping service, Google Maps™ mapping service, Google
Mobile™ wireless service, and NASA WorldWind. Other Web browser applications, such as Yahoo!®
Pipes, also support KML either by rendering or generating files. A KML file specifies a set of features
(placemarks, images, polygons, 3-D models, textual descriptions, etc.) and how they are to be
displayed in browsers and applications.

Each place must at least have an address or a longitude and a latitude. Places can also have textual
descriptions, including hyperlinks. KML files can also specify display styles for markers, lines and
polygons, and "camera view" parameters such as tilt, heading, and altitude. You can generate
placemarks in KML files for individual points and sets of points that include attributes in table form.
You can include HTML markups in these tables, with or without hyperlinks, but you cannot currently
control the camera view of a placemark. (However, the users of an Earth browser can generally
control their views of it).

Generate a Single Placemark Using kmlwritepoint

This example shows how to generate a placemark using kmlwritepoint by specifying the latitude
and longitude that identifies a location. This example also specifies the icon used for the placemark
and the text that appears in the balloon associated with the placemark.

lat 42.299827;

lon -71.350273;

description = sprintf('%s
%s
%s",
'3 Apple Hill Drive', 'Natick, MA. 01760°',
"https://www.mathworks.com');

name = 'The MathWorks, Inc.';

iconFilename = ...
"https://www.mathworks.com/products/product listing/images/ml_icon.gif';

iconScale = 1.0;

filename = 'MathWorks.kml';

kmlwritepoint(filename, lat, lon,
'Description', description, 'Name', name,
'Icon', iconFilename, 'IconScale', iconScale);

This code produces the following KML file.

<?xml version="1.0" encoding="utf-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Document>
<name>MathWorks</name>
<Placemark>
<Snippet maxLines="0"> </Snippet>
<description>3 Apple Hill Drive
Natick, MA. 01760;

https://www.mathworks.com;
</description>
<name>The MathWorks, Inc.</name>
<Style>
<IconStyle>
<Icon>
<href>
https://www.mathworks.com/products/product listing/images/ml _icon.gif
</href>
</Icon>
<scale>l</scale>
</IconStyle>
</Style>
<Point>
<coordinates>-71.350273,42.299827,0.0</coordinates>
</Point>
</Placemark>
</Document>
</kml>

2-93

2 Understanding Map Data

2-94

If you view this in an Earth Browser, notice that the text inside the placemark, "https://
www.mathworks.com," was automatically rendered as a hyperlink. The Google Earth service also
adds a link called "Directions". kmlwritepoint does not include location coordinates in placemarks.
This is because it is easy for users to read out where a placemark is by mousing over it or by viewing
its Properties dialog box.

Generate Placemarks from Addresses

This example shows how to generate a placemark using street addresses or more general addresses
such as postal codes, city, state, or country names, instead of latitude and longitude information. If
the viewing application is capable of looking up addresses, such placemarks can be displayed in
appropriate, although possibly imprecise, locations. (Note that the Google Maps service does not
support address-based placemarks.)

When you use addresses, kmlwrite creates an <address> element for each placemark rather than
<point> elements containing <coordinates> elements. For example, here is code for kmlwrite
that generates address-based placemarks for three cities in Australia from a cell array:

address = {'Perth, Australia',

'Melbourne, Australia',

'Sydney, Australia'};
filename = 'Australian Cities.kml';
kmlwrite(filename, address, 'Name', address);

The generated KML file has the following structure and content:

<?xml version="1.0" encoding="utf-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
<Document>
<name>Australian Cities</name>
<Placemark>
<Snippet maxLines="0"> </Snippet>
<description> </description>
<name>Perth, Australia</name>
<address>Perth, Australia</address>
</Placemark>
<Placemark>
<Snippet maxLines="0"> </Snippet>
<description> </description>
<name>Melbourne, Australia</name>
<address>Melbourne, Australia</address>
</Placemark>
<Placemark>
<Snippet maxLines="0"> </Snippet>
<description> </description>
<name>Sydney, Australia</name>
<address>Sydney, Australia</address>
</Placemark>
</Document>
</kml>

Export Point Geostructs to Placemarks

This example shows how to read data from shapefiles and generate a KML file that identifies all or
selected attributes, which you can then view in an earth browser such as Google Earth. It also shows
how to customize placemark icons and vary them according to attribute values.

Export KML Files for Viewing in Earth Browsers

The Mapping Toolbox tsunamis shapefiles contain a database of 162 tsunami (tidal wave) events
reported between 1950 and 2006, described as point locations with 21 variables (including 18
attributes). You can type out the metadata file tsunamis.txt to see the definitions of all the data
fields. The steps below select some of these from the shapefiles and display them as tables in
exported KML placemarks.

1

Read the tsunami shapefiles, selecting certain attributes.

There are several ways to select attributes from shapefiles. One is to pass shaperead a cell
array of attribute names in the Attributes parameter. For example, you might just want to map
the maximum wave height, the suspected cause, and also show the year, location and country for
each event. Set up a cell array with the corresponding attribute field names as follows,
remembering that field names are case-sensitive.

attrs = {'Max Height', 'Cause', 'Year', 'Location', 'Country'};

Since the data file uses latitude and longitude coordinates, you need to specify
'UseGeoCoords ', true to ensure that shaperead returns a geostruct (having Lat and Lon
fields).

tsunamis = shaperead('tsunamis.shp', 'useGeoCoords', true,...
'"Attributes’',attrs);

Look at the first record in the tsunamis geostruct returned by shaperead.

tsunamis (1)

Geometry: 'Point'
Lon: 128.3000
Lat: -3.8000
Max_Height: 2.8000
Cause: 'Earthquake'
Year: 1950
Location: 'JAVA TRENCH, INDONESIA'
Country: 'INDONESIA'

Export the tsunami data to a KML file with kmlwrite

By default, kmlwrite outputs all attribute data in a geostruct to a KML formatted file as an
HTML table containing unstyled text. When you view it, the Google Earth program supplies a
default marker.

kmlfilename = 'tsunamil.kml';
kmlwritepoint(kmlfilename, tsunamis(1l).Lat,tsunamis(1).Lon);

View the placemarks in an earth browser. For example, you can view KML files with the Google
Earth browser, which must be installed on your computer.

For Windows, use the winopen function:
winopen(filename)

For Linux, if the file name is a partial path, use the following commands:
cmd = 'googleearth ';

fullfilename = fullfile(pwd, filename);

system([cmd fullfilename])

For Mac, if the file name is a partial path, use the following commands:

2-95

2 Understanding Map Data

2-96

cmd = 'open -a Google\ Earth '
fullfilename = fullfile(pwd, filename);
system([cmd fullfilenamel])

Customize the placemark contents

To customize the HTML table in the placemark, use the makeattribspec function. Create an
attribute spec for the tsunamis geostruct and inspect it.

attribspec = makeattribspec(tsunamis)

attribspec =
Max Height: [1x1 struct]
Cause: [1x1 struct]
Year: [1x1 struct]
Location: [1x1 struct]
Country: [1x1 struct]

Format the label for Max Height as bold text, give units information about Max Height, and
also set the other attribute labels in bold.

attribspec.Max Height.AttributeLabel = 'Maximum Height"';
attribspec.Max Height.Format = '%.1f Meters';
attribspec.Cause.AttributelLabel = 'Cause";
attribspec.Year.AttributelLabel = 'Year';
attribspec.Year.Format = '%.0f"';
attribspec.Location.AttributelLabel = 'Location";
attribspec.Country.AttributeLabel = 'Country";

When you use the attribute spec, all the attributes it lists are included in the placemarks
generated by kmlwrite unless you remove them from the spec manually (e.g., with rmfield).

Customize the placemark icon

You can specify your own icon using kmlwrite to use instead of the default pushpin symbol. The
black-and-white bullseye icon used here is specified as URL for an icon in the Google KML
library.

iconname = ...
"http://maps.google.com/mapfiles/kml/shapes/placemark circle.png';

kmlwritepoint(kmlfilename, tsunamis(1l).Lat,tsunamis(1).Lon,
'Description',attribspec, 'Name', {tsunamis(1l).Location},
'Icon',iconname, 'IconScale',2);

Vary placemark size by tsunami height

To vary the size of placemark icons, specify an icon file and a scaling factor for every observation
as vectors of names (all the same) and scale factors (all computed individually) when writing a
KML file. Scale the width and height of the markers to the log of Max Height. Scaling factors
for point icons are data-dependent and can take some experimenting with to get right.

% Create vector with log2 exponents of |Max Height| values
[Loghgtx loghgte] = log2([tsunamis.Max Height]);
% Create a vector replicating the icon URL
iconnames = cellstr(repmat(iconname,numel(tsunamis),1));
kmlwritepoint (kmlfilename, tsunamis(1).Lat,tsunamis(1).Lon,
'Description',attribspec,...
'Name', {tsunamis(1l).Location}, 'Icon',iconname,...
'IconScale',loghgte);

Select Shapefile Data to Read

Select Shapefile Data to Read

The shaperead function provides you with a powerful method, called a selector, to select only the
data fields and items you want to import from shapefiles.

A selector is a cell array with two or more elements. The first element is a handle to a predicate
function (a function with a single output argument of type lLogical). Each remaining element is a
character vector indicating the name of an attribute.

For a given feature, shaperead supplies the values of the attributes listed to the predicate function
to help determine whether to include the feature in its output. The feature is excluded if the predicate
returns false. The converse is not necessarily true: a feature for which the predicate returns true
may be excluded for other reasons when the selector is used in combination with the bounding box or
record number options.

The following examples are arranged in order of increasing sophistication. Although they use
MATLAB function handles, anonymous functions, and nested functions, you need not be familiar with
these features in order to master the use of selectors for shaperead.

Example 1: Predicate Function in Separate File

1 Define the predicate function in a separate file. (Prior to Release 14, this was the only option
available.) Create a file named roadfilter.m, with the following contents:

function result = roadfilter(roadclass, roadlength)

mininumClass = 4;

minimumLength = 200;

result = (roadclass >= mininumClass) && ...
(roadlength >= minimumLength);

end

2 You can then call shaperead like this:
roadselector = {@roadfilter, 'CLASS', 'LENGTH'}

roadselector =
@roadfilter 'CLASS' "LENGTH'

s = shaperead('concord roads', 'Selector', roadselector)

S =

115x1 struct array with fields:
Geometry
BoundingBox
X
Y
STREETNAME
RT_NUMBER
CLASS
ADMIN TYPE
LENGTH

or, in a slightly more compact fashion, like this:

s = shaperead('concord roads', ...
'Selector', {@roadfilter, 'CLASS', 'LENGTH'})

2-97

2 Understanding Map Data

2-98

S =

115x1 struct array with fields:
Geometry
BoundingBox
X
Y
STREETNAME
RT_NUMBER
CLASS
ADMIN TYPE
LENGTH

Prior to Version 7 of the Mapping Toolbox software, putting the selector in a file or local function
of its own was the only way to work with a selector.

Note that if the call to shaperead took place within a function, then roadfilter could be
defined in a local function thereof rather than in a file of its own.

Example 2: Predicate as Function Handle

As a simple variation on the previous example, you could assign a function handle, roadfilterfcn,
and use it in the selector:

roadfilterfcn = @roadfilter
s = shaperead('concord roads',...
'Selector', {roadfilterfcn, 'CLASS', 'LENGTH'})
roadfilterfcn =
@roadfilter
S =
115x1 struct array with fields:
Geometry
BoundingBox
X
Y
STREETNAME
RT_NUMBER
CLASS
ADMIN TYPE
LENGTH

Example 3: Predicate as Anonymous Function

Having to define predicate functions in files of their own, or even as local functions, may sometimes
be awkward. Anonymous functions allow the predicate function to be defined right where it is
needed. For example:

roadfilterfcn = ...
@(roadclass, roadlength) (roadclass >= 4) && ...
(roadlength >= 200)

roadfilterfcn =
@(roadclass, roadlength) (roadclass >= 4)
&& (roadlength >= 200)

s = shaperead('concord roads', 'Selector’,

Select Shapefile Data to Read

{roadfilterfcn, 'CLASS', 'LENGTH'})

S =

115x1 struct array with fields:
Geometry
BoundingBox
X
Y
STREETNAME
RT_NUMBER
CLASS
ADMIN TYPE
LENGTH

Example 4: Predicate (Anonymous Function) Defined Within Cell Array

There is actually no need to introduce a function handle variable when defining the predicate as an
anonymous function. Instead, you can place the whole expression within the selector cell array itself,
resulting in somewhat more compact code. This pattern is used in many examples throughout the
Mapping Toolbox documentation and function help.

s = shaperead('concord roads', 'Selector’,
{@(roadclass, roadlength)...
(roadclass >= 4) && (roadlength >= 200),...
"CLASS', 'LENGTH'})

S =

115x1 struct array with fields:
Geometry
BoundingBox
X
Y
STREETNAME
RT_NUMBER
CLASS
ADMIN TYPE
LENGTH

Example 5: Parametrizing the Selector; Predicate as Nested Function

In the previous patterns, the predicate involves two hard-coded parameters (called minimumClass
and minimumLength in roadfilter.m), as well as the roadclass and roadlength input
variables. If you use any of these patterns in a program, you need to decide on minimum cut-off
values for roadclass and roadlength at the time you write the program. But suppose that you
wanted to wait and decide on parameters like minimumClass and minimumLength at run time?

Fortunately, nested functions provide the additional power that you need to do this; they allow you to
utilize workspace variables in as parameters, rather than requiring that the parameters be hard-
coded as constants within the predicate function. In the following example, the workspace variables
minimumClass and minimumbLength could have been assigned through a variety of computations
whose results were unknown until run-time, yet their values can be made available within the
predicate as long as it is defined as a nested function. In this example the nested function is wrapped
in a file called constructroadselector.m, which returns a complete selector: a handle to the
predicate (named nestedroadfilter) and the two attribute names:

2-99

2 Understanding Map Data

2-100

function roadselector = ...
constructroadselector(minimumClass, minimumLength)

roadselector = {@nestedroadfilter, 'CLASS', 'LENGTH'};
function result = nestedroadfilter(roadclass, roadlength)

result = (roadclass >= minimumClass) && ...
(roadlength >= minimumLength);

end

end

The following four lines show how to use constructroadselector:

minimumClass = 4;
minimumLength = 200;

Could be run-time dependent
Could be run-time dependent

o® o°

roadselector = constructroadselector(...
minimumClass, minimumLength);

S shaperead('concord roads', 'Selector', roadselector)
S =
115x1 struct array with fields:
Geometry
BoundingBox
X
Y
STREETNAME
RT_NUMBER
CLASS
ADMIN TYPE
LENGTH

Exporting Images and Raster Grids to GeoTIFF

Exporting Images and Raster Grids to GeoTIFF

This example shows how to write data referenced to standard geographic and projected coordinate
systems to GeoTIFF files, using geotiffwrite. The Tagged-Image File Format (TIFF) has emerged
as a popular format to store raster data. The GeoTIFF specification defines a set of TIFF tags that
describe "Cartographic" information associated with the TIFF raster data. Using these tags,
geolocated imagery or raster grids with coordinates referenced to a Geographic Coordinate System
(latitude and longitude) or a (planar) Projected Coordinate System can be stored in a GeoTIFF file.

Setup: Define a Data Folder and File Name Utility Function

This example creates several temporary GeoTIFF files and uses the variable datadir to denote their
location. The value used here is determined by the output of the tempdir command, but you could
easily customize this. The contents of datadir are deleted at the end of the example.

datadir = fullfile(tempdir, 'datadir');
if ~exist(datadir, 'dir')

mkdir(datadir)
end

Define an anonymous function to prepend datadir to the input file name:
datafile = @(filename)fullfile(datadir, filename);

Example 1: Write an Image Referenced to Geographic Coordinates

Write an image referenced to WGS84 geographic coordinates to a GeoTIFF file. The original image
(boston_ovr,jpg) is stored in JPEG format, with referencing information external to the image file, in
the "world file" (boston ovr.jgw). The image provides a low resolution "overview" of Boston,
Massachusetts, and the surrounding area.

Read the image from the JPEG file.
basename = 'boston ovr';
imagefile = [basename '.jpg'l;
Al = imread(imagefile);

Obtain a referencing object from the world file.

worldfile = getworldfilename(imagefile);
Rl = worldfileread(worldfile, 'geographic',size(Al));

Write the image to a GeoTIFF file.

filenamel = datafile([basename '.tif']);
geotiffwrite(filenamel, Al,R1)

Return information about the file as a RasterInfo object. Note that the value of
CoordinateReferenceSystem is a geographic coordinate reference system object.

infol = georasterinfo(filenamel);
infol.CoordinateReferenceSystem

ans =

geocrs with properties:

2-101

2 Understanding Map Data

Name: "WGS 84"
Datum: "World Geodetic System 1984"
Spheroid: [1x1 referenceEllipsoid]
PrimeMeridian: 0
AngleUnit: "degree"

Re-import the new GeoTIFF file and display the Boston overview image, correctly located, in a map
axes.

figure

usamap(R1l.LatitudeLimits,R1l.LongitudeLimits)

setm(gca, 'PLabelLocation',0.05, 'PlabelRound', -2, 'PlineLocation',0.05)
geoshow(filenamel)

title('Boston Overview')

Boston Overview

4240 N

7117w 710 W

Example 2: Write a Data Grid Referenced to Geographic Coordinates

Load elevation raster data and a geographic cells reference object. Write the data grid to a GeoTIFF
file.

load topo60Oc

Z2 = topo60c;

R2 = topo60cR;

filename2 = datafile('topo60Oc.tif');
geotiffwrite(filename2,Z2,R2)

2-102

Exporting Images and Raster Grids to GeoTIFF

The values in the data grid range from -7473 to 5731. Display the grid as a texture-mapped surface
rather than as an intensity image.

figure

worldmap world

gridm off

setm(gca, 'MLabelParallel',-90, 'MLabelLocation',90)
tmap = geoshow(filename2, 'DisplayType', 'texturemap');
demcmap (tmap.CData)

title('Elevation Data Grid")

Elevation Data Grid

180 W 90 W 0 90 E 180 E

Example 3: Change Data Organization of GeoTIFF Files

When you write data using geotiffwrite or read data using readgeoraster, the columns of the
data grid start from north and the rows start from west. For example, the input data from
topo60c.mat starts from south, but the output data from topo60c.tif starts from north.

R2.ColumnsStartFrom
[Z3,R3] = readgeoraster(filename2);
R3.ColumnsStartFrom

ans

south'

ans

2-103

2 Understanding Map Data

2-104

'north'

Therefore, the input data and data in the GeoTIFF file is flipped.

isequal(Zz2,flipud(Z3))

ans =
logical

1

If you need the data in your workspace to match again, then flip the Z values and set the referencing
object such that the columns start from the south:

R3.ColumnsStartFrom = 'south';
Z3 = flipud(Z3);
isequal(Z2,Z3)
ans =

logical

1

The data in the GeoTIFF file is encoded with positive scale values. Therefore, when you view the file
with ordinary TIFF-viewing software, the northern edge of the data set is at the top. To make the data
layout in the output file match the data layout of the input, you can construct a Tiff object and use it
to reset some of the tags and the image data.

t = Tiff(filename2, 'r+');

pixelScale = getTag(t, 'ModelPixelScaleTag');
pixelScale(2) = -pixelScale(2);

setTag(t, 'ModelPixelScaleTag',pixelScale);
tiepoint = getTag(t, 'ModelTiepointTag');
tiepoint(5) = intrinsicToGeographic(R2,0.5,0.5);
setTag(t, 'ModelTiepointTag',tiepoint);

setTag(t, 'Compression', Tiff.Compression.None)

write(t,Z2);

rewriteDirectory(t)
close(t)

Verify the referencing object and data grid from the input data match the output data file. To do this,
read the Tiff image and create a reference object. Then, compare the grids.

t = Tiff(filename2);
Atiff = read(t);

Exporting Images and Raster Grids to GeoTIFF

close(t)
Rtiff = georefcells(R2.LatitudeLimits,R2.LongitudelLimits,size(Atiff));

isequal(Z2,Atiff)
isequal (R2,Rtiff)
ans =

logical

1

ans =
logical

1

Example 4: Write an Image Referenced to a Projected Coordinate System

Write the Concord orthophotos to a single GeoTIFF file. The two adjacent (west-to-east)
georeferenced grayscale (panchromatic) orthophotos cover part of Concord, Massachusetts, USA.
The concord ortho.txt file indicates that the data are referenced to the Massachusetts Mainland
(NAD83) State Plane Projected Coordinate System. Units are meters. This corresponds to the
GeoTIFF code number 26986 as noted in the GeoTIFF specification at http://geotiff. maptools.org/
spec/geotiff6.html#6.3.3.1 under PCS NAD83 Massachusetts.

Read the two orthophotos.

[X west,R west]
[X east,R _east]

readgeoraster('concord ortho w.tif');
readgeoraster('concord ortho e.tif');

Combine the images and reference objects.

X4 [X west X east];

R4 = R west;

R4 .XWorldLimits = [R west.XWorldLimits(1l) R east.XWorldLimits(2)];
R4.RasterSize = size(X4);

Write the data to a GeoTIFF file. Use the code number, 26986, indicating the
PCS NAD83 Massachusetts Projected Coordinate System.

coordRefSysCode = 26986;
filename4 = datafile('concord ortho.tif');
geotiffwrite(filename4,X4,R4, 'CoordRefSysCode',coordRefSysCode)

Return information about the file as a RasterInfo object. Note that the value of
CoordinateReferenceSystemis a projected coordinate reference system object.

info4 = georasterinfo(filename4);

info4.CoordinateReferenceSystem

ans =

2-105

http://geotiff.maptools.org/spec/geotiff6.html#6.3.3.1
http://geotiff.maptools.org/spec/geotiff6.html#6.3.3.1

2 Understanding Map Data

projcrs with properties:

Name: "NAD83 / Massachusetts Mainland"
GeographicCRS: [1x1 geocrs]
ProjectionMethod: "Lambert Conic Conformal (2SP)"
LengthUnit: "meter"
ProjectionParameters: [1x1 map.crs.ProjectionParameters]

Display the combined Concord orthophotos.

figure

mapshow(filename4)

title('Combined Orthophotos')

xlabel('MA Mainland State Plane easting, meters')
ylabel('MA Mainland State Plane northing, meters')

105 Combined Orthophotos

9.115

9_1.1 : " L O - 2 r=d = i 4
207 2075 2.08 2.085 2.09 2.095 21 2105 211

MA Mainland State Plane easting, meters « 102

MA Mainland State Plane northing, meters
w
=

Example 5: Write a Cropped Image from a GeoTIFF File

Write a subset of a GeoTIFF file to a new GeoTIFF file.

Read the RGB image and referencing information from the boston. tif GeoTIFF file.
[A5,R5] = readgeoraster('boston.tif");

Crop the image.

2-106

Exporting Images and Raster Grids to GeoTIFF

xlimits [764318 767677];
ylimits [2951122 2954482];
[A5crop,R5crop] = mapcrop(A5,R5,xlimits,ylimits);

Write the cropped image to a GeoTIFF file. Use the GeoKeyDirectoryTag from the original GeoTIFF
file.

info5 = geotiffinfo('boston.tif');

filename5 = datafile('boston subimage.tif');

geotiffwrite(filename5,A5crop,R5crop,
‘GeoKeyDirectoryTag',info5.GeoTIFFTags.GeoKeyDirectoryTag)

Display the GeoTIFF file containing the cropped image.

figure

mapshow(filename5)

title('Fenway Park - Cropped Image from GeoTIFF File')

xlabel('MA Mainland State Plane easting, survey feet')

ylabel('MA Mainland State Plane northing, survey feet')

Femiwvay Park - Cropped Image from GeoTIFF File

2954

2.89535

MA Mainland State Flane northing, survey feet

7.645 765 7.655 7.66 7.665 7.ev 7.675
MA Mainland State Plane easting, survey feet 1g°
Example 6: Write Elevation Data to GeoTIFF File
Write elevation data for an area around South Boulder Peak in Colorado to a GeoTIFF file.
elevFilename = 'n39 wl06 3arc v2.dtl';

Read the DEM from the file. To plot the data using geoshow, the data must be of type single or
doub'le. Specify the data type for the raster using the 'OutputType' name-value pair.

2-107

2 Understanding Map Data

2-108

[26,R6] = readgeoraster(elevFilename, 'OutputType', 'double');

Create a structure to hold the GeoKeyDirectoryTag information.

key = struct(...
'GTModelTypeGeoKey',[1,
'GTRasterTypeGeoKey',[],
'GeographicTypeGeoKey',[]);

Indicate the data is in a geographic coordinate system by specifying the GTMode1lTypeGeoKey field
as 2. Indicate that the reference object uses postings (rather than cells) by specifying the
GTRasterTypeGeoKey field as 2. Indicate the data is referenced to a geographic coordinate
reference system by specifying the GeographicTypeGeoKey field as 4326.

key.GTModelTypeGeoKey = 2
key.GTRasterTypeGeoKey

= 2;
key.GeographicTypeGeoKey =

4326;

Write the elevation data to a GeoTIFF file.

filename6 = datafile('southboulder.tif');
geotiffwrite(filename6,Z6,R6, 'GeoKeyDirectoryTag',key)

Verify the data has been written to a file by displaying it. First, import vector data that represents the
state boundary of Colorado using shaperead. Then, display the boundary and GeoTIFF file.

S = shaperead('usastatelo', 'UseGeoCoords', true, 'Selector',...
{@(name) any(strcmp(name,{'Colorado'})), 'Name'});

figure

usamap 'Colorado’

hold on

geoshow(S, 'FaceColor', 'none')

g = geoshow(filename6, 'DisplayType', 'mesh');

demcmap(g.ZData)

title('South Boulder Peak Elevation')

Exporting Images and Raster Grids to GeoTIFF

South Boulder Peak Elevation

42° N

40" N

8 N

36 N

T0°W 108w 106°W 104 W 102 W

Example 7: Write Non-Image Data to a TIFF File

If you are working with a data grid that is class double with values that range outside the limits
required of a floating point intensity image (0 <= data <= 1), and if you store the data in a TIFF file
using imwrite, then your data will be truncated to the interval [0,1], scaled, and converted to uint8.
Obviously it is possible for some or even all of the information in the original data to be lost. To avoid
these problems, and preserve the numeric class and range of your data grid, use geotiffwrite to
write the data.

Create sample Z data.

n = 512;
Z7 = peaks(n);

Create a referencing object to reference the rows and columns to X and Y.

R7 = maprasterref('RasterSize',[n n], 'ColumnsStartFrom', 'north');
R7.XWorldLimits R7.XIntrinsiclLimits;
R7.YWorldLimits R7.YIntrinsiclLimits;

Create a structure to hold the GeoKeyDirectoryTag information. Set the model type to 1 indicating
Projected Coordinate System (PCS).

key.GTModelTypeGeoKey = 1;
Set the raster type to 1 indicating PixellsArea (cells).

key.GTRasterTypeGeoKey = 1;

2-109

2 Understanding Map Data

2-110

Indicate a user-defined Projected Coordinate System by using a value of 32767.

key.ProjectedCSTypeGeoKey = 32767;

Write the data to a GeoTIFF file with geotiffwrite. For comparison, write a second file using
imwrite.

filename geotiff = datafile('zdata geotiff.tif');

filename tiff = datafile('zdata tiff.tif');
geotiffwrite(filename geotiff,Z7,R7, 'GeoKeyDirectoryTag',key)
imwrite(z7, filename tiff);

When you read the file using imread the data values and class type are preserved. You can see that
the data values in the TIFF file are not preserved.

geoZ = imread(filename geotiff);

tiffZ = imread(filename tiff);

fprintf('Class type of Z: %s\n', class(Z7))

fprintf('Class type of data in GeoTIFF file: %s\n', class(geoZ))
fprintf('Class type of data in TIFF file: %s\n', class(tiffZ))
fprintf('Does data in GeoTIFF file equal Z: %d\n', isequal(geoZ, Z7))
fprintf('Does data in TIFF file equal Z: %d\n', isequal(tiffz, Z7))

Class type of Z: double

Class type of data in GeoTIFF file: double
Class type of data in TIFF file: uint8
Does data in GeoTIFF file equal Z: 1

Does data in TIFF file equal Z: 0

You can view the data grid using mapshow.

figure
mapshow(filename geotiff, 'DisplayType', 'texturemap')
title('Peaks - Stored in GeoTIFF File')

Exporting Images and Raster Grids to GeoTIFF

Peaks - Stored in GeoTIFF File

600

500

400

300

200

100

0 100 200 300 400 500 600

Example 8: Modify an Existing File While Preserving Meta Information

You may want to modify an existing file, but preserve most, if not all, of the meta information in the
TIFF tags. This example converts the RGB image from the boston. tif file into an indexed image
and writes the new data to an indexed GeoTIFF file. The TIFF meta-information, with the exception of
the values of the BitDepth, BitsPerSample, and PhotometricInterpretation tags, is preserved.

Read the image from the boston.tif GeoTIFF file.
[A8,R8] = readgeoraster('boston.tif');

Use the MATLAB function, rgb2ind, to convert the RGB image to an indexed image X using
minimum variance quantization.

[X8,cmap] = rgb2ind(A8,65536);

Obtain the TIFF tag information using imfinfo.

info8 = imfinfo('boston.tif');

Create a TIFF tags structure to preserve selected information from the info structure.

tags = struct(...

"Compression', info8.Compression,
'RowsPerStrip', info8.RowsPerStrip,
'XResolution', info8.XResolution,
'"YResolution', info8.YResolution,

'ImageDescription', info8.ImageDescription,

2-111

2 Understanding Map Data

2-112

'DateTime’', info8.DateTime,
"Copyright’, info8.Copyright,
'Orientation', info8.0rientation);

The values for the PlanarConfiguration and ResolutionUnit tags must be numeric rather than string
valued, as returned by imfinfo. You can set these tags by using the constant properties from the Tiff
class. For example, here are the possible values for the PlanarConfiguration constant property:

Tiff.PlanarConfiguration

ans =
struct with fields:

Chunky: 1
Separate: 2

Use the string value from the info structure to obtain the desired value.

tags.PlanarConfiguration = ...
Tiff.PlanarConfiguration. (info8.PlanarConfiguration);

Set the ResolutionUnit value in the same manner.

tags.ResolutionUnit = Tiff.ResolutionUnit. (info8.ResolutionUnit);

The Software tag is not set in the boston. tif file. However, geotiffwrite will set the Software
tag by default. To preserve the information, set the value to the empty string which prevents the tag
from being written to the file.

tags.Software = ;

Copy the GeoTIFF information from boston.tif.

geoinfo = geotiffinfo('boston.tif');
key = geoinfo.GeoTIFFTags.GeoKeyDirectoryTag;

Write to the GeoTIFF file.

filename8 = datafile('boston indexed.tif');
geotiffwrite(filename8, X8, cmap,R8, 'GeoKeyDirectoryTag',6key, 'TiffTags',tags)

View the indexed image.

figure

mapshow(filename8)

title('Boston - Indexed Image')

xlabel('MA Mainland State Plane easting, survey feet')
ylabel('MA Mainland State Plane northing, survey feet')

Exporting Images and Raster Grids to GeoTIFF

2.958 &

2957 k

MA Mainland State Plane northing, survey feet

7.66 7.68 7.7 772 774 7.76 7.78
MA Mainland State Plane easting, survey feet w107

Compare the information in the structures that should be equal by printing a table of the values.

info_rgb = imfinfo('boston.tif');
info_indexed = imfinfo(filename8);

tagNames = fieldnames(tags);
tagNames(strcmpi('Software', tagNames)) = [];
names = [{'Height' 'Width'}, tagNames'];

spacing = 2;
fieldnamelLength = max(cellfun(@length, names)) + spacing;
formatSpec = ['%-' int2str(fieldnamelLength) 's'];

fprintf([formatSpec formatSpec formatSpec '\n'],
'Fieldname', 'RGB Information', 'Indexed Information')

fprintf([formatSpec formatSpec formatSpec '\n'], .
L 1 , L 1 , o e e o e o e e e e e e e oo 1)

for k = 1:1length(names)
fprintf([formatSpec formatSpec formatSpec '\n'l],
names{k},
num2str(info_rgb. (names{k})),
num2str(info_indexed. (names{k})))

end

Fieldname RGB Information Indexed Information
Height 2881 2881

Width 4481 4481

2-113

2 Understanding Map Data

2-114

Compression Uncompressed Uncompressed
RowsPerStrip 256 256

XResolution 300 300

YResolution 300 300
ImageDescription "GeoEye" "GeoEye"

DateTime 2007:02:23 21:46:13 2007:02:23 21:46:13
Copyright "(c) GeoEye" "(c) GeoEye"
Orientation 1 1
PlanarConfiguration Chunky Chunky
ResolutionUnit Inch Inch

Compare the information that should be different, since you converted an RGB image to an indexed
image, by printing a table of values.

names = {'FileSize', 'ColorType', 'BitDepth',
'BitsPerSample', 'PhotometricInterpretation'};

fieldnamelLength = max(cellfun(@length, names)) + spacing;
formatSpec = ['%-' int2str(fieldnameLength) 's'];
formatSpec2 = '%-17s';

fprintf(['\n' formatSpec formatSpec2 formatSpec2 '\n'], .
'Fieldname', 'RGB Information', 'Indexed Information')
fprintf([formatSpec formatSpec2 formatSpec2 '\n'],
L I, L I, L I)
for k = 1:length(names)
fprintf([formatSpec formatSpec2 formatSpec2 '\n'],
names{k},
num2str(info_rgb. (names{k})),
num2str(info_indexed. (names{k})))

end

Fieldname RGB Information Indexed Information
FileSize 38729900 27925078

ColorType truecolor indexed

BitDepth 24 16

BitsPerSample 8 8 8 16
PhotometricInterpretation RGB RGB Palette

Cleanup: Remove Data Folder

Remove the temporary folder and data files.
rmdir(datadir, 's')

Data Set Information

The files boston.tif and boston ovr.jpg include materials copyrighted by GeoEye, all rights
reserved. GeoEye was merged into the DigitalGlobe corporation on January 29th, 2013. For more
information about the data sets, use the commands type boston.txt and type boston ovr.txt.

The files concord _orthow w.tif and concord ortho_e.tif are derived using orthophoto tiles
from the Bureau of Geographic Information (MassGIS), Commonwealth of Massachusetts, Executive
Office of Technology and Security Services. For more information about the data sets, use the
command type concord ortho.txt. For an updated link to the data provided by MassGIS, see
https://www.mass.gov/service-details/massgis-data-layers.

https://www.mass.gov/service-details/massgis-data-layers

Exporting Images and Raster Grids to GeoTIFF

The DTED file n39 w106 3arc v2.dtl is courtesy of the US Geological Survey.

See Also
geotiffinfo | geotiffwrite | getworldfilename | worldfileread

2-115

2 Understanding Map Data

Converting Coastline Data (GSHHG) to Shapefile Format

2-116

This example shows how to:

» Extract a subset of coastline data from the Global Self-consistent Hierarchical High-resolution
Geography (GSHHG) data set

* Manipulate polygon features to add lakes and other interior water bodies as inner polygon rings
("holes")

» Save the modified data set to a shapefile for future use in MATLAB®, or for export to a geographic
information system

The Global Self-consistent Hierarchical High-resolution Geography (GSHHG; formerly Global Self-
consistent Hierarchical High-resolution Shorelines, or GSHHS) data set, by Paul Wessel and Walter H.
F. Smith, provides a consistent set of hierarchically arranged closed polygons. They can be used to
construct base maps, or in applications or analyses that involve operations like geographic searches
or the statistical properties of coastlines.

Step 1: Define a Working Folder

This example creates several temporary files and uses the variable workingFolder to denote their
location. The value used here is determined by the output of the tempdir command, but you could
easily customize this.

workingFolder = tempdir;

Step 2: GNU® Unzip and Index the Coarse-Resolution GSHHG Layer

GSHHG is available in wide range of spatial resolutions. This example uses the lowest-resolution
data, from the binary file gshhs c.b. A GNU zipped copy of this file is included in the Mapping
Toolbox™ data folder, on the MATLAB path.

Use the MATLAB gunzip function to decompress gshhs c.b.gz and create the file gshhs c.b in
the location indicated by workingFolder. Then create an index file, gshhs c. i, in the same folder.
In general, having an index file helps to accelerate later calls to the gshhs function. Note that when
you use the 'createindex' option, gshhs does not extract data.

files = gunzip('gshhs c.b.gz', workingFolder);
filename = files{1l};
indexfile = gshhs(filename, 'createindex');

Step 3: Import the GSHHG Data for South America

Select data for a specific latitude-longitude quadrangle and import it as a Mapping Toolbox
"geostruct" array:

latlim [-60 15];
lonlim [-90 -30];
S = gshhs(filename, latlim, lonlim);

If you have finished extracting data, you can remove the decompressed GSHHS file and the index file.

delete(filename)
delete(indexfile)

Converting Coastline Data (GSHHG) to Shapefile Format

Step 4: Examine the Data Set

Examine the first element of the geostruct array S. In addition to the Lat and Lon coordinate arrays,
note the various attribute fields that are present.

S(1)

ans = struct with fields:
Geometry: 'Polygon'
BoundingBox: [2x2 double]
Lat: [1x972 double]
Lon: [1x972 double]
South: -53.9004
North: 71.9942
West: 191.8947
East: 325.2054
Area: 3.7652e+07
Level: 1
LevelString: 'land’
NumPoints: 971
FormatVersion: 3

Source: 'WVS'
CrossesGreenwich: 0
GSHHS 1ID: 1

GSHHS comprises four levels of shorelines:

* Level1-"Land"

* Level 2 - "Lake"

* Level 3 - "Island in lake"

* Level 4 - "Pond in island in lake"

Check to see which levels the data you've imported includes. The Level field contains numerical
level numbers.

levels = [S.Levell;
unique(levels)

ans = 1x3

1 2 3

The LevelString field provides their interpretation. For example,
S(104).LevelString

ans =
'lake’

shows that feature 104 is a lake (a Level 2 feature).
In this example, due either to the low resolution or to spatial subsetting, no Level 4 features are

present.

2-117

2 Understanding Map Data

Step 5: Extract the Top Two Levels into Separate Geostruct Arrays

This example manipulates the top two levels of the GSHHS hierarchy, inserting each "lake" into the
surrounding land mass.

Extract GSHHS Level 1 (exterior coastlines of continents and oceanic islands):
L1 = S(levels == 1);

Extract Level 2 (coastlines of lakes and seas within Level 1 polygons):

L2 = S(levels == 2);

To see their spatial relationships, you can map Level 1 edges as blue lines and Level 2 edges as red
lines:

figure

axesm('mercator', 'MapLatLimit', latlim, 'MapLonLimit', lonlim)

gridm; mlabel; plabel

geoshow([L1l.Lat], [L1l.Lon], 'Color', 'blue'")
geoshow([L2.Lat], [L2.Lon], 'Color', 'red')
tightmap

80 w 60 W 30 w

15 N

60 5

Step 6: Merge Level 2 Polygons into Level 1

Define an anonymous predicate function to detect bounding-box intersections (returning true if a pair
of bounding boxes intersect and false otherwise). Inputs A and B are 2-by-2 bounding-box matrices of
the form

2-118

Converting Coastline Data (GSHHG) to Shapefile Format

[min(lon) min(lat)
max(lon) max(lat)].

boxesIntersect = ...
@(A,B) (~(any(A(2,:) < B(1,:)) || any(B(2,:) < A(1,:))));

For convenience in looping over them, copy the Level 1 bounding boxes to a 3-D array:

Llboxes = reshape([L1.BoundingBox],[2 2 numel(L1)]);

Check each Level 1 - Level 2 pair of features for possible intersection. See if polybool returns any
output or not, but avoid calling polybool unless a bounding box intersection is detected first:

for k = 1:numel(L2)
for j = l:numel(L1)
% See if bounding boxes intersect
if boxesIntersect(L2(k).BoundingBox, Llboxes(:,:,j))
% See if actual features intersect
if ~isempty(polybool('intersection', ...
L2(k).Lon, L2(k).Lat, L1(j).Lon, L1(j).Lat))
% Reverse level 2 vertex order before merge to
% correctly orient inner rings
L1(j).Lon [L1(j).Lon fliplr(L2(k).Lon) NaN];
L1(j).Lat [L1(j).Lat fliplr(L2(k).Lat) NaN];

end
end
end
end

Step 7: Save Results in a Shapefile

With a single call to shapewrite, you can create a trio of files,

gshhs c SouthAmerica.shp
gshhs c SouthAmerica.shx
gshhs c SouthAmerica.dbf

in your working folder.

shapepath = fullfile(workingFolder, 'gshhs c SouthAmerica');
shapewrite(L1l, shapepath)

Step 8: Validate the Shapefile

To validate the results of shapewrite, read the new shapefile into the geostruct array
southAmerica:

southAmerica = shaperead(shapepath, 'UseGeoCoords', true)

southAmerica=79x1 struct array with fields:
Geometry
BoundingBox
Lon
Lat
South
North
West
East
Area

2-119

2 Understanding Map Data

2-120

Level
LevelString
NumPoints
FormatVersi
Source
CrossesGree
GSHHS _ID

Note that the two longest fieldnames, 'FormatVersion' and 'CrossesGreenwich’', have been
truncated to 11 characters. This happened during the call to shapewrite and is unavoidable
because of a rigid 11-character limit in the xBASE tables (.DBF format) used to store attributes in
shapefiles. (In general, when writing shapefiles you may want to re-define fieldnames longer than 11
characters in order to avoid or control the effects of automatic truncation.)

Optionally, remove the new shapefiles from your working folder. (This example needs to clean up after
itself; in a real application you would probably want to omit this step.)

delete([shapepath '.*'])

Display the geostruct imported from the new shapefile. Note the various "holes" in the South America
polygon indicating lakes and shorelines of other extended bodies of water in the interior of the
continent.

figure
ax = axesm('mercator', 'MapLatLimit', latlim, 'MapLonLimit', lonlim);
ax.Color = 'cyan';

gridm; mlabel; plabel
geoshow(southAmerica, 'FaceColor', [0.15 0.8 0.15])
tightmap

Converting Coastline Data (GSHHG) to Shapefile Format

80 W

15 N

15° 8

30 s

45 5

60 S

Reference

Wessel, P, and W. H. F. Smith, 1996, A global self-consistent, hierarchical, high-resolution shoreline
database, Journal of Geophysical Research, Vol. 101, pp. 8741-8743.

Additional Data

The complete GSHHG data set may be downloaded from the U.S. National Oceanic and Atmospheric
Administration (NOAA) web site. Follow the links from

https://www.mathworks.com/help/map/finding-geospatial-data.html
Credits

The GSHHG data file is provided in the Mapping Toolbox courtesy of Dr. Paul Wessel of the University
of Hawaii and Dr. Walter H. F. Smith of NOAA.

For more information, run:

>> type gshhs c.txt

See Also
gshhs | shaperead | shapewrite

2-121

Understanding Geospatial Geometry

* “The Shape of the Earth” on page 3-2

» “Reference Spheroids” on page 3-4

* “Work with Reference Spheroids” on page 3-11

» “Latitude and Longitude” on page 3-13

* “Relationship Between Points on Sphere” on page 3-15

* “Length and Distance Units” on page 3-16

* “Compute Conversion Ratio Between Units of Length” on page 3-17

* “Angle Representations and Angular Units” on page 3-18

* “Angles as Binary and Formatted Numbers” on page 3-22

* “Convert from Linear Measurements to Spherical Measurements” on page 3-23
» “Distances on the Sphere” on page 3-24

* “Great Circles” on page 3-27

* “Rhumb Lines” on page 3-28

* “Azimuth” on page 3-29

+ “Elevation” on page 3-31

* “Generate Vector Data for Points Along Great Circle or Rhumb Line Tracks” on page 3-32
* “Reckoning” on page 3-34

* “Calculate Distance Between Two Points in Geographic Space” on page 3-35
« “Small Circles” on page 3-36

» “Calculate Vector Data for Points Along a Small Circle” on page 3-37

* “Generate Small Circles” on page 3-38

* “Measure Area of Spherical Quadrangles” on page 3-40

* “Plotting a 3-D Dome as a Mesh Over a Globe” on page 3-41

* “Choose a 3-D Coordinate System” on page 3-47

* “Vectors in 3-D Coordinate Systems” on page 3-52

* “Find Ellipsoidal Height from Orthometric Height” on page 3-55

3 Understanding Geospatial Geometry

The Shape of the Earth

3-2

Although the Earth is very round, it is an oblate spheroid rather than a perfect sphere. This difference
is so small (only one part in 300) that modeling the Earth as spherical is sufficient for making small-
scale (world or continental) maps. However, making accurate maps at larger scale demands that a
spheroidal model be used. Such models are essential, for example, when you are mapping high-
resolution satellite or aerial imagery, or when you are working with coordinates from the Global
Positioning System (GPS). This section addresses how Mapping Toolbox software accurately models
the shape, or figure, of the Earth.

Ellipsoid Shape

You can define ellipsoids in several ways. They are usually specified by a semimajor and a semiminor
axis, but are often expressed in terms of a semimajor axis and either inverse flattening (which for the
Earth, as mentioned above, is one part in 300) or eccentricity. Whichever parameters are used, as
long as an axis length is included, the ellipsoid is fully constrained and the other parameters are
derivable. The components of an ellipsoid are shown in the following diagram.

Semiminor

Semimajor
(equatorial)
axis

I
Axis of rotation

The toolbox includes ellipsoid models that represent the figures of the Sun, Moon, and planets, as
well as a set of the most common ellipsoid models of the Earth. For more information, see “Reference
Spheroids” on page 3-4.

Geoid Shape

Literally, geoid means Earth-shaped. The geoid is an empirical approximation of the figure of the
Earth (minus topographic relief), its "lumpiness." Specifically, it is an equipotential surface with
respect to gravity, more or less corresponding to mean sea level. It is approximately an ellipsoid, but
not exactly so because local variations in gravity create minor hills and dales (which range from -100
m to +60 m across the Earth). This variation in height is on the order of 1 percent of the differences
between the semimajor and semiminor ellipsoid axes used to approximate the Earth's shape.

The shape of the geoid is important for some purposes, such as calculating satellite orbits, but need
not be taken into account for every mapping application. However, knowledge of the geoid is

The Shape of the Earth

sometimes necessary, for example, when you compare elevations given as height above mean sea
level to elevations derived from GPS measurements. Geoid representations are also inherent in datum
definitions.

Map the Geoid

Get geoid heights and a geographic postings reference object from the EGM96 geoid model. Load
coastline latitude and longitude data.

[N,R] = egm96geoid;
load coastlines

Display the geoid heights as a surface using a Robinson projection. Ensure the coastline data appears
over the surface by setting the 'CData' name-value pair to the geoid heights data and the 'ZData'
name-value pair to a matrix of zeros. Then, display the coastline data.

axesm robinson
Z = zeros(R.RasterSize);

geoshow(N,R, 'DisplayType"', 'surface', 'CData',N, 'ZData', Z)
geoshow(coastlat,coastlon, 'color', 'k")

Display a colorbar below the map.

colorbar('southoutside')

3-3

3 Understanding Geospatial Geometry

Reference Spheroids

3-4

When the Earth (or another roughly spherical body such as the Moon) is modeled as a sphere having
a standard radius, it is called a reference sphere. Likewise, when the model is a flattened (oblate)
ellipsoid of revolution, with a standard semimajor axis and standard inverse flattening, semiminor
axis, or eccentricity, it is called a reference ellipsoid. Both models are spheroidal in shape, so each
can be considered to be a type of reference spheroid. Mapping Toolbox supports several
representations for reference spheroids: referenceSphere, referenceEllipsoid, and
oblateSpheroid objects, and an older representation, ellipsoid vector.

In this section...

“referenceSphere Objects” on page 3-4
“referenceEllipsoid Objects” on page 3-6
“World Geodetic System 1984” on page 3-8
“Ellipsoid Vectors” on page 3-9
“oblateSpheroid Objects” on page 3-10

referenceSphere Objects

When using a strictly spherical model, you should generally use a referenceSphere object
(although both referenceEllipsoid and oblateSpheroid can represent a perfect sphere).

By default, referenceSphere returns a dimensionless unit sphere:
referenceSphere

ans =
referenceSphere with defining properties:

Name: 'Unit Sphere'
LengthUnit: ''
Radius: 1

and additional properties:

SemimajorAxis
SemiminorAxis
InverseFlattening
Eccentricity
Flattening
ThirdFlattening
MeanRadius
SurfaceArea
Volume

You can request a specific body by name, and the radius will be in meters by default:
earth = referenceSphere('Earth')

earth

referenceSphere with defining properties:

Reference Spheroids

Name: 'Earth'
LengthUnit: 'meter!’
Radius: 6371000

and additional properties:

SemimajorAxis
SemiminorAxis
InverseFlattening
Eccentricity
Flattening
ThirdFlattening
MeanRadius
SurfaceArea
Volume

You can reset the length unit if desired (and the radius is rescaled appropriately) :
earth.LengthUnit = 'kilometer'

earth =

referenceSphere with defining properties:

Name: 'Earth'
LengthUnit: 'kilometer'
Radius: 6371

and additional properties:

SemimajorAxis
SemiminorAxis
InverseFlattening
Eccentricity
Flattening
ThirdFlattening
MeanRadius
SurfaceArea
Volume

or specify the length unit at the time of construction:
referenceSphere('Earth', "km")

ans =
referenceSphere with defining properties:

Name: 'Earth'
LengthUnit: 'kilometer'
Radius: 6371

and additional properties:

SemimajorAxis
SemiminorAxis
InverseFlattening
Eccentricity

3 Understanding Geospatial Geometry

3-6

Flattening
ThirdFlattening
MeanRadius
SurfaceArea
Volume

Any length unit supported by validateLengthUnit can be used. A variety of abbreviations are
supported for most length units, see validateLengthUnit for a complete list.

One thing to note about referenceSphere is that only the defining properties are displayed, in
order to reduce clutter at the command line. (This approach saves a small amount of computation as
well.) In particular, don't overlook the dependent SurfaceArea and Volume properties, even though
they are not displayed. The surface area of the spherical earth model, for example, is easily obtained
through the SurfaceArea property:

earth.SurfaceArea

ans =
5.1006e+08

This result is in square kilometers, because the LengthUnit property of the object earth has value
"kilometer'.

When programming with Mapping Toolbox it may help to be aware that referenceSphere actually
includes all the geometric properties of referenceEllipsoidand oblateSpheroid
(SemimajorAxis, SemiminorAxis, InverseFlattening, Eccentricity, Flattening,
ThirdFlattening, and MeanRadius, as well as SurfaceArea, and Volume). None of these
properties can be set on a referenceSphere, and some have values that are fixed for all spheres.
Eccentricity is always 0, for example. But they provide a flexible environment for programming
because any geometric computation that accepts a referenceEllipsoid will also run properly
given a referenceSphere. This is a type of polymorphism in which different classes support
common, or strongly overlapping interfaces.

referenceEllipsoid Objects

When using an oblate spheroid to represent the Earth (or another roughly spherical body), you should
generally use a referenceEllipsoid object. An important exception occurs with certain small-
scale map projections, many of which are defined only on the sphere. However, all important
projections used for large-scale work, including Transverse Mercator and Lambert Conformal Conic,
are defined on the ellipsoid as well as the sphere.

Like referenceSphere, referenceEllipsoid returns a dimensionless unit sphere by default:
referenceEllipsoid

ans =
referenceEllipsoid with defining properties:

Code:

Name:

LengthUnit:
SemimajorAxis:
SemiminorAxis:
InverseFlattening:
Eccentricity:

]
Unit Sphere'

OHRKE - -

Reference Spheroids

and additional properties:

Flattening
ThirdFlattening
MeanRadius
SurfaceArea
Volume

More typically, you would request a specific ellipsoid by name, resulting in an object with semimajor
and semiminor axes properties in meters. For example, the following returns a
referenceEllipsoid with SemimajorAxis and InverseFlattening property settings that
match the defining parameters of Geodetic Reference System 1980 (GRS 80).

grs80 referenceEllipsoid('Geodetic Reference System 1980")

grs80
referenceEllipsoid with defining properties:

Code: 7019
Name: 'Geodetic Reference System 1980°
LengthUnit: 'meter’
SemimajorAxis: 6378137
SemiminorAxis: 6356752.31414036
InverseFlattening: 298.257222101
Eccentricity: 0.0818191910428158

and additional properties:

Flattening
ThirdFlattening
MeanRadius
SurfaceArea
Volume

In general, you should use the reference ellipsoid corresponding to the geodetic datum to which the
coordinates of your data are referenced. For instance, the GRS 80 ellipsoid is specified for use with
coordinates referenced to the North American Datum of 1983 (NAD 83).

As in the case of referenceSphere, you can reset the length unit if desired:
grs80.LengthUnit = 'kilometer!'

grs80 =

referenceEllipsoid with defining properties:

Code: 7019
Name: 'Geodetic Reference System 1980
LengthUnit: 'kilometer'
SemimajorAxis: 6378.137
SemiminorAxis: 6356.75231414036
InverseFlattening: 298.257222101
Eccentricity: 0.0818191910428158

and additional properties:

3 Understanding Geospatial Geometry

3-8

Flattening
ThirdFlattening
MeanRadius
SurfaceArea
Volume

or specify the length unit at the time of construction:
referenceEllipsoid('Geodetic Reference System 1980', "km')

ans =
referenceEllipsoid with defining properties:

Code: 7019
Name: 'Geodetic Reference System 1980
LengthUnit: 'kilometer!'
SemimajorAxis: 6378.137
SemiminorAxis: 6356.75231414036
InverseFlattening: 298.257222101
Eccentricity: 0.0818191910428158

and additional properties:

Flattening
ThirdFlattening
MeanRadius
SurfaceArea
Volume

Any length unit supported by validatelLengthUnit can be used.

The command-line display includes four geometric properties: SemimajorAxis, SemiminorAxis,
InverseFlattening, and Eccentricity. Any pair of these properties, as long as at least one is an
axis length, is sufficient to fully define a oblate spheroid; the four properties constitute a mutually
dependent set. Parameters InverseFlattening and Eccentricity as a set are not sufficient to
define an ellipsoid because both are dimensionless shape properties. Neither of those parameters
provides a length scale, and, furthermore, are mutually dependent: ecc = sqrt((2 - f) * f).

In addition, there are five dependent properties that are not displayed, in order to reduce clutter on
the command line: Flattening, ThirdFlattening, MeanRadius, SurfaceArea, and Volume.
SurfaceArea and Volume work the same way as their referenceSphere counterparts. To continue
the preceding example, the surface area of the GRS 80 ellipsoid in square kilometers (because
LengthUnit is 'kilometer"'), is easily obtained as follows:

grs80.SurfaceArea

ans =
5.1007e+08

See the referenceEllipsoid reference page for definitions of the shape properties, permissible
values for the Name property, and information on the Code property.

World Geodetic System 1984

Due in part to widespread use of the U.S. NAVSTAR Global Positioning System (GPS), which is tied to
World Geodetic System 1984 (WGS 84), the WGS 84 reference ellipsoid is often the appropriate

Reference Spheroids

choice. For both convenience and speed (obtained by bypassing a table look-up step), it's a good idea
in this case to use the wgs84E11ipsoid function, for example,

wgs84 = wgs84Ellipsoid;
The preceding line is equivalent to:
wgs84 = referenceEllipsoid('wgs84"');

but it is easier to type and faster to run. You can also specify a length unit.
wgs84E1llipsoid(lengthUnit), is equivalent to referenceEllipsoid('wgs84',lengthUnit),
where lengthUnit is any unit value accepted by the validatelLengthUnit function.

For example, the follow two commands show that the surface area of the WGS 84 ellipsoid is a little
over 5 x 10”14 square meters:

s = wgs84Ellipsoid

S =
referenceEllipsoid with defining properties:

Code: 7030
Name: 'World Geodetic System 1984
LengthUnit: ‘'meter!’
SemimajorAxis: 6378137
SemiminorAxis: 6356752.31424518
InverseFlattening: 298.257223563
Eccentricity: 0.0818191908426215

and additional properties:

Flattening
ThirdFlattening
MeanRadius
SurfaceArea
Volume

s.SurfaceArea
ans =

5.1007e+14

Ellipsoid Vectors

An ellipsoid vector is simply a 2-by-1 double of the form: [semimajor axis eccentricity].
Unlike a spheroid object (any instance of referenceSphere, referenceEllipsoid, or
oblateSpheroid), an ellipsoid vector is not self-documenting. Ellipsoid vectors are not even self-
identifying. You have to know that a given 2-by-1 vector is indeed an ellipsoid vector to make any use
of it. This representation does not validate that semimajor axis is real and positive, for example,
you have to do such validations for yourself.

Many toolbox functions accept ellipsoid vectors as input, but such functions accept spheroid objects
as well and, for the reasons just stated, spheroid objects are recommended over ellipsoid vectors. In
case you have written a function of your own that requires an ellipsoid vector as input, or have

3-9

3 Understanding Geospatial Geometry

received such a function from someone else, note that you can easily convert any spheroid object s
into an ellipsoid vector as follows:

[s.SemimajorAxis s.Eccentricity]

This means that you can construct a spheroid object using any of the three class constructors, or the
wgs84E11lipsoid function, and hand off the result in the form of an ellipsoid vector if necessary.

oblateSpheroid Objects

oblateSpheroid is the superclass of referenceEllipsoid. An oblateSpheroid object is just
like a referenceEllipsoid object minus its Code, Name, and LengthUnit properties. In fact, the
primary role of the oblateSpheroid class is to provide the purely geometric properties and
behaviors needed by the referenceEllipsoid class.

For most purposes, you can simply ignore this distinction, and the oblateSpheroid class itself, as a
matter of internal software composition. No harm will come about, because a referenceEllipsoid
object can do anything and be used anywhere that an oblateSpheroid can.

However, you can use oblateSpheroid directly when dealing with an ellipsoid vector that lacks a
specified name or length unit. For example, compute the volume of a ellipsoid with a semimajor axis
of 2000 and eccentricity of 0.1, as shown in the following.

e = [2000 0.1];

s = oblateSpheroid;
s.SemimajorAxis = e(1l);
s.Eccentricity = e(2)
s.Volume

S =
oblateSpheroid with defining properties:
SemimajorAxis: 2000
SemiminorAxis: 1989.97487421324
InverseFlattening: 199.498743710662
Eccentricity: 0.1
and additional properties:
Flattening
ThirdFlattening
MeanRadius
SurfaceArea
Volume
ans =

3.3342e+10

Of course, since the length unit of e is unspecified, the unit of s.Volume is likewise unspecified.

3-10

Work with Reference Spheroids

Work with Reference Spheroids

Reference spheroids are needed in three main contexts: map projections, curves and areas on the
surface of a spheroid, and 3-D computations involving geodetic coordinates.

Map Projections

You can set the value of the Geoid property of a new map axes (which is actually a Spheroid
property) using any type of reference spheroid representation when constructing the map axes with
axesm. Except in the case of UTM and UPS, the default value is an ellipsoid vector representing the
unit sphere: [1 0]. It is also the default value when using the worldmap and usamap functions.

You can reset the Geoid property of an existing map axes to any type of reference spheroid
representation by using setm. For example, worldmap always sets up a projection based on the unit
sphere but you can subsequently use setm to switch to the spheroid of your choice. To set up a map
of North America for use with Geodetic Reference System 1980, for instance, follow worldmap with a
call to setm, like this:

ax = worldmap('North America');
setm(ax, 'geoid', referenceEllipsoid('grs80'))

When projecting or unprojecting data without a map axes, you can set the geoid field of a map
projection structure (mstruct) to any type of reference spheroid representation. Remember to follow
all mstruct updates with a second call to defaultm to ensure that all properties are set to
legitimate values. For example, to use the Miller projection with WGS 84 in kilometers, start with:

mstruct = defaultm('miller');
mstruct.geoid = wgs84Ellipsoid('km');
mstruct = defaultm(mstruct);

You can inspect the mstruct to ensure that you are indeed using the WGS 84 ellipsoid:
mstruct.geoid

ans =

referenceEllipsoid with defining properties:

Code: 7030
Name: 'World Geodetic System 1984
LengthUnit: 'kilometer!'
SemimajorAxis: 6378.137
SemiminorAxis: 6356.75231424518
InverseFlattening: 298.257223563
Eccentricity: 0.0818191908426215

and additional properties:
Flattening
ThirdFlattening
MeanRadius
SurfaceArea
Volume

See Map Axes Properties for definitions of the fields found in mstructs.

3-11

3 Understanding Geospatial Geometry

3-12

Curves and Areas

Another important context in which reference spheroids appear is the computation of curves and
areas on the surface of a sphere or oblate spheroid. The distance function, for example, assumes a
sphere by default, but accepts a reference spheroid as an optional input. distance is used to
compute the length of the geodesic or rhumb line arc between a pair of points with given latitudes
and longitudes. If a reference spheroid is provided through the ellipsoid argument, then the unit
used for the arc length output matches the LengthUnit property of the spheroid.

Other functions for working with curves and areas that accept reference spheroids include reckon,
scirclel, scircle2, ellipsel, trackl, track2, and areaquad, to name just a few. When using
such functions without their el1lipsoid argument, be sure to check the individual function help if
you are unsure about which reference spheroid is assumed by default.

3-D Coordinate Transformations

The third context in which reference spheroids frequently appear is the transformation of geodetic
coordinates (latitude, longitude, and height above the ellipsoid) to other coordinate systems. For
example, the geodetic2ecef function, which converts point locations from a geodetic system to a
geocentric (Earth-Centered Earth-Fixed) Cartesian system, requires a reference spheroid object (or
an ellipsoid vector) as input. And the elevation function, which converts from geodetic to a local
spherical system (azimuth, elevation, and slant range) also accepts a reference spheroid object or
ellipsoid vector, but uses the GRS 80 ellipsoid by default if none is provided.

Latitude and Longitude

Latitude and Longitude

Two angles, latitude and longitude, specify the position of a point on the surface of a planet. These
angles can be in degrees or radians; however, degrees are far more common in geographic notation.

Latitude is the angle between the plane of the equator and a line connecting the point in question to
the planet's rotational axis. There are different ways to construct such lines, corresponding to
different types of and resulting values for latitudes. Latitude is positive in the northern hemisphere,
reaching a limit of +90° at the north pole, and negative in the southern hemisphere, reaching a limit
of -90° at the south pole. Lines of constant latitude are called parallels.

Longitude is the angle at the center of the planet between two planes that align with and intersect
along the axis of rotation, perpendicular to the plane of the equator. One plane passes through the
surface point in question, and the other plane is the prime meridian (0° longitude), which is defined
by the location of the Royal Observatory in Greenwich, England. Lines of constant longitude are
called meridians. All meridians converge at the north and south poles (90°N and -90°S), and
consequently longitude is under-specified in those two places.

Longitudes typically range from -180° to +180°, but other ranges can be used, such as 0° to +360°.
Longitudes can also be specified as east of Greenwich (positive) and west of Greenwich (negative).
Adding or subtracting 360° from its longitude does not alter the position of a point. The toolbox
includes a set of functions (wrapTo180, wrapTo360, wrapToPi, and wrapTo2Pi) that convert
longitudes from one range to another. It also provides unwrapMultipart, which "unwraps" vectors
of longitudes in radians by removing the artificial discontinuities that result from forcing all values to
lie within some 360°-wide interval.

Plot Latitude and Longitude

This example shows how to plot latitude and longitude.

load coastlines

axesm('ortho', 'origin',[45 45]);
axis off;

gridm on;

framem on;

mlabel('equator')

plabel(0);
plabel('fontweight', 'bold")
plotm(coastlat, coastlon)

3-13

3 Understanding Geospatial Geometry

3-14

Relationship Between Points on Sphere

Relationship Between Points on Sphere

When using spherical coordinates, distances are expressed as angles, not lengths. As there is an
infinity of arcs that can connect two points on a sphere or spheroid, by convention the shortest one
(the great circle distance) is used to measure how close two points are. As is explained in “Distances
on the Sphere” on page 3-24, you can convert angular distance on a sphere to linear distance. This
is different from working on an ellipsoid, where one can only speak of linear distances between
points, and to compute them one must specify which reference ellipsoid to use.

In spherical or geodetic coordinates, a position is a latitude taken together with a longitude, e.g.,
(lat, Lon), which defines the horizontal coordinates of a point on the surface of a planet. When we
consider two points, e.g.,(latl,lonl) and (lat2, lon2), there are several ways in which their 2-D
spatial relationships are typically quantified:

» The azimuth (also called heading) to take to get from (latl, lonl) to (lat2,lon2)
* The back azimuth (also called heading) from (lat2, lon2) to (latl, lonl)

» The spherical distance separating (latl, lonl) from (lat2,lon2)

* The linear distance (range) separating (latl, lonl) from (lat2, lon2)

The first three are angular quantities, while the last is a length. Mapping Toolbox functions exist for
computing these quantities. For additional examples, see “Navigation” on page 10-9.

There is no single default unit of distance measurement in the toolbox. Navigation functions use
nautical miles as a default and the distance function uses degrees of arc length. For many
functions, the default unit for distances and positions is degrees, but you need to verify the default
assumptions before using any of these functions.

Note When distances are given in terms of angular units (degrees or radians), be careful to
remember that these are specified in terms of arc length. While a degree of latitude always subtends
one degree of arc length, this is only true for degrees of longitude along the equator.

3-15

3 Understanding Geospatial Geometry

Length and Distance Units

3-16

Linear measurements of lengths and distances on spheres and spheroids can use the same units they
do on the plane, such as feet, meters, miles, and kilometers. They can be used for

» Absolute positions, such as map coordinates or terrain elevations

* Dimensions, such as a planet’s radius or its semimajor and semiminor axes

» Distances between points or along routes, in 2-D or 3-D space or across terrain

Length units are needed to describe

* The dimensions of a reference sphere or ellipsoid

* The line-of-sight distance between points

+ Distances along great circle or rhumb line curves on an ellipsoid or sphere

* XY locations in a projected coordinate system or map grid

* Offsets from a map origin (false eastings and northings)

* X-Y-Zlocations in Earth-centered Earth-fixed (ECEF) or local vertical systems

* Heights of various types (terrain elevations above a geoid, an ellipsoid, or other reference surface)

Choosing Units of Length

Using the toolbox effectively depends on being consistent about units of length. Depending on the
specific function and the way you are calling it, when you specify lengths, you could be

» Explicitly specifying a radius, reference spheroid object, or ellipsoid vector

* Relying on the function itself to specify a default radius or ellipsoid

* Relying on the reference ellipsoid associated with a map projection structure (mstruct)
Whenever you are doing a computation that involves a reference sphere or ellipsoid, make sure that

the units of length you are using are the same units used to define the radius of the sphere or
semimajor axis of the ellipsoid. These considerations are discussed below.

Converting Units of Length

The following Mapping Toolbox functions convert between different units of length:

* unitsratio computes multiplicative factors for converting between 12 different units of length
as well as between degrees and radians. You can use unitsratio to perform conversions when
neither the input units of length nor the output units of length are known until run time. See
“Converting Angle Units that Vary at Run Time” on page 3-20 for more information.

o km2nm, km2sm, nm2km, nm2sm, sm2km, and sm2nm perform simple and convenient conversions
between kilometers, nautical miles, and statute miles.

These utility functions accept scalars, vectors, and matrices, or any shape. For an overview of these
functions and angle conversion functions, see “Summary: Available Distance and Angle Conversion
Functions” on page 3-25.

Compute Conversion Ratio Between Units of Length

Compute Conversion Ratio Between Units of Length

This example shows how to use the unitsratio function to create a conversion factor for many
different units of length, such as microns, millimeters, inches, international feet, and U.S. survey feet.
The unitsratio function also lets you convert angles between degrees and radians. For more
information, see unitsratio.

Create a conversion factor for inches to centimeters and convert 4 inches into centimeters.
cmPerInch = unitsratio('cm', 'inch")

cmPerInch = 2.5400

cm = cmPerInch * 4

cm = 10.1600

Create the inverse conversion factor and multiply it by the cmPerInch conversion factor.
inch = unitsratio('in', 'centimeter') * cmPerInch

inch =1

3-17

3 Understanding Geospatial Geometry

Angle Representations and Angular Units

3-18

In this section...

“Radians and Degrees” on page 3-18
“Default and Variable Angle Units” on page 3-19
“Degrees, Minutes, and Seconds” on page 3-19

“Converting Angle Units that Vary at Run Time” on page 3-20

Angular measurements have many distinct roles in geospatial data handling. For example, they are
used to specify

* Absolute positions — latitudes and longitudes
* Relative positions — azimuths, bearings, and elevation angles
» Spherical distances between point locations

Absolute positions are expressed in geodetic coordinates, which are actually angles between lines or
planes on a reference sphere or ellipsoid. Relative positions use units of angle to express the
direction between one place on the reference body from another one. Spherical distances quantify
how far two places are from one another in terms of the angle subtended along a great-circle arc. On
nonspherical reference bodies, distances are usually given in linear units such as kilometers (because
on them, arc lengths are no longer proportional to subtended angle).

Radians and Degrees

The basic unit for angles in MATLAB is the radian. For example, if the variable theta represents an
angle and you want to take its sine, you can use sin(theta) if and only if the value of theta is
expressed in radians. If a variable represents the value of an angle in degrees, then you must convert
the value to radians before taking the sine. For example,

thetalnDegrees 30;
thetaInRadians thetalnDegrees * (pi/180)
sinTheta = sin(thetaInRadians)

As shown above, you can scale degrees to radians by multiplying by pi/180. However, you should
consider using deg2rad for this purpose:

thetalnRadians = deg2rad(thetalnDegrees)

Likewise, you can perform the opposite conversion by applying the inverse factor,
thetalnDegrees = thetaInRadians * (180/pi)

or by using rad2deg,

thetaInDegrees = rad2deg(thetaInRadians)

The practice of using these functions has two significant advantages:

* It reduces the likelihood of human error (e.g., you might type "pi/108" by mistake)
» It signals clearly your intent—important to do should others ever read, modify, or debug your code

The functions rad2deg and deg2rad are very simple and efficient, and operate on vector and higher-
dimensioned input as well as scalars.

Angle Representations and Angular Units

Default and Variable Angle Units

Unlike MATLAB trigonometric functions, Mapping Toolbox functions do not always assume that
angular arguments are in units of radians.

The low-level utility functions intended as building blocks of more complex features or applications
work only in units of radians. Examples include the functions unwrapMultipart and meridianarc.

Many high-level functions, including distance, can work in either degrees or radians. Their
interpretation of angles is controlled by the 'angleunits' input argument. (angleunits can be
either 'degrees' or 'radians’, and can generally be abbreviated.) This flexibility balances
convenience and efficiency, although it means that you must take care to check what assumptions
each function is making about its inputs.

Degrees, Minutes, and Seconds

In all Mapping Toolbox computations that involve angles in degrees, floating-point numbers
(generally MATLAB class double) are used, which allows for integer and fractional values and rational
approximations to irrational numbers. However, several traditional notations, which are still in wide
use, represent angles as pairs or triplets of numbers, using minutes of arc (1/60 of degree) and
seconds of arc (1/60 of a minute):

* Degrees-minutes notation (DM), e.g., 35° 15’, equal to 35.25°

* Degrees-minutes-seconds notation (DMS) , e.g., 35° 15’ 45", equal to 35.2625°
In degrees-minutes representation, an angle is split into three separate parts:
1 Asign

2 A nonnegative, integer-valued degrees component
3 A nonnegative minutes component, real-valued and in the half-open interval [0 60)

For example, -1 radians is represented by a minus sign (-) and the numbers [57, 17.7468...]. (The
fraction in the minutes part approximates an irrational number and is rounded here for display
purposes. This subtle point is revisited in the following section.)

The toolbox includes the function degrees2dm to perform conversions of this sort. You can use this
function to export data in DM form, either for display purposes or for use by another application. For
example,

degrees2dm(rad2deg(-1))
ans =
-57.0000 17.7468

More generally, degrees2dm converts a single-columned input to a pair of columns. Rather than
storing the sign in a separate element, degrees2dm applies to the first nonzero element in each row.
Function dm2degrees converts in the opposite direction, producing a real-valued column vector of
degrees from a two-column array having an integer degrees and real-valued minutes column. Thus,

dm2degrees(degrees2dm(pi)) == pi

ans =

3-19

3 Understanding Geospatial Geometry

3-20

Similarly, in degrees-minutes-seconds representation, an angle is split into four separate parts:

A sign
A nonnegative integer-valued degrees component
A minutes component which can be any integer from 0 through 59

D W N -

A nonnegative minutes component, real-valued and in the half-open interval [0 60)

For example, -1 radians is represented by a minus sign (-) and the numbers [57, 17, 44.8062...], which
can be seen using Mapping Toolbox function degrees2dms,

degrees2dms (rad2deg(-1))
ans =
-57.0000 17.0000 44.8062

degrees2dms works like degrees2dm; it converts single-columned input to three-column form,
applying the sign to the first nonzero element in each row.

A fourth function, dms2degrees, is similar to dm2degrees and supports data import by producing a
real-valued column vector of degrees from an array with an integer-valued degrees column, an
integer-value minutes column, and a real-valued seconds column. As noted, the four functions,
degrees2dm, degrees2dms, dm2degrees, and dms2degrees, are particular about the shape of
their inputs; in this regard they are distinct from the other angle-conversion functions in the toolbox.

The toolbox makes no internal use of DM or DMS representation. The conversion functions
dm2degrees and dms2degrees are provided only as tools for data import. Likewise, degrees2dm
and degrees2dms are only useful for displaying geographic coordinates on maps, publishing
coordinate values, and for formatting data to be exported to other applications. Methods for
accomplishing this are discussed below, in “Formatting Latitudes and Longitudes” on page 3-22.

Converting Angle Units that Vary at Run Time

Functions deg2rad and rad2deg are simple to use and efficient, but how do you write code to
convert angles if you do not know ahead of time what units the data will use? The toolbox provides a
set of utility functions that help you deal with such situations at run time.

In almost all cases—even at the time you are coding—you know either the input or destination angle
units. When you do, you can use one of these functions:

 fromDegrees

+ toDegrees

+ fromRadians

+ toRadians

For example, you might wish to implement a very simple sinusoidal projection on the unit sphere, but

allow the input latitudes and longitudes to be in either degrees or radians. You can accomplish this as
follows:

function [x, y] = sinusoidal(lat, lon, angleunits)

[lLat, lon] = toRadians(angleunits, lat, lon);
x = lon .* cos(lat);
y = lat;

Angle Representations and Angular Units

Whenever angleunits turns out to be ' radians' at run time, the toRadians function has no real
work to do; all the functions in this group handle such "no-op" situations efficiently.

In the very rare instances when you must code an application or MATLAB function in which the units
of both input angles and output angles remain unknown until run time, you can still accomplish the
conversion by using the unitsratio function. For example,

fromUnits = 'radians';

toUnits = 'degrees';

piInDegrees = unitsratio(toUnits, fromUnits) * pi
piInDegrees =

180

3-21

3 Understanding Geospatial Geometry

Angles as Binary and Formatted Numbers

3-22

The terms decimal degrees and decimal minutes are often used in geospatial data handling and
navigation. The preceding section avoided using them because its focus was on the representation of
angles within MATLAB, where they can be arbitrary binary floating-point numbers.

However, once an angle in degrees is converted to a character vector, it is often helpful to describe
that value as representing the angle in decimal degrees. Thus,

num2str(rad2deg(1))

ans =
57.2958

gives a value in decimal degrees. In casual communication it is common to refer to a quantity such as
rad2deg(1) as being in decimal degrees, but strictly speaking, that is not true until it is somehow
converted to a character vector in base 10. That is, a binary floating-point number is not a decimal
number, whether it represents an angle in degrees or not. If it does represent an angle and that
number is then formatted and displayed as having a fractional part, only then is it appropriate to
speak of "decimal degrees." Likewise, the term "decimal minutes" applies when you convert a
degrees-minutes representation to a character vector, as in

num2str(degrees2dm(rad2deg(1l)))
ans =

57 17.7468

Formatting Latitudes and Longitudes

When a DM or DMS representation of an angle is expressed as a character vector, it is traditional to
tag the different components with the special characters d, m, and s, or °, ', and ".

When the angle is a latitude or longitude, a letter often designates the sign of the angle:

* N for positive latitudes

* S for negative latitudes

» E for positive longitudes
* W for negative longitudes

For example, 123 degrees, 30 minutes, 12.7 seconds west of Greenwich can be written as
123d30m12.7sW, 123° 30° 12.7" W, or -123° 30° 12.7".

Use the function str2angle to import latitude and longitude data formatted as such character
vectors. Conversely, you can format numeric degree data for display or export with angl2str, or
combine degrees2dms or degrees2dm with sprintf to customize formatting.

See “Degrees, Minutes, and Seconds” on page 3-19 for more details about DM and DMS
representation.

Convert from Linear Measurements to Spherical Measurements

Convert from Linear Measurements to Spherical Measurements

This example shows how to convert distances along the surface of the Earth (or another planet) from
units of kilometers (km), nautical miles (nm), or statute miles (sm) to spherical distances in degrees
or radians.

Convert a degree of arc length at the Earth's equator to nautical miles.

nauticalmiles = deg2nm(1)

nauticalmiles = 60.0405

Specify the radius to use in the conversion calculation. The default value assumes the Earth's radius.
nauticalmiles = deg2nm(1l,almanac('moon', 'radius'))

nauticalmiles = 30.3338

Return the distance in statute miles rather than nautical miles.

deg2sm(1)

ans = 69.0932

3-23

3 Understanding Geospatial Geometry

Distances on the Sphere

3-24

In this section...

“Arc Length as an Angle in the distance and reckon Functions” on page 3-25

“Summary: Available Distance and Angle Conversion Functions” on page 3-25

Many geospatial domains (seismology, for example) describe distances between points on the surface
of the earth as angles. This is simply the result of dividing the length of the shortest great-circle arc
connecting a pair points by the radius of the Earth (or whatever planet one is measuring). This gives
the angle (in radians) subtended by rays from each point that join at the center of the Earth (or other
planet). This is sometimes called a "spherical distance." You can thus call the resulting number a
"distance in radians." You could also call the same number a "distance in earth radii." When you work
with transformations of geodata, keep this in mind.

You can easily convert that angle from radians to degrees. For example, you can call distance to
compute the distance in meters from London to Kuala Lumpur:

latL = 51.5188;
lonL = -0.1300;
latK = 2.9519;
lonK = 101.8200;

earthRadiusInMeters = 6371000;
distInMeters = distance(latL, lonL,...
latK, lonK, earthRadiusInMeters)

distInMeters =
1.0571e+007

Then convert the result to an angle in radians:

distInRadians = distInMeters / earthRadiusInMeters

distInRadians
1.6593

Finally, convert to an angle in degrees:
distInDegrees = rad2deg(distInRadians)

distInDegrees
95.0692

This really only makes sense and produces accurate results when we approximate the Earth (or
planet) as a sphere. On an ellipsoid, one can only describe the distance along a geodesic curve using
a unit of length.

Mapping Toolbox software includes a set of six functions to conveniently convert distances along the
surface of the Earth (or another planet) from units of kilometers (km), nautical miles (nm), or statute
miles (sm) to spherical distances in degrees (deg) or radians (rad):

* km2deg, nm2deg, and sm2deg go from length to angle in degrees
* km2rad, nm2rad, and sm2rad go from length to angle in radians

You could replace the final two steps in the preceding example with

Distances on the Sphere

distInKilometers = distInMeters/1000;
earthRadiusInKm = 6371;
km2deg(distInKilometers, earthRadiusInKm)

ans =
95.0692

Because these conversion can be reversed, the toolbox includes another six convenience functions
that convert an angle subtended at the center of a sphere, in degrees or radians, to a great-circle
distance along the surface of that sphere:

* deg2km, deg2nm, and deg2sm go from angle in degrees to length

* rad2km, rad2nm, and rad2sm go from angle in radians to length

When given a single input argument, all 12 functions assume a radius of 6,371,000 meters (6371 km,
3440.065 nm, or 3958.748 sm), which is widely-used as an estimate of the average radius of the

Earth. An optional second parameter can be used to specify a planetary radius (in output length
units) or the name of an object in the Solar System.

Arc Length as an Angle in the distance and reckon Functions

Certain syntaxes of the distance and reckon functions use angles to denote distances in the way
described above. In the following statements, the range argument, arclen, is in degrees (along with
all the other inputs and outputs):

[arclen, az] = distance(latl, lonl, lat2, lon2)
[latout, lonout] = reckon(lat, lon, arclen, az)

By adding the optional units argument, you can use radians instead:

[arclen, az] = distance(latl, lonl, lat2, lon2, 'radians')
[latout, lonout] = reckon(lat, lon, arclen, az, 'radians')

If an ellipsoid argument is provided, however, then arclen has units of length, and they match
the units of the semimajor axis length of the reference ellipsoid. If you specify ellipsoid = [1 0]
(the unit sphere), arclen can be considered to be either an angle in radians or a length defined in
units of earth radii. It has the same value either way. Thus, in the following computation, latl, lonl,
lat2, lon2, and az are in degrees, but arclen will appear to be in radians:

[arclen, az] = distance(latl, lonl, lat2, lon2, [1 0])

Summary: Available Distance and Angle Conversion Functions
The following table shows the Mapping Toolbox unit-to-unit distance and arc conversion functions.

They all accept scalar, vector, and higher-dimension inputs. The first two columns and rows involve
angle units, the last three involve distance units:

3-25

3 Understanding Geospatial Geometry

Functions that Directly Convert Angles, Lengths, and Spherical Distances

Convert To Degrees To Radians To Kilometers |To Nautical To Statute Miles
Miles
Degrees toDegrees deg2rad deg2km deg2nm deg2sm
fromDegrees toRadians
fromDegrees
Radians rad2deg toRadians rad2km rad2nm rad2sm
toDegrees fromRadians
fromRadians
Kilometers km2deg km2rad km2nm km2sm
Nautical Miles |nm2deg nm2rad nm2km nm2sm
Statute Miles sm2deg sm2rad sm2km sm2nm

The angle conversion functions along the major diagonal, toDegrees, toRadians, fromDegrees,
and fromRadians, can have no-op results. They are intended for use in applications that have no
prior knowledge of what angle units might be input or desired as output.

3-26

Great Circles

Great Circles

In plane geometry, lines have two important characteristics. A line represents the shortest path
between two points, and the slope of such a line is constant. When describing lines on the surface of a
spheroid, however, only one of these characteristics can be guaranteed at a time.

A great circle is the shortest path between two points along the surface of a sphere. The precise
definition of a great circle is the intersection of the surface with a plane passing through the center of
the planet. Thus, great circles always bisect the sphere. The equator and all meridians are great
circles. All great circles other than these do not have a constant azimuth, the spherical analog of
slope; they cross successive meridians at different angles. That great circles are the shortest path
between points is not always apparent from maps, because very few map projections (the Gnomonic
is one of them) represent arbitrary great circles as straight lines.

Because they define paths that minimize distance between two (or three) points, great circles are
examples of geodesics. In general, a geodesic is the straightest possible path constrained to lie on a
curved surface, independent of the choice of a coordinate system. The term comes from the Greek
geo-, earth, plus daiesthai, to divide, which is also the root word of geodesy, the science of describing
the size and shape of the Earth mathematically.

For more information, see “Generate Vector Data for Points Along Great Circle or Rhumb Line
Tracks” on page 3-32.

3-27

3 Understanding Geospatial Geometry

Rhumb Lines

A rhumb line is a curve that crosses each meridian at the same angle. This curve is also referred to as
a loxodrome (from the Greek loxos, slanted, and drome, path). Although a great circle is a shortest
path, it is difficult to navigate because your bearing (or azimuth) continuously changes as you
proceed. Following a rhumb line covers more distance than following a geodesic, but it is easier to
navigate.

All parallels, including the equator, are rhumb lines, since they cross all meridians at 90°.
Additionally, all meridians are rhumb lines, in addition to being great circles. A rhumb line always
spirals toward one of the poles, unless its azimuth is true east, west, north, or south, in which case
the rhumb line closes on itself to form a parallel of latitude (small circle) or a pair of antipodal
meridians.

The following figure depicts a great circle and one possible rhumb line connecting two distant
locations. For information about how to calculate points along great circles and rhumb lines, see
“Generate Vector Data for Points Along Great Circle or Rhumb Line Tracks” on page 3-32.

/7 Great t':l_rclé”'-._ .
I'I/: o {Eh_ﬁl"tﬁ.s.t -dl_stanﬂe} >

| -Rhumb Line’
- _(constant azimuth) .

3-28

Azimuth

Azimuth

Azimuth is the angle a line makes with a meridian, measured clockwise from north. Thus the azimuth
of due north is 0°, due east is 90°, due south is 180°, and due west is 270°. You can instruct several
Mapping Toolbox functions to compute azimuths for any pair of point locations, either along rhumb
lines or along great circles. These will have different results except along cardinal directions. For
great circles, the result is the azimuth at the initial point of the pair defining a great circle path. This
is because great circle azimuths other than 0°, 90°, 180°, and 270° do not remain constant. Azimuths
for rhumb lines are constant along their entire path (by definition).

For rhumb lines, computing an azimuth backward (from the second point to the first) yields the
complement of the forward azimuth ((Az + 180°) mod 360°). For great circles, the back azimuth is
generally not the complement, and the difference depends on the distance between the two points.

In addition to forward and back azimuths, Mapping Toolbox functions can compute locations of points
a given distance and azimuth from a reference point, and can calculate tracks to connect waypoints,
along either great circles or rhumb lines on a sphere or ellipsoid.

For more an example that uses azimuths, see “Reckoning” on page 3-34

Calculate Azimuth

When the azimuth is calculated from one point to another using the toolbox, the result depends upon
whether you want a great circle or a rhumb line azimuth. For great circles, the result is the azimuth
at the starting point of the connecting great circle path. In general, the azimuth along a great circle is
not constant. For rhumb lines, the resulting azimuth is constant along the entire path.

Azimuths, or bearings, are returned in the same angular units as the input latitudes and longitudes.
The default path type is the shorter great circle, and the default angular units are degrees. In the
example, the great circle azimuth from the first point to the second is

azgc = azimuth(-15,0,60,150)

azgc
19.0391

For the rhumb line, the constant azimuth is
azrh = azimuth('rh',-15,0,60,150)

azrh =
58.8595

One feature of rhumb lines is that the inverse azimuth, from the second point to the first, is the
complement of the forward azimuth and can be calculated by simply adding 180° to the forward
value:

inverserh = azimuth('rh',60,150,-15,0)

inverserh =
238.8595

difference = inverserh-azrh

3-29

3 Understanding Geospatial Geometry

difference =
180

This is not true, in general, of great circles:
inversegc = azimuth('gc',60,150,-15,0)

inversegc =
320.9353

difference = inversegc-azgc

difference
301.8962

The azimuths associated with cardinal and intercardinal compass directions are the following:

North 0° or 360°
Northeast 45°

East 90°
Southeast 135°
South 180°
Southwest 225°

West 270°
Northwest 315°

3-30

Elevation

Elevation

Elevation is the angle above the local horizontal of one point relative to the other. To compute the
elevation angle of a second point as viewed from the first, provide the position and altitude of the
points. The default units are degrees for latitudes and longitudes and meters for altitudes, but you
can specify other units for each.

What are the elevation, slant range, and azimuth of a point 10 kilometers east and 10 kilometers
above a surface point?

[azim, elevang, slantrange] = geodetic2aer(...
0, km2deg(10), 10000, O, 0, 0, referenceEllipsoid('grs 80'))

azim =

90

elevang =

44,9005

slantrange =
1.4156e+04

On an ellipsoid, azimuths returned from geodetic2aer generally will differ from those returned by
azimuth and distance.

See Also
geodetic2aer

3-31

3 Understanding Geospatial Geometry

Generate Vector Data for Points Along Great Circle or Rhumb
Line Tracks

3-32

You can generate vector data corresponding to points along great circle or rhumb line tracks using
the trackl and track?2 functions. If you have a point on the track and an azimuth at that point, use
trackl. If you have two points on the track, use track2. For example, to get the great circle path
starting at (31°S, 90°E) with an azimuth of 45° with a length of 12°, use trackl:

[latgc,longc] = trackl('gc',-31,90,45,12);
For the great circle from (31°S, 90°E) to (23°S, 110°E), use track2:

[latgc,longc] = track2('gc',-31,90,-23,110);

tracki track2
Output points Final point
; ’
'"“iﬂ'i'iii/ Initial point .- |
Azimuth and range o Output points

The trackl function also allows you to specify range endpoints. For example, if you want points
along a rhumb line starting 5° away from the initial point and ending 13° away, at an azimuth of 55°,
simply specify the range limits:

[Latrh,lonrh] = trackl('rh',-31,90,55,[5 13]);

track1 with range limits

o -
ougulte
Azimuth
Initial /
point Range1 Range?2

When no range is provided for trackl, the returned points represent a complete track. For great
circles, a complete track is 360°, encircling the planet and returning to the initial point. For rhumb
lines, the complete track terminates at the poles, unless the azimuth is 90° or 270°, in which case the
complete track is a parallel that returns to the initial point.

For calculated tracks, 100 points are returned unless otherwise specified. You can calculate several
tracks at one time by providing vector inputs. For more information, see the trackl and track?2

Generate Vector Data for Points Along Great Circle or Rhumb Line Tracks

reference pages. For more information about rhumb lines, see “Rhumb Lines” on page 3-28. For more
information about great circles, see “Great Circles” on page 3-27. More vector path calculations are
described in “Navigation” on page 10-9.

3-33

3 Understanding Geospatial Geometry

Reckoning

3-34

A common problem in geographic applications is the determination of a destination given a starting
point, an initial azimuth, and a distance. In the toolbox, this process is called reckoning. A new
position can be reckoned in a great circle or a rhumb line sense (great circle or rhumb line track).

As an example, an airplane takes off from La Guardia Airport in New York (40.75°N, 73.9°W) and
follows a northwestern rhumb line flight path at 200 knots (nautical miles per hour). Where would it
be after 1 hour?

[rhlat,rhlong] = reckon('rh',40.75,-73.9,nm2deg(200),315)

rhlat =
43.1054

rhlong =
-77.0665

Notice that the distance, 200 nautical miles, must be converted to degrees of arc length with the
nm2deg conversion function to match the latitude and longitude inputs. If the airplane had a flight
computer that allowed it to follow an exact great circle path, what would the aircraft's new location
be?

[gclat,gclong] = reckon('gc',40.75,-73.9,nm2deg(200),315)

gclat =
43.0615

gclong =
-77.1238

Notice also that for short distances at these latitudes, the result hardly differs between great circle
and rhumb line. The two destination points are less than 4 nautical miles apart. Incidentally, after 1
hour, the airplane would be just north of New York's Finger Lakes.

See Also

More About

. “Rhumb Lines” on page 3-28
. “Great Circles” on page 3-27

Calculate Distance Between Two Points in Geographic Space

Calculate Distance Between Two Points in Geographic Space

When Mapping Toolbox functions calculate the distance between two points in geographic space, the
result depends upon whether you specify great circle or rhumb line distance. The distance function
returns the appropriate distance between two points as an angular arc length, employing the same
angular units as the input latitudes and longitudes. The default path type is the shorter great circle,
and the default angular units are degrees. The previous figure shows two points at (15°S, 0°) and
(60°N, 150°E). The great circle distance between them, in degrees of arc, is as follows:

distgc distance(-15,0,60,150)

distgc =
129.9712

The rhumb line distance is greater:
distrh = distance('rh',-15,0,60,150)

distrh =
145.0288

To determine how much longer the rhumb line path is in, say, kilometers, you can use a distance
conversion function on the difference:

kmdifference = deg2km(distrh-distgc)
kmdifference =
1.6744e+03

Several distance conversion functions are available in the toolbox, supporting degrees, radians,
kilometers, meters, statute miles, nautical miles, and feet. Converting distances between angular arc
length units and surface length units requires the radius of a planet or spheroid. By default, the
radius of the Earth is used.

3-35

3 Understanding Geospatial Geometry

Small Circles

3-36

In addition to rhumb lines and great circles, one other smooth curve is significant in geography, the
small circle. Parallels of latitude are all small circles (which also happen to be rhumb lines). The
general definition of a small circle is the intersection of a plane with the surface of a sphere. On
ellipsoids, this only yields true small circles when the defining plane is parallel to the equator.
Mapping Toolbox software extends this definition to include planes passing through the center of the
planet, so the set of all small circles includes all great circles as limiting cases. This usage is not
universal.

Small circles are most easily defined by distance from a point. All points 45 nm (nautical miles)
distant from (45°N,60°E) would be the description of one small circle. If degrees of arc length are
used as a distance measurement, then (on a sphere) a great circle is the set of all points 90° distant
from a particular center point.

For true small circles, the distance must be defined in a great circle sense, the shortest distance
between two points on the surface of a sphere. However, Mapping Toolbox functions also can
calculate loxodromic small circles, for which distances are measured in a rhumb line sense (along
lines of constant azimuth). Do not confuse such figures with true small circles.

To learn how to compute small circles, see “Calculate Vector Data for Points Along a Small Circle” on
page 3-37.

Calculate Vector Data for Points Along a Small Circle

Calculate Vector Data for Points Along a Small Circle

You can calculate vector data for points along a small circle in two ways. If you have a center point
and a known radius, use scirclel; if you have a center point and a single point along the
circumference of the small circle, use scircle?2. For example, to get data points describing the small
circle at 10° distance from (67°N, 135°W), use the following:

[latc,lonc] = scirclel(67,-135,10);

To get the small circle centered at the same point that passes through the point (55°N,135°W), use
scircle2:

[latc,lonc] = scircle2(67,-135,55,-135);

scircled scircle2
e "7 Le=" 7T~ Perimeter
* ’ & point
* e s .
S Radius ' S .
1 i
d 11 ! 1
! L] !]
' by ® '
. I . I
' Center point . v Center point p
' F ' f
L] .
L3 ,J * "
% s '\ *
R R
Cutput points

The scirclel function also allows you to calculate points along a specific arc of the small circle. For
example, if you want to know the points 10° in distance and between 30° and 120° in azimuth from
(67°N,135°W), simply provide arc limits:

[latc,lonc] = scirclel(67,-154,10,[30 120]);

scircle1 with arc limits
Azimuth1 = 30°

Points outside
arc limits are

not returned. arc limits

are returned.

Azimuth2 = 120°

When an entire small circle is calculated, the data is in polygon format. For all calculated small
circles, 100 points are returned unless otherwise specified. You can calculate several small circles at
once by providing vector inputs. For more information, see the scirclel and scircle2 function
reference pages. For more information about small circles, see “Small Circles” on page 3-36.

3-37

3 Understanding Geospatial Geometry

Generate Small Circles

Generate a true small circle, a loxodromic small circle, and the limiting case of a great circle.

Display the map axes with an orthographic projection.

figure;

axesm ortho; gridm on; framem on

setm(gca, 'Origin', [45 30 30], 'MLineLimit', [75 -75],
'MLineException', [0 90 180 270])

Define three center points on the sphere.

A = [45 90];
B = [0 60];
C = [0 30];

Create the three small circles around the three center points. The first, sca, is a true small circle.
The second, scb, is a loxodromic small circle. The third, scc, is a great circle as the limiting case of a
small circle.

sca = scirclel(A(1l), A(2), 20);
scb = scircle2(B(1), B(2), 0, 150);
scc = scirclel('rh',C(1), C(2), 20);

Display the points and their corresponding small circles with different colors. Label the small circles.

plotm(A(1), A(2),'ro', 'MarkerFaceColor','r")
plotm(B(1), B(2),'bo', 'MarkerFaceColor','b")
plotm(C(1), C(2),'mo', 'MarkerFaceColor', 'm")

plotm(sca(:,1), sca(:,2),'r")
plotm(scb(:,1), scb(:,2),'b--")
plotm(scc(:,1), scc(:,2),'m")

textm (50,0, 'Normal Small Circle')

textm (46,6, '(20\c1rc from point A)')
textm(4.5,-10, 'Loxodromic Small Circle')
textm(4, -6 (20\circ from point C')
textm(-2,-4,'in rhumb line sense)')
textm(40 60 'Great Circle as Small Circle')
textm(45,-50, ' (90\circ from point B)"')

3-38

Generate Small Circles

Lﬂqurﬂmm Sm,all Cm:le .
(207 from point &

m rh umh Ilne sense}r

Gr&at Circle as SmaH Clrr:.le
(91} frem p-omt E)

“_-Normal-Small Circle ~__

See Also
scirclel | scircle2

More About

“Small Circles” on page 3-36

3-39

3 Understanding Geospatial Geometry

Measure Area of Spherical Quadrangles

3-40

In solid geometry, the area of a spherical quadrangle can be exactly calculated. A spherical
quadrangle is the intersection of a lune and a zone. In geographic terms, a quadrangle is defined as a
region bounded by parallels north and south, and meridians east and west.

Quadrangle

In the pictured example, a quadrangle is formed by the intersection of a zone, which is the region
bounded by 15°N and 45°N latitudes, and a lune, which is the region bounded by 0° and 30°E
longitude. Under the spherical planet assumption, the fraction of the entire spherical surface area
inscribed in the quadrangle can be calculated:

areaquad(15,0,45,30)

area

area
0.0187

That is, less than 2% of the planet's surface area is in this quadrangle. To get an absolute figure in,
for example, square miles, you must provide the appropriate spherical radius. The radius of the Earth
is about 3958.9 miles:

area areaquad(15,0,45,30,3958.9)

area

w

.6788e+06

The surface area within this quadrangle is over 3.6 million square miles for a spherical Earth.

Plotting a 3-D Dome as a Mesh Over a Globe

Plotting a 3-D Dome as a Mesh Over a Globe

This example shows how to start with a 3-D feature in a system of local east-north-up (ENU)
coordinates, then transform and combine it with a globe display in Earth-Centered, Earth-Fixed
(ECEF) coordinates.

Step 1: Set Defining Parameters

Use Geodetic Reference System 1980 (GRS80) and work in units of kilometers. Place the origin of the
local system near Washington, DC, USA.

grs80 = referenceEllipsoid('grs80', 'km"');
domeRadius = 3000; % km

domeLat = 39; % degrees
domeLon = -77; % degrees
domeAlt = 0; % km

Step 2: Construct the Dome in Local East-North-Up Coordinates

The local ENU system is defined with respect to a geodetic reference point, specified in this case by
(domeLat, domelLon, and domeAlt). It is a 3-D Cartesian system in which the positive x-axis is
directed to the east, the positive y-axis is directed to the north, and the z-axis is normal to the
reference ellipsoid and directed upward.

In this example, the 3-D feature is a hemisphere in the z >= 0 half-space with a radius of 3000
kilometers. This hemisphere could enclose, hypothetically, the volume of space within range of a
idealized radar system having uniform coverage from the horizon to the zenith, in all azimuths.
Volumes of space such as this, when representing zones of effective surveillance coverage, are
sometimes known informally as "radar domes."

A quick way to construct coordinate arrays outlining a closed hemispheric dome is to start with a unit
sphere, scale up the radius, and collapse the lower hemisphere. It's easier to visualize if you make it
semitransparent -- setting the FaceAlpha to 0.5 in this case.

[Xx,y,z] = sphere(20);

XEast = domeRadius * x;
yNorth = domeRadius * y;
zUp = domeRadius * z;

zUp(zUp < 0) = 0;

figure('Renderer', 'opengl')

surf(xEast, yNorth, zUp, 'FaceColor', 'yellow', 'FaceAlpha',0.5)
axis equal

3-41

3 Understanding Geospatial Geometry

3-42

3000 -

2000 &

1000 4

3000

2000
3000

1000 2000
0 1000

-1000 0
2000 -1000
-3000 -3000

-2000

Step 3: Convert Dome to the Earth-Centered Earth-Fixed (ECEF) System

Use the enu2ecef function to convert the dome from local ENU to an ECEF system, based on the
GRS 80 reference ellipsoid. It applies a 3-D translation and rotation. Notice how the hemisphere
becomes tilted and how its center moves thousands of kilometers from the origin.

[XECEF, yECEF, zECEF] ...

= enu2ecef(xEast, yNorth, zUp, domelLat, domeLon, domeAlt, grs80);
surf(xECEF, yECEF, zECEF, 'FaceColor', 'yellow', 'FaceAlpha',0.5)
axis equal

Plotting a 3-D Dome as a Mesh Over a Globe

6000 .
5000 - Ji=ivary
11T ik"& ol
4000 + [AR e
\“ SO TR
3000 - WX S
b ' N

4000

Step 4: Construct a Globe Display

Construct a basic globe display using axesm and globe.

figure('Renderer', 'opengl')

ax = axesm('globe', 'Geoid',grs80, 'Grid','on', ...
'GLineWidth',1, 'GLineStyle','-", ...
'Gecolor',[0.9 0.9 0.1], 'Galtitude',100);

ax.Position = [0 0 1 1];

axis equal off

view(3)

3-43

3 Understanding Geospatial Geometry

3-44

Step 5: Add Various Global Map Data

Add low-resolution global topography, coastlines, and rivers to the globe.

load topo60Oc
geoshow(topo60c, topo60OcR, 'DisplayType', 'texturemap"')
demcmap (topo60c)

land = shaperead('landareas', 'UseGeoCoords"',true);
plotm([land.Lat], [land.Lon], 'Color', 'black")

rivers = shaperead('worldrivers', 'UseGeoCoords',true);
plotm([rivers.Lat],[rivers.Lon], 'Color', 'blue')

Plotting a 3-D Dome as a Mesh Over a Globe

Step 6: Add the Dome to the Globe Display

Add the ECEF version of dome to the globe axes as a semitransparent mesh.

surf(xECEF, yECEF, zECEF, 'FaceColor', 'yellow', 'FaceAlpha',0.5)

3-45

3 Understanding Geospatial Geometry

You can view the dome and globe from different angles by interactively rotating the axes in the
MATLAB® figure.

Credit

Thanks to Edward]. Mayhew, Jr. for providing technical background on "radar domes" and for
bringing to our attention the problem of visualizing them with the Mapping Toolbox™.

3-46

Choose a 3-D Coordinate System

Choose a 3-D Coordinate System

Coordinate systems represent position on the Earth using coordinates. Mapping Toolbox functions
transform coordinates between Earth-centered Earth-fixed (ECEF), geodetic, east-north-up (ENU),
north-east-down (NED), and azimuth-elevation-range (AER) systems.

Global systems such as ECEF and geodetic systems describe the position of an object using a triplet
of coordinates. Local systems such as ENU, NED, and AER systems require two triplets of
coordinates: one triplet describes the location of the origin, and the other triplet describes the
location of the object with respect to the origin.

When you work with 3-D coordinate systems, you must specify an ellipsoid model that approximates
the shape of the Earth. For more information about ellipsoid models, see “Reference Spheroids” on
page 3-4. All of the sample coordinates on this page use the World Geodetic System of 1984 (WGS84).

Earth-Centered Earth-Fixed Coordinates

An Earth-centered Earth-fixed (ECEF) system uses the Cartesian coordinates (X,Y,Z) to represent
position relative to the center of the reference ellipsoid. The distance between the center of the
ellipsoid and the center of the Earth depends on the reference ellipsoid.

* The positive X-axis intersects the surface of the ellipsoid at 0° latitude and 0° longitude, where the
equator meets the prime meridian.

* The positive Y-axis intersects the surface of the ellipsoid at 0° latitude and 90° longitude.

* The positive Z-axis intersects the surface of the ellipsoid at 90° latitude and 0° longitude, the
North Pole.

For example, the ECEF coordinates of Parc des Buttes-Chaumont are (4198945 m, 174747 m,
4781887 m).

3-47

3 Understanding Geospatial Geometry

3-48

Geodetic Coordinates

A geodetic system uses the coordinates (lat,lon,h) to represent position relative to a reference
ellipsoid.

lat, the latitude, originates at the equator. More specifically, the latitude of a point is the angle a
normal to the ellipsoid at that point makes with the equatorial plane, which contains the center
and equator of the ellipsoid. An angle of latitude is within the range [-90°, 90°]. Positive latitudes
correspond to north and negative latitudes correspond to south.

P

equatorial plane | lat

Ion, the longitude, originates at the prime meridian. More specifically, the longitude of a point is
the angle that a plane containing the ellipsoid center and the meridian containing that point
makes with the plane containing the ellipsoid center and prime meridian. Positive longitudes are
measured in a counterclockwise direction from a vantage point above the North Pole. Typically,
longitude is within the range [-180°, 180°] or [0°, 360°].

prime
meridian

h, the ellipsoidal height, is measured along a normal of the reference spheroid. Coordinate
transformation functions such as geodetic2ecef require you to specify h in the same units as
the reference ellipsoid. You can change the units of the reference ellipsoid using the LengthUnit
property. Terrain models typically supply data using orthometric height rather than ellipsoidal
height. For information about calculating ellipsoidal height from orthometric height, see “Find
Ellipsoidal Height from Orthometric and Geoid Height” on page 3-57.

Choose a 3-D Coordinate System

For example, the geodetic coordinates of Parc des Buttes-Chaumont are (48.8800°, 2.3831°, 124.5089
m).

East-North-Up Coordinates

An east-north-up (ENU) system uses the Cartesian coordinates (xEast,yNorth,zUp) to represent
position relative to a local origin. The local origin is described by the geodetic coordinates
(Iat0,lon0,h0). Note that the origin does not necessarily lie on the surface of the ellipsoid.

* The positive xEast-axis points east along the parallel of latitude containing lat0.

» The positive yNorth-axis points north along the meridian of longitude containing lon0.

* The positive zUp-axis points upward along the ellipsoid normal.

zUp

I

\ (lato, lon0) >

e em=TT

For example, Montmartre has geodetic coordinates (48.8862°, 2.3343°, 174.5217 m). The ENU

coordinates of Parc des Buttes-Chaumont with respect to Montmartre are (3579.4232 m, -688.3514
m, -51.0524 m).

North-East-Down Coordinates

A north-east-down (NED) system uses the Cartesian coordinates (xNorth,yEast,zDown) to represent
position relative to a local origin. The local origin is described by the geodetic coordinates
(1at0,lon0,h0). Typically, the local origin of an NED system is above the surface of the Earth.

3-49

3 Understanding Geospatial Geometry

3-50

* The positive xNorth-axis points north along the meridian of longitude containing lon0.
» The positive yEast-axis points east along the parallel of latitude containing lat0.
* The positive zDown-axis points downward along the ellipsoid normal.

xNorth yEast

"\ (lat0,lon0) >
b 0 -

e

An NED coordinate system is commonly used to specify location relative to a moving aircraft. In this

application, the origin and axes of an NED system change continuously. Note that the coordinates are
not fixed to the frame of the aircraft.

For example, an aircraft flying into Charles de Gaulle airport has geodetic coordinates (48.9978°,
2.7594°, 699.8683 m). The NED coordinates of the airport with respect to the plane are (1645.8313
m, -15677.1868 m, 555.8221 m).

Azimuth-Elevation-Range Coordinates

An azimuth-elevation-range (AER) system uses the spherical coordinates (az,elev,range) to represent
position relative to a local origin. The local origin is described by the geodetic coordinates
(Iat0,lon0,h0). Azimuth, elevation, and slant range are dependent on a local Cartesian system, for
example, an ENU system.

* az, the azimuth, is the clockwise angle in the xEast-yNorth plane from the positive yNorth-axis to
the projection of the object into the plane.

* elev, the elevation, is the angle from the xEast-yNorth plane to the object.

* range, the slant range, is the Euclidean distance between the object and the local origin.

_'\.: —- '1-\: . N I hg
v (latd,lon0)
4 v =T

Choose a 3-D Coordinate System

For example, a lidar sensor at the Charles de Gaulle airport has geodetic coordinates (48.0124°,
2.5451°, 163.4885 m). The AER coordinates of an airplane with respect to the sensor are (95.8314°,
1.8781°, 15773.1381 m).

Tips

If you are transforming coordinates between ENU, NED, and AER systems with the same origin, then
you do not need to specify a reference ellipsoid or the coordinates of the origin.

See Also
aer2ned | ecef2enu | enu2aer | geodetic2aer | geodetic2ecef | ned2geodetic

More About
. “Reference Spheroids” on page 3-4
References

[1] Guowei, C., B.M. Cheh, and T. H. Lee. Unmanned Rotorcraft Systems. London: Springer-Verlag
London Limited: 2011.

[2] Van Sickle, J. Basic GIS Coordinates. Boca Raton, FL: CRC Press LLC, 2004.

3-51

3 Understanding Geospatial Geometry

Vectors in 3-D Coordinate Systems

Vectors represent quantities such as velocity and acceleration. Mapping Toolbox functions transform
vector components between Earth-centered Earth-fixed (ECEF) and east-north-up (ENU) or north-
east-down (NED) systems. For more information about ECEF, ENU, and NED coordinate systems, see
“Choose a 3-D Coordinate System” on page 3-47.

Unlike coordinates that measure position, vector components in a Cartesian system do not depend on
a position in space. Therefore, when you transform a vector from one system to another, only the
components of the vector change. The magnitude of the vector remains the same.

For example, this image shows a 2-D vector transformation from an x-y system to a u-v system. The
vector has components x = 2 and y = 1 in the x-y system, and components u = 1.30 and v = 1.82 in
the u-v system. The components of the vector are different, but in each system the magnitude of the
vector is 2.24 units.

This image shows a coordinate transformation from a global ECEF system to a local ENU system
using ecef2enu. The position vectors start at the origin of each system and end at point P.
Therefore, the transformation changes the magnitude of the position vector.

3-52

Vectors in 3-D Coordinate Systems

This image shows a vector transformation from a global ECEF system to a local ENU system using
ecef2enuv. The vector r does not depend on a position. Therefore, the transformation changes the
components of the vector, but the magnitude of the vector is the same.

Tips

Unlike coordinate transformation functions such as ecef2enu, vector transformation functions such
as ecef2enuv do not require you to specify a reference spheroid or the ellipsoidal height of the local
origin. The geodetic latitude and longitude of the local origin is sufficient to define the orientation of
the uEast, vNorth, and wUp axes.

See Also
ecef2enuv | ecef2nedv | enu2ecefv | ned2ecefv

3-53

3 Understanding Geospatial Geometry

More About
. “Choose a 3-D Coordinate System” on page 3-47

3-54

Find Ellipsoidal Height from Orthometric Height

Find Ellipsoidal Height from Orthometric Height

The height of an object may refer to its ellipsoidal height or its orthometric height. Mapping Toolbox
functions such as geodetic2enu require the input argument ellipsoidal height, but data often
quantifies orthometric height instead. You can convert orthometric height to ellipsoidal height by
using a geoid model.

Ellipsoidal height, called h, is height measured along a normal of a reference ellipsoid. For more
information about reference ellipsoids, see “Reference Spheroids” on page 3-4. This image shows a
positive ellipsoidal height, h,, and a negative ellipsoidal height, h,,.

Ellipsoid

lerrain /

Most terrain models provide data using orthometric height instead of ellipsoidal height. Orthometric
height, called H, is height above the geoid.

The geoid models the average sea level of the Earth without effects such as weather, tides, and land.
A geoid model is created by measuring variations in the Earth's gravitational field, so it has a
smoothly undulating shape. Orthometric height is measured relative to the geoid.

Geoid height, called N, is the height of the geoid measured along a normal of a reference ellipsoid.
For example, geoid height values from the Earth Gravitational Model of 1996 (EGM96) are referenced
to the ellipsoid defined by the World Geodetic System of 1984 (WGS84). Below is an illustration of the
geoid from EGM96, with geoid heights in meters.

3-55

3 Understanding Geospatial Geometry

<100 -BO =60 =40 =20 0 20 40 &0 B0
meters

To find ellipsoidal height at a specified latitude and longitude, add the orthometric height and geoid
height: h = H + N. You can find the height of the geoid from EGM96 at specified latitudes and
longitudes using the egm96geoid function.

The equation h = H + N is an approximation because the direction along which a geoid height is
measured is not necessarily the same as the direction along which an orthometric height is measured.
However, the approximation is suitable for most practical purposes.

The following image illustrates the relationship between ellipsoidal height, orthometric height, and
the geoid. The values h;, H;, and N; demonstrate the relationship for an airborne object, while h,, H,,
and N, demonstrate the relationship for an object on land.

Geoid /

Ellipsoid

Terrain

3-56

Find Ellipsoidal Height from Orthometric Height

Find Ellipsoidal Height from Orthometric and Geoid Height

Find the ellipsoidal height of the summit of Mount Everest, using its orthometric height and a geoid
model.

Specify the latitude and longitude of the summit in degrees. Specify the orthometric height in meters.

lat = 27.988056;
lon = 86.925278;
H = 8848;

Find the height of the geoid at the location specified by lat and lon using egm96geoid.
N = egm96geoid(lat, lon);

Calculate the ellipsoidal height of the summit.

h=H+N
h = 8.8193e+03
References

[1] NOAA. "What is the geoid?" National Ocean Service website. https://oceanservice.noaa.gov/facts/
geoid.html, 06/25/18.

See Also
egm96geoid | geodetic2enu

More About

. “Reference Spheroids” on page 3-4

3-57

https://oceanservice.noaa.gov/facts/geoid.html
https://oceanservice.noaa.gov/facts/geoid.html

Creating and Viewing Maps

“Introduction to Mapping Graphics” on page 4-2

“Continent, Country, Region, and State Maps Made Easy” on page 4-3
“Set Background Colors for Map Displays” on page 4-4

“Create Simple Maps Using worldmap” on page 4-5

“Create Simple Maps Using usamap” on page 4-7

“The Map Axes” on page 4-11

“Access and Change Map Axes Properties” on page 4-13

“Map Limit Properties” on page 4-19

“Switch Between Projections” on page 4-34

“Reprojection of Graphics Objects” on page 4-40

“Create Maps Using geoshow” on page 4-43

“Creating Maps Using MAPSHOW” on page 4-50

“Change Map Projections Using geoshow” on page 4-68

“Use Geographic and Nongeographic Objects in Map Axes” on page 4-72
“The Map Frame” on page 4-75

“Plot Regions of Robinson Frame and Grid Using Map Limits” on page 4-77
“Map and Frame Limits” on page 4-82

“The Map Grid” on page 4-83

“Summary of Polygon Display Functions” on page 4-86

“Display Vector Data as Points and Lines” on page 4-87

“Display Vector Maps as Lines or Patches” on page 4-91

“Types of Data Grids and Raster Display Functions” on page 4-98

“Fit Gridded Data to the Graticule” on page 4-99

“Create 3-D Displays with Raster Data” on page 4-103

“Create Map Displays with Geographic Data” on page 4-106

“Creating Map Displays with Data in Projected Coordinate Reference System” on page 4-116
“Pick Locations Interactively” on page 4-125

“Create an Interactive Map for Selecting Point Features” on page 4-127
“Create Small Circle and Track Annotations on Maps Interactively” on page 4-133
“Interactively Display Text Annotations on a Map” on page 4-135

“Work with Objects by Name” on page 4-136

4 Creating and Viewing Maps

Introduction to Mapping Graphics

4-2

Even though geospatial data often is manipulated and analyzed without being displayed, high-quality
interactive cartographic displays can play valuable roles in exploratory data analysis, application
development, and presentation of results.

Using Mapping Toolbox capabilities, you can display geographic information almost as easily as you
can display tabular or time-series data in MATLAB plots. Most mapping functions are similar to
MATLAB plotting functions, except they accept data with geographic/geodetic coordinates (latitudes
and longitudes) instead of Cartesian and polar coordinates. Mapping functions typically have the
same names as their MATLAB counterparts, with the addition of an 'm' suffix (for maps). For
example, the Mapping Toolbox analog to the MATLAB plot function is plotm.

Mapping Toolbox software manages most of the details in displaying a map. It projects your data, cuts
and trims it to specified limits, and displays the resulting map at various scales. With the toolbox you
can also add customary cartographic elements, such as a frame, grid lines, coordinate labels, and text
labels, to your displayed map. If you change your projection properties, or even the projection itself,
some Mapping Toolbox map displays are automatically redrawn with the new settings, undoing any
cuts or trims if necessary.

The toolbox also makes it easy to modify and manipulate maps. You can modify the map display and
mapped objects either from the command line or through property editing tools you can invoke by
clicking on the display.

Note In its current implementation, the toolbox maintains the map projection and display properties
by storing special data in the UserData property of the map axes. The toolbox also takes over the
UserData property of mapped objects. Therefore, never attempt to set the UserData property of a
map axes or a projected map object. Do not apply the MATLAB get function to axes UserData,
depend on the contents of UserData in any way, or apply functions that set or get UserData to the
map axes or mapped objects. Only use the Mapping Toolbox functions getm and setm to obtain and
modify map axes properties.

Continent, Country, Region, and State Maps Made Easy

Continent, Country, Region, and State Maps Made Easy

Mapping Toolbox functions axesm and setm enable you to control the full range of properties when
constructing a projected map axes. Functions worldmap and usamap, on the other hand, trade
control for simplicity and convenience. These two functions each create a map axes object that is
suitable for a country or region of the world or the United States, automatically selecting the map
projection, limits, and other properties based on the name of the area you want to map. Once you
have jump-started your map with worldmap or usamap, you are ready to add your data, using
geoshow or any of the lower level geographic data display functions. Optionally, you can use the map
axes object created by worldmap or usamap as a starting point, and then customize it by adjusting
selected properties with setm.

4-3

4 Creating and Viewing Maps

Set Background Colors for Map Displays

4-4

If you prefer that your maps have white backgrounds instead, you can create figures with the
command

figure('Color', 'white")

If you want a custom background color, specify a color triplet in place of white. For example, to
make a beige background, type

figure('Color',[.95 .9 .81)

To give a white background to an existing figure, type

set(gca, 'color', 'white")

If you want all figures in a session to have white backgrounds, set this as a default with the command
set(0, 'DefaultFigureColor', 'white');

To avoid having to do this every time you start MATLAB, place this command in your startup.m file.

You can also use the Property Editor, part of the MATLAB plotting tools, to modify background colors
for figures and axes.

Create Simple Maps Using worldmap

Create Simple Maps Using worldmap

This example shows how to create simple maps using the worldmap function.

Set up the map frame, letting the worldmap function pick the projection. This example creates a map
of South America.

worldmap 'south america'
axis off

60" W 407w

Determine which map projection the worldmap function used by looking at the value of the
MapProjection property of the map axes. The value eqdconic stands for Equidistant Conic
projection

getm(gca, 'MapProjection')

ans =
"eqdconic'

Use the geoshow function to import sample data for land areas, major rivers, and major cities from
shapefiles and display it using color you specify.

geoshow('landareas.shp', 'FaceColor',[0.5 0.7 0.51])
geoshow('worldrivers.shp', 'Color', 'blue'")
geoshow('worldcities.shp', 'Marker','.","Color', 'red")

4 Creating and Viewing Maps

4-6

Create Simple Maps Using usamap

Create Simple Maps Using usamap

This example shows how to create maps of the United States using the usamap function. The usamap
function lets you make maps of the United States as a whole, just the conterminous portion (the
"lower 48" states), groups of states, or a single state. The map axes you create with the usamap
function has a labelled grid fitted around the area you specify but contains no data, allowing you to
generate the kind of map you want using display functions such as the geoshow function.

Specify map limits and set up a map axes object. This example creates a map of the Chesapeake Bay

region.

latlim = [37 40];
lonlim = [-78 -74];
figure

ax = usamap(latlim, lonlim)

ax =
Axes with properties:

XLim: [-1.8118e+05 1.8118e+05]
YLim: [4.4299e+06 4.7720e+06]
XScale: 'linear'
YScale: 'linear'
GridLineStyle: '-'
Position: [0.1300 0.1100 0.7750 0.8150]
Units: 'normalized'

Show all properties

axis off

Creating and Viewing Maps

4-8

407 N

39N

3/ N

37N
78 W 77w 76" W 75 W 74T W
Determine the map projection used by the usamap function. The Lambert Conformal Conic projection
is often used for maps of the conterminous United States.
getm(gca, '"MapProjection")

ans =
'lambert'

Use the shaperead function to read U.S. state polygon boundaries from the usastatehi shapefile.
The function returns the data in a geostruct.

states = shaperead('usastatehi',...
'UseGeoCoords', true, 'BoundingBox', [lonlim',latlim']);

Make a symbolspec to create a political map using the polcmap function.

faceColors = makesymbolspec('Polygon',...
{'INDEX',[1 numel(states)], 'FaceColor',polcmap(numel(states))});

Display the filled polygons with the geoshow function.

geoshow(ax,states, 'SymbolSpec', faceColors)

Create Simple Maps Using usamap

407 N

39N

38 N

7N

78" W 77w 76 W 75 W 74" W

Extract the names for states within the window from the geostruct and use the textm function to plot
them at the label points provided by the geostruct. Because polcmap assigns random pastel colors to
patches, your map might look different than this example.

for k = 1:numel(states)
labelPointIsWithinLimits = ...
latlim(1l) < states(k).LabellLat &&...
latlim(2) > states(k).LabellLat &&...
lonlim(1l) < states(k).LabellLon &&...
lonlim(2) > states(k).LabellLon;
if labelPointIsWithinLimits
textm(states(k).LabellLat,...
states(k).LabellLon, states(k).Name,...
'HorizontalAlignment', 'center')
end
end
textm(38.2,-76.1,"' Chesapeake Bay ',...
'fontweight', 'bold', 'Rotation',270)

4-9

4 Creating and Viewing Maps

4-10

407 N

39N

3/ N

7N
78

77

W

feq ayeadesayn

W

74" W

The Map Axes

The Map Axes

When you create a map, you can use one of the Mapping Toolbox built-in user interfaces (Uls), or you
can build the graphic with MATLAB and Mapping Toolbox functions. Many MATLAB graphics are built
using the axes function:

axes
axes('PropertyName',PropertyValue,...)
axes(h)

h = axes(...)

Mapping Toolbox functions include an extended version of axes, called axesm. Axes created with
axesm share all properties associated with regular axes, and they includes information about the
current coordinate system (map projection), as well as data to define the map grid and its labeling,
the map frame and its limits, scale, and other properties. For complete descriptions of all map axes
properties, see the axesm reference page.

The syntax of axesm is similar to that of axes:

axesm
axesm(PropertyName,PropertyValue,...)
axesm(ProjectionFcn,PropertyName,PropertyValue,...)

The axesm function without arguments brings up a UI that lists all supported projections and assists
in defining their parameters. You can also summon this Ul with the axesmui function once you have
created a map axes.

The figure window created using axesm contains the same set of tools and menus as any MATLAB
figure. By default, the figure window is blank, even if there is map data in your workspace. You can
toggle certain properties, such as grids, frames, and axis labels, by right-clicking in the figure window
to obtain a pop-up menu.

Tips to Working with Map Axes
* You can list all the names, classes, and IDs of Mapping Toolbox map projections with the maps
function.

* You can place many types of objects in a map axes, such as lines, patches, markers, scale rulers,
north arrows, grids, and text. You can use the handlem function and its associated UI to list these
objects. See the handlem reference page for a list of the objects that can occupy a map axes and
how to query for them.

* You can define multiple independent figures containing map axes, but only one can be active at
any one time. Use axes (obj) to activate an existing map axes object.

* Map axes objects created by axesm contain projection information in a structure. For an example
of what these properties are, type

h = axesm('MapProjection', 'mercator')
and then use the getm function to retrieve all the map axes properties:

p = getm(h)

4-11

4 Creating and Viewing Maps

See Also
axesm | axesmui | handlem

4-12

Access and Change Map Axes Properties

Access and Change Map Axes Properties

Just as the properties of the underlying standard axes can be accessed and manipulated using the
MATLAB® functions get and set, map axes properties can also be accessed and manipulated using
the functions getm and setm.

Use the axesm function only to create a map axes object. Use the setm function to modify an existing
map axes.

Create a map axes object containing no map data. Note that you specify MapProjection ID values in
lowercase.

axesm('MapProjection', 'miller', 'Frame', 'on')

At this point you can begin to customize the map. For example, you might decide to make the frame
lines bordering the map thicker. First, you need to identify the current line width of the frame, which
you do by querying the current axes, identified as gca.

getm(gca, 'FLineWidth')
ans = 2

Now reset the line width to four points. The default fontunits value for axes is points. You can set
fontunits to be points, normalized, inches, centimeters, or pixels.

setm(gca, 'FLineWidth',4)

4-13

4 Creating and Viewing Maps

You can set any number of properties simultaneously with setm. Continue by reducing the line width,
changing the projection to equidistant cylindrical, and verify the changes.

setm(gca, 'FLineWidth',3,'Grid"', 'on', 'MapProjection', 'robinson')

4-14

Access and Change Map Axes Properties

R N O N O O O T

...

...

getm(gca, 'FLineWidth')

ans =

3

getm(gca, 'MapProjection')

ans =
"robi

nson'

Inspect the entire set of map axes properties at their current settings. Note that the list of properties

includes both those particular to map axes and general ones that apply to all MATLAB® axes.

getm(

ans =

gca)

struct with fields:
mapprojection: 'robinson'
zone: []
angleunits: 'degrees'
aspect: 'normal'

falsenorthing: 0
falseeasting: 0
fixedorient: []
geoid: [1 0]
maplatlimit: [-90 90]
maplonlimit: [-180 180]
mapparallels: 38
nparallels: 0
origin: [0 0 O]

4-15

4 Creating and Viewing Maps

scalefactor: 1
[

trimlat: [-90 90]

trimlon: [-180 180]
frame: 'on'
ffill: 100

fedgecolor: [0.1500 0.1500 0.1500]
ffacecolor: 'none'
flatlimit: [-90 90]
flinewidth: 3
flonlimit: [-180 180]
grid: 'on'
galtitude: Inf
gcolor: [0.1500 0.1500 0.1500]
glinestyle: ':'
glinewidth: 0.5000
mlineexception: []
mlinefill: 100
mlinelimit: []
mlinelocation: 30
mlinevisible: 'on'
plineexception: []
plinefill: 100
plinelimit: []
plinelocation: 15
plinevisible: 'on'
fontangle: 'normal’
fontcolor: [0.1500 0.1500 0.1500]
fontname: 'Helvetica'
fontsize: 10
fontunits: 'points'
fontweight: 'normal’
labelformat: 'compass'
labelrotation: 'off'
labelunits: 'degrees'
meridianlabel: 'off'
mlabellocation: 30
mlabelparallel: 90
mlabelround: 0
parallellabel: 'off'
plabellocation: 15
plabelmeridian: -180
plabelround: 0

Similarly, use the setm function alone to display the set of properties, their enumerated values, and
defaults.

setm(gca)

AngleUnits [{degrees} | radians]

Aspect [{normal} | transverse]
FalseEasting

FalseNorthing

FixedOrient FixedOrient is a read-only property
Geoid

MapLatLimit

MapLonLimit

MapParallels

4-16

Access and Change Map Axes Properties

MapProjection
NParallels
Origin
ScaleFactor
TrimLat
TrimLon

Zone

Frame
FEdgeColor
FFaceColor
FFill
FLatLimit
FLineWidth
FLonLimit

Grid

GAltitude
GColor
GLineStyle
GLineWidth
MLineException
MLineFill
MLineLimit
MLinelLocation
MLineVisible
PLineException
PLineFill
PLineLimit
PLineLocation
PLineVisible
FontAngle
FontColor
FontName
FontSize
FontUnits
FontWeight
LabelFormat
LabelRotation
LabelUnits
MeridianLabel
MLabelLocation
MLabelParallel
MLabelRound
ParallelLabel
PLabellLocation
PLabelMeridian
PLabelRound

NParallels is a read-only property

TrimLat is a read-only property
TrimLon is a read-only property

[on | {off}]

[on | {off}]

[{on} | off]

[{on} | off]

[{normal} | italic | oblique]

on | {off}]
{degrees} |
on | {off}]

——————

[on | {off}]

inches | centimeters | normalized | {points} | pixels]
{normal} | bold]
{compass} | signed | none]

Many, but not all, property choices and defaults can also be displayed individually.

setm(gca, 'FontUnits")

FontUnits

setm(gca, 'MapProjection')

[inches | centimeters | normalized | {points} | pixels]

An axes's "MapProjection" property does not have a fixed set of property values.

setm(gca, 'Frame")

4-17

4 Creating and Viewing Maps

Frame [on | {off} 1]

setm(gca, 'FixedOrient")

FixedOrient FixedOrient is a read-only property
In the same way, getm displays the current value of any axes property.
getm(gca, 'FontUnits"')

ans =
'points’

getm(gca, 'MapProjection')

ans =
'robinson'

getm(gca, 'Frame')

ans =
‘on'

getm(gca, 'FixedOrient"')
ans =
[]

For a complete listing and descriptions of map axes properties, see the reference page for axesm. To
identify which properties apply to a given map projection, see the reference page for that projection.

See Also
axesm | getm | setm

4-18

Map Limit Properties

Map Limit Properties

In many common situations, the map limit properties, MapLatLimit and MapLonLimit, provide a
convenient way of specifying your map projection origin or frame limits. Note that these properties
are intentionally redundant; you can always avoid them if you wish and instead use the Origin,
FLatLimit, and FLonLimit properties to set up your map. When they're applicable, however, you'll
probably find that it's easier and more intuitive to set MapLatLimit and MapLonLimit, especially
when creating a new map axes with axesm.

You typically use the MapLatLimit and MapLonLimit properties to set up a map axes with a non-
oblique, non-azimuthal projection, with its origin on the Equator. (Most of the projections included in
the Mapping Toolbox fall into this category; e.g., cylindrical, pseudo-cylindrical, conic, or modified
azimuthal.) In addition, even with a non-zero origin latitude (origin off the Equator), you can use the
MapLatLimit and MapLonLimit properties with projections that are implemented directly rather
than via rotations of the sphere (e.g., tranmerc, utm, lambertstd, cassinistd, eqaconicstd,
eqdconicstd, and polyconicstd). This list includes the projections used most frequently for large-
scale maps, such as U.S. Geological Survey topographic quadrangle maps. Finally, when the origin is
located at a pole or on the Equator, you can use the map limit properties with any azimuthal
projection (e.g., stereo, ortho, breusing, eqaazim, eqdazim, gnomonic, or vperspec).

On the other hand, you should avoid the map limit properties, working instead with the Origin,
FLatLimit, and FLonLimit properties, when:
* You want your map frame to be positioned asymmetrically with respect to the origin longitude.

* You want to use an oblique aspect (that is, assign a non-zero rotation angle to the third element of
the "orientation vector" supplied as the Origin property value).

* You want to change your projection's default aspect (normal vs. transverse).
* You want to use a nonzero origin latitude, except in one of the special cases noted above.
* You are using one of the following projections:

* globe — No need for map limits; always covers entire planet
* cassini — Always in a transverse aspect

+ wetch — Always in a transverse aspect

* bries — Always in an oblique aspect

There's no need to supply a value for the MapLatLimit property if you've already supplied one for
the Origin and FLatLimit properties. In fact, if you supply all three when calling either axesm or
setm, the FLatLimit value will be ignored. Likewise, if you supply values for Origin, FLonLimit,
and MapLonLimit, the FLonLimit value will be ignored.

If you do supply a value for either MapLatLimit or MapLonLimit in one of the situations listed
above, axesm or setm will ignore it and issue a warning. For example,

axesm('lambert', 'Origin',[40 O], 'MapLatLimit',[20 701])
generates the warning message:

Ignoring value of MaplLatLimit due to use of nonzero origin
latitude with the lambert projection.

4-19

4 Creating and Viewing Maps

4-20

It's important to understand that MapLatLimit and MapLonLimit are extra, redundant properties
that are coupled to the Origin, FLatLimit, and FLonLimit properties. On the other hand, it's not
too difficult to know how to update your map axes if you keep in mind the following:

* The Origin property takes precedence. It is set (implicitly, if not explicitly) every time you call
axesm and you cannot change it just by changing the map limits. (Note that when creating a new
map axes from scratch, the map limits are used to help set the origin if it is not explicitly
specified.)

* MaplLatLimit takes precedence over FLatLimit if both are provided in the same call to axesm
or setm, but changing either one alone affects the other.

* MapLonLimit and FLonLimit have a similar relationship.

The precedence of 0rigin means that if you want to reset your map limits with setm and have setm
also determine a new origin, you must set Origin to [] in the same call. For example,

setm(gca, 'Origin',[], 'MapLatLimit', newMapLatlinm, ...
'"MapLonLimit',newMapLonlim)

On the other hand, a call like this will automatically update the values of FLatLimit and
FLonLimit. Similarly, a call like:

setm(gca, 'FLatLimit',newFrameLatlim, 'FLonLimit', newFrameLonlim)
will update the values of MapLatLimit and MapLonLimit.

Finally, you probably don't want to try the following:

setm(gca, 'Origin',[], 'FLonLimit', newFrameLonlim)

because the value of FLonLimit (unlike MapLonLimit) will not affect Origin, which will merely
change to a projection-dependent default value (typically [0 0 01]).

Specify Map Projection Origin and Frame Limits Automatically

This example shows how to specify the map projection origin and frame limits using the two map limit
properties: MapLatLimit and MapLonLimit. While the map axes supports properties to set these
values directly, Origin, FLatLimit, and FLonLimit, it is easier and more intuitive to use the map
limit properties, especially when creating a new map axes with axesm. This example highlights the
interdependency of the map axes limits and the map limit properties.

Create a map using a cylindrical projection or pseudo-cylindrical projection showing all or most of the
Earth, with the Equator running as a straight horizontal line across the center of the map. The map is
bounded by a geographic quadrangle and the projection origin is located on the Equator, centered
between the longitude limits you specify using the map projection limits.

latlim = [-80 80];
lonlim = [100 -1201;
figure

axesm('robinson', '"MapLatLimit',latlim, 'MapLonLimit',lonlim, ...
'"Frame','on', 'Grid', 'on', 'MeridianLabel"', 'on', 'ParallellLabel', 'on"')

axis off

setm(gca, 'MLabelLocation',60)

load coastlines

plotm(coastlat,coastlon)

Map Limit Properties

120 E 180 E 240 E

Check that the axesm function set the origin and frame limits based on the values you specified using
the MapLatLim and MapLonLim properties. The longitude of the origin should be located halfway
between the longitude limits of 100 E and 120 W. Since the map spans 140 degrees, adding half of
140 to the western limit, the origin longitude should be 170 degrees. The frame is centered on this
longitude with a half-width of 70 degrees and the origin latitude is on the Equator.

origin = getm(gca, 'Origin')
origin = Ix3
0 170 0

flatlim = getm(gca, 'FLatLimit')
flatlim = Ix2

-80 80
flonlim = getm(gca, 'FLonLimit"')
flonlim = Ix2

-70 70

4-21

4 Creating and Viewing Maps

Shift the western longitude to 40 degrees E (rather than 100 degrees) to include a little more of Asia.
Use the setm function to assign a new value to the MapLonLimit property. Note the asymmetric
appearance of the map.

setm(gca, 'MapLonLimit', [40 -1201])

60 E 120 E 180 E 240 E

To correct the asymmetry, shift the western longitude again, this time specifying the origin. While the
MapLatLimit and MapLonLimit properties are convenient, the values of the Origin, FLatLimit,
and FLonLimit properties take precedence. You must specify the value of the origin to achieve the
map you intended. The best way to do this is to specify an empty value for the Origin property and
let the setm command calculate the value.

setm(gca, 'MapLonLimit',[40 -120], 'Origin',[])

4-22

Map Limit Properties

60 E 120 E 180 E 240 E

Create Cylindrical Projection Using Map Limit Properties
This example shows how to create cylindrical projection using map limit properties.

Load the coastline data.

load coastlines

Construct a Mercator projection covering the full range of permissible latitudes with longitudes
covering a full 360 degrees starting at 60 West.

figure('Color','w")

axesm('mercator', 'MapLatLimit',[-90 90], 'MapLonLimit',[-60 300])
axis off;

framem on;

gridm on;

mlabel on;

plabel on;

setm(gca, 'MLabelLocation',60)

geoshow(coastlat,coastlon, 'DisplayType', 'polygon"')

4-23

4 Creating and Viewing Maps

60 W O 60 E 120 E 180 E 240 E

The previous call to axesm is equivalent to:

axesm('mercator', 'Origin', [0 120 O], 'FlatLimit',[-90 90], 'FLonLimit',[-180
1801);

You can verify this by checking the properties.
getm(gca, 'Origin')
ans = 1x3

0 120 0

getm(gca, 'FLatLimit")
ans = 1Ix2

-86 86

getm(gca, 'FLonLimit")
ans = 1Ix2

-180 180

4-24

Map Limit Properties

Note that the map and frame limits are clamped to the range of [-86 86] imposed by the read-only
TrimLat property.

getm(gca, 'MapLatLimit')
ans = 1Ix2

-86 86

getm(gca, 'FLatLimit')
ans = 1Ix2

-86 86

getm(gca, 'TrimLat')
ans = 1Ix2

-86 86

Create Conic Projection Using Map Limit Properties

This example shows how to create a map of the standard version of the Lambert Conformal Conic
projection covering latitudes 20 North to 75 North and longitudes covering 90 degrees starting at 30
degrees West.

Load coastline data and display it. The call to axesm above is equivalent to:
axesm('lambertstd', 'Origin', [0 15 0], 'FLatLimit',[20 75],FLonLimit',[-45
451)

load coastlines

figure('Color','w")

axesm(' lambertstd', 'MapLatLimit',[20 75], 'MapLonLimit',[-30 60])
axis off;

framem on;

gridm on;

mlabel on;

plabel on;

geoshow(coastlat, coastlon, 'DisplayType', 'polygon')

4-25

4 Creating and Viewing Maps

4-26

30

Create Southern Hemisphere Conic Projection

This example shows how to create a map of the standard version of the Lambert Conformal Conic
projection into the Southern Hemisphere. The example overrides the default standard parallels and
sets the MapLatLimit and MapLonLimit properties

Load the coastline data MAT file, coastlines.mat.

load coastlines

Display the map, setting the MapLatLimit and MapLonLimit properties.

figure('Color','w")

axesm('lambertstd', 'MapParallels',[-75 -15],
'MapLatLimit',[-75 -20], 'MapLonLimit',[-30 60])

axis off

framem on

gridm on

mlabel on

plabel on

geoshow(coastlat,coastlon, 'DisplayType', 'polygon"')

Map Limit Properties

Create North-Polar Azimuthal Projection

This example shows how to construct a North-polar Equal-Area Azimuthal projection map extending
from the Equator to the pole and centered by default on longitude 0.

Load coastline data set MAT file, coastlines.mat.

load coastlines

Create map. The call to axesm is equivalent to:
axesm('egaazim', 'MLabelParallel',0, 'Origin',[90 0 O], 'FLatLimit',[-Inf 901);

figure('Color','w")

axesm('eqaazim', 'MapLatLimit', [0 90])
axis off

framem on

gridm on

mlabel on

plabel on;

setm(gca, 'MLabelParallel',0)

4-27

4 Creating and Viewing Maps

Plot the coast lines.

geoshow(coastlat,coastlon, 'DisplayType', 'polygon')

4-28

Map Limit Properties

Create South-Polar Azimuthal Projection

This example shows how to create a South-polar Stereographic Azimuthal projection map extending
from the South Pole to 20 degrees S, centered on longitude 150 degrees West. Include a value for the
Origin property in order to control the central meridian.

Load coastline data and display map.

load coastlines

figure('Color','w")

axesm('stereo', 'Origin',[-90 -150], 'MapLatLimit',[-90 -20])
axis off;

framem on;

gridm on;

mlabel on;

plabel on;

setm(gca, 'MLabelParallel’, -20)

geoshow(coastlat,coastlon, 'DisplayType', 'polygon"')

4-29

4 Creating and Viewing Maps

4-30

120

The call to the axesm function above is equivalent to:

axesm('stereo','Origin',[-90 -150 O], 'FLatLimit',[-Inf 70])

Create Equatorial Azimuthal Projection

This example shows how to create a map of an Equidistant Azimuthal projection with the origin on
the Equator, covering from 10° E to 170° E. The origin longitude falls at the center of this range (90
E), and the map reaches north and south to within 10° of each pole.

Read coast data and display. The call to axesm is equivalent to axesm('eqaazim', 'Origin', [0
90 0], 'FLatLimit',[-Inf 80]).

load coastlines

figure('Color','w")

axesm('eqdazim', 'FLatLimit',[], 'MapLonLimit',[10 170])
axis off;

framem on;

gridm on;

mlabel on;

plabel on;

setm(gca, 'MLabelParallel',0, 'PLabelMeridian',60)
geoshow(coastlat,coastlon, 'DisplayType', 'polygon"')

Map Limit Properties

30 W 0 180 E 150 W

Create General Azimuthal Projection

This example shows how to construct an Orthographic projection map with the origin centered near
Paris, France. You can't use MapLatLimit or MapLonLimit here.

Read in coast data and display.

load coastlines
originLat = dm2degrees([48 48]);
originLon = dm2degrees([2 20]);

figure('Color','w")
axesm('ortho','0Origin',[originLat originlLon])

axis off; framem on; gridm on; mlabel on; plabel on;
setm(gca, 'MLabelParallel', 30, 'PLabelMeridian', -30)
geoshow(coastlat,coastlon, 'DisplayType', 'polygon"')

4-31

4 Creating and Viewing Maps

Create Long Narrow Oblique Mercator Projection

This example shows how to create a map with a long, narrow, oblique Mercator projection. The
example shows the area 10 degrees to either side of the great-circle flight path from Tokyo to New
York. You can't use MapLatLimit or MapLonLimit .

load coastlines
latTokyo = dm2degrees([35 40]);
lonTokyo = dm2degrees([139 45]);

latNewYork
lonNewYork

dm2degrees([40 47]);
dm2degrees([-73 58]);

[dist,az] = distance(latTokyo, lonTokyo, latNewYork, lonNewYork) ;
[midLat,midLon] = reckon(latTokyo,lonTokyo,dist/2,az);
midAz = azimuth(midLat,midLon, latNewYork, lonNewYork) ;

buf = [-10 10];

figure('Color','w")

axesm('mercator','Origin', [midLat midLon 90-midAz],
'"FLatLimit',buf, 'FLonLimit',[-dist/2 dist/2] + buf)

axis off; framem on; gridm on; tightmap

geoshow(coastlat,coastlon, 'DisplayType', 'polygon"')

plotm([latTokyo latNewYork], [lonTokyo lonNewYork],'r-')

4-32

Map Limit Properties

See Also

More About

. “The Map Frame” on page 4-75
. “Map and Frame Limits” on page 4-82

4-33

4 Creating and Viewing Maps

Switch Between Projections

4-34

Once a map axes object has been created with axesm, whether map data is displayed or not, it is
possible to change the current projection as well as many of its parameters. You can use setm or the
maptool UI to reset the projection. The rest of this section describes the considerations and
parameters involved in switching projections in a map axes. Additional details are given for doing this
with the geoshow function in “Change Map Projections Using geoshow” on page 4-68.

When you switch from one projection to another, setm clears out settings that were specific to the
earlier projection, updates the map frame and graticule, and generally keeps the map covering the
same part of the world—even when switching between azimuthal and non-azimuthal projections. But
in some cases, you might need to further adjust the map axes properties to achieve proper
appearance. Settings that are suitable for one projection might not be appropriate for another. Most
often, you'll need to update the positioning of your meridian and parallel labels.

Change Projection Updating Meridian and Parallel Labels

This example shows how to change the projection of a map and update the meridian and parallel
labels.

Create a Mercator projection with meridian and parallel labels.

axesm mercator

framem on; gridm on; mlabel on; plabel on
setm(gca, 'LabelFormat', 'signed"')

axis off

-180150120- 90- 60- 30 0+ 30+ 60- 96126158180

+75

+50

+45
+30
+15

-15
-30
-45

-60

Switch Between Projections

Get the default map and frame latitude limits for the Mercator projection. Note that both the frame
and map latitude limits are set to 86 degrees north and south for the Mercator projection to maintain
a safe distance from the singularity at the poles.

[getm(gca, 'MapLatLimit'); getm(gca, 'FLatLimit')]
ans = 2x2

-86 86
-86 86

Switch the projection to an orthographic azimuthal.

setm(gca, 'MapProjection', 'ortho")

Specify new locations for the meridian and parallel labels.

setm(gca, 'MLabelParallel',0, 'PLabelMeridian', -90,
'PLabelMeridian', -30)

4-35

4 Creating and Viewing Maps

4-36

Change Projection Resetting Frame Limits

This example shows how to switch from one projection to another and reset the origin and frame
limits, especially when mapping a small portion of the Earth.

Construct an empty map axes for a region of the United States in the Lambert Conformal Conic
projection (the default projection for the usamap function).

latlim = [32 42];
lonlim = [-125 -111];
h = usamap(latlim, lonlim);

Switch Between Projections

400" N

375 N

35_0:: N

325 N

1250 W 1225w 1200w 1175 w 115.00W 1125 W

Read the usastatehi shapefile and return a subset of the shapefile contents, as defined by the
latitude and longitude limits. The shaperead function returns the data in a structure called states .

states = shaperead('usastatehi', 'UseGeoCoords', true,
'BoundingBox', [lonlim', latlim']);

Save the latitude and longitude data from the structure in the vectors lat and lon.

lat
lon

[states.Lat];
[states.Lon];

Project patch objects on the map axes.

patchm(lat, lon, [0.5 0.5 1])

4-37

4 Creating and Viewing Maps

400" N

375 N

350 N

325 N

125.0 W 1225w 1200°wW 1175 w 115.0°W 1125 W

Change the projection to Lambert Equal Area Azimuthal and reset the origin and frame limits.
setm(gca, 'MapProjection', 'eqaazim', 'Origin', [37 -118],
'"FLatLimit',[-Inf 6])

setm(gca, 'mlinelocation',2, 'plinelocation',2)
tightmap

4-38

Switch Between Projections

4-39

4 Creating and Viewing Maps

Reprojection of Graphics Objects

4-40

Many Mapping Toolbox cartographic functions project features on a map axes based on their
designated latitude-longitude positions. The latitudes and longitudes are mathematically transformed
to x and y positions using the formulas for the current map projection. If the map projection or its
parameters change, objects on a map axes can be automatically reprojected to update the map
display accordingly.

The table summarizes the four common use cases for changing a map projection in a map axes with
setm or for reprojecting map data plotted on a regular MATLAB axes.

Mapping Use Case Type of Axes |Reprojection Behavior

Plot geographic (latitude-longitude) Map axes Automatic reprojection

vector coordinate data or data grid

using a Mapping Toolbox function from

releases prior to Version 2 (e.g.,

plotm)

Plot geographic vector data with Map axes No automatic reprojection; delete

geoshow graphics objects prior to changing the
projection and redraw them afterwards.

Plot data grids, images, and contours |Map axes Automatic reprojection; this behavior

with geographic coordinates with could change in a future release

geoshow

Plot projected (x-y) vector or raster Regular axes Manual reprojection (reproject

map data with mapshow or with a coordinates with projinv/projfwd);

MATLAB graphics function (e.g., Line, delete graphics objects prior to changing

contour, or surf) the projection and redraw them
afterwards.

You can use handlem to help identify which objects to delete when manual deletion is necessary. See
“Work with Objects by Name” on page 4-136 for an example of its use.

Auto-Reprojection of Mapped Objects and Its Limitations

Using the setm function, you can change the current map projection on the fly if the map display was
created in a way that permits reprojection. Note that map displays can contain objects that cannot be
reprojected, and may need to be explicitly deleted and redrawn. Automatic reprojection will take
place when you use setm to modify the MapProjection property, or any other map axes property

from the following list:
* AngleUnits

* Aspect

* FalseEasting

* FalseNorthing

* FLatLimit

* FLonLimit

* Geoid

* MapLatLimit

Reprojection of Graphics Objects

* MapLonLimit
* MapParallels
* Origin

* ScaleFactor
* TrimLat

* TrimLon

* Zone

Auto-reprojection takes place for objects created with any of the following Mapping Toolbox
functions:

e contourm
e contour3m

o fillm
o« fill3m
* gridm
* Llinem
* meshm
* patchm
* plotm
* plot3m
* surfm

 surfacem
e textm

The above Mapping Toolbox functions are analogous to standard MATLAB graphics functions having
the same name, less the trailing m. You can use both types of functions to plot data on a map axes, as
long as you are aware that the standard MATLAB graphics functions do not apply map projection
transformations, and therefore require you to specify positions in map x-y space.

In general, objects created with geoshow or with a combination of calls to proj fwd followed by
ordinary MATLAB graphics functions, such as line, patch, or surface, are not automatically
reprojected. You should delete such objects whenever you change one or more of the map axes
properties listed above, and then redisplay them.

If you have preprojected vector or raster map data or read such data from files, you can display it
with mapshow, mapview, or standard MATLAB graphics functions, such as plot or mesh. If its
projection is known and is included in the Mapping Toolbox projection libraries, you can use its
parameters to project geodata in geographic coordinates to display it in the same axes.

Reprojectability of Maps Generated Using geoshow

If you want to be able to change the projection of a map on the fly, you should not use geoshow.
Some display functions, such as patchm, fillm, displaym, and linem, enable you to reproject
vector map data, but geoshow does not. That is, when you change a map axes projection, with setm
for example, vector map symbology that was created with geoshow will not be transformed. Gridded

4-41

4 Creating and Viewing Maps

data rendered with geoshow (when DisplayType is surface, texturemap, or contour), however,
can be reprojected.

For examples of reprojection behavior with vector data and raster data, see “Change Map Projections
Using geoshow” on page 4-68.

4-42

Create Maps Using geoshow

Create Maps Using geoshow

Create a range of different maps using geoshow.
Geographic map 1: World Land Area
Create a worldmap. Then project and display world land areas.

worldmap world
geoshow('landareas.shp', 'FaceColor',[0.5 1.0 0.5])

You can also project and display world land areas using a default Plate Carree projection.

figure
geoshow('landareas.shp', 'FaceColor',[0.5 1.0 0.5])

4-43

4 Creating and Viewing Maps

4-44

10071

50 r

_1 DD i i i i i i i]
-200 -150 -100 -50 0 50 100 150 200

The axes show position in latitude and longitude, but are displayed on a set of ordinary axes. To
display geographic data on a set of map axes instead, use axesm, usamap, or worldmap before
calling geoshow.

ismap

ans = 0

Geographic map 2: North America with Custom Colored States in the U.S.
Read the USA high resolution data.

states = shaperead('usastatehi', 'UseGeoCoords',true);

Create a SymbolSpec to display Alaska and Hawaii as red polygons.

symbols = makesymbolspec('Polygon’,
{'Name"', 'Alaska', 'FaceColor', 'red'},
{'Name"', 'Hawaii', 'FaceColor','red'});

Create a world map of North America with Alaska and Hawaii in red, and all other states in blue.

figure

worldmap('north america')

geoshow(states, 'SymbolSpec',symbols, ..
'DefaultFaceColor', 'blue', 'DefaultEdgeColor', 'black")

axis off

Create Maps Using geoshow

1207 |y

Geographic map 3: Korea Elevation Grid

Load elevation data and a geographic cells reference object for the Korean peninsula. Import a land
area boundary using shaperead.

load koreasc
S = shaperead('landareas', 'UseGeoCoords"',true);

Create a world map. Then project and display the elevation data as a texture map.
figure

worldmap (korea5c,korea5cR)
geoshow(korea5c, korea5cR, 'DisplayType', 'texturemap')

demcmap (korea5c)

Overlay the land area boundary as a line.

geoshow([S.Lat],[S.Lon], 'Color"', 'k")

4-45

4 Creating and Viewing Maps

4-46

35"

30" py

115" E‘

120 E 125 E 130" E

Geographic map 4: EGM96 Geoid Heights

Get geoid heights and a geographic postings reference object from the EGM96 geoid model. Then,
display the heights as a surface using an Eckert projection. Ensure the surface appears below the
grid lines by setting the 'CData' name-value pair to the geoid height data and the 'ZData' name-
value pair to a matrix of zeros. Display the frame and grid of the map using framem and gridm.
Display the parallel and meridian labels using plabel and mlabel.

[N,R] = egm96geoid;

figure

axesm eckert4

Z = zeros(R.RasterSize);

geoshow(N,R, 'DisplayType"', 'surface', 'CData',N, 'ZData',Z)
framem

gridm

plabel

mlabel('MLabellLocation',90)

axis off

Create a colorbar and add a text description. Then, mask out all the land.

cb = colorbar('southoutside');
cb.Label.String = 'EGM96 Geoid Heights in Meters';
geoshow('landareas.shp', 'FaceColor', 'k")

Create Maps Using geoshow

-100 -80 =60 -40 =20 0 20 40 &0 &0
EGM96 Geoid Heights in Meters

Geographic map 5: Moon Albedo Image

Load moon albedo data and a geographic cells reference object. Project and display the data using
the default Plate Carree projection.

load moonalb20c

figure
geoshow(moonalb20c,moonalb20cR)

4-47

4 Creating and Viewing Maps

4-48

10071

-200 -150 -100 -50 0 50 100 150 200

Project and display the moon albedo data using an orthographic projection. To do this, create a map
axes object and specify the projection as orthographic. Display the data in the map axes as a texture
map using geoshow. Then, change the colormap to grayscale and remove the axis lines.

figure

axesm ortho
geoshow(moonalb20c,moonalb20cR, 'DisplayType', 'texturemap')
colormap gray

axis off

Create Maps Using geoshow

See Also
axesm | framem | geoshow | makesymbolspec | mapshow | shaperead | worldmap

4-49

4 Creating and Viewing Maps

Creating Maps Using MAPSHOW

This example shows how to create a range of different maps using mapshow.
Map 1: Concord Roads - A Geographic Data Structure

Display a geographic data structure array with lines representing roads. In the shapefile
'concord roads.shp', the road coordinates have been pre-projected to the Massachusetts Mainland
State Plane system (in meters), so the shapefile is imported into a mapstruct (the variable 'roads').

roads = shaperead('concord roads.shp');
figure

mapshow(roads);

xlabel('easting in meters')
ylabel('northing in meters')

9.143‘105
9.135 - 0 i \
913 Lo ;

_ 0/ % L
9.125 ‘4 Q

northing in meters

9121 / l‘ =~
9.115 g-!'}:ﬁ%‘!@ltg,‘ ofe ;ﬂ'ﬁé,

o e
I ..t'
9.1 ‘F'lll '===!=F

9.105 | \\
91 i i i i i]
2.06 2.07 2.08 2.09 2.1 211 212

easting in meters x 107

Map 2: Concord Roads with Custom Line Style

Display the roads shape and change the line style.

figure

mapshow('concord roads.shp','LineStyle',':");
xlabel('easting in meters')

ylabel('northing in meters"')

4-50

Creating Maps Using MAPSHOW

5
9.4 10

9.135 [, S L

RN R Lapg, _.. : L
bt

9.125

w
=
=
on

T

northing in meters

w

=

=]

on
T

2.06 2.07 2.08 2.09 2.1 211 212
easting in meters w102

Map 3: Concord Roads with SymbolSpec
Display the roads shape, and render using a SymbolSpec.

To learn about the concord roads.shp dataset, read its associated concord roads.txt metadata
file which describes the attributes.

type concord roads.txt

A shapefile data set for roads in part of Concord, Massachusetts,
USA comprising the following files:

concord_roads.dbf
concord_roads.shp
concord_roads.shx

Office of Geographic and Environmental Information (MassGIS),
Commonwealth of Massachusetts Executive Office of Environmental Affairs
(http://www.state.ma.us/mgis/)

Coordinate system/projection

All data distributed by MassGIS are registered to the NAD83 datum,
Massachusetts State Plane Mainland Zone coordinate system. Units are in
meters.

4-51

4 Creating and Viewing Maps

4-52

roads

Data set construction

This data set was constructed by concatenating Massachusetts Highway
Department road shapefiles for the Maynard and Concord USGS Quadrangles,
from compressed files mrd97.exe and mrdl04.exe.

Features were selected with bounding boxes intersecting the following
v [206500 (min easting) 910500 (min northing)
211500 (max easting) 913500 (max northing)]
The following attributes were retained:
'STREETNAME', 'RT_NUMBER', 'CLASS', 'ADMIN TYPE', 'LENGTH'

Attributes 'CLASS' and 'ADMIN TYPE' contain numerical codes defined by
MassGIS as follows:

Road classes (from file mrdac.dbf)

CLASS 1 Limited access highway

CLASS 2 Multi-lane highway, not limited access
CLASS 3 Other numbered route

CLASS 4 Major road - collector

CLASS 5 Minor street or road

CLASS 6 Minor street or road

CLASS 7 Highway ramp

Road admin types (from file mrdac.dbf)
ADMIN TYPE 0 Local road

ADMIN TYPE 1 Interstate

ADMIN TYPE 2 U.S. Federal

ADMIN TYPE 3 State

Construction date

November 17, 2003.

Query the attributes in this roads file.

shaperead('concord roads.shp"')

roads =

609x1 struct array with fields:

Geometry
BoundingBox
X

Y
STREETNAME
RT_NUMBER
CLASS

ADMIN TYPE

Creating Maps Using MAPSHOW

LENGTH

Find out how many roads fall in each CLASS.

histcounts([roads.CLASS], 'BinLimits',[1 7], 'BinMethod', 'integer")

ans =

0 14 93 26 395 81 0

Find out how many roads fall in each ADMIN TYPE.

histcounts([roads.ADMIN TYPE], 'BinLimits',[0 3], 'BinMethod', 'integer")

ans =

502 0 0 107

Notice that there are no roads in this file that are CLASS 1 or 7, and the roads are either
ADMIN TYPE 0 or 3.

Create a SymbolSpec to:

* Color local roads (ADMIN TYPE=0) black.

* Color state roads (ADMIN TYPE=3) red.

* Hide very minor roads (CLASS=6).

* Set major or larger roads (CLASS=1-4) with a LineWidth value of 2.0.

roadspec = makesymbolspec('Line’', ...

{'ADMIN TYPE',0, 'Color','black'},

{'ADMIN TYPE',3, 'Color','red'},...

{'CLASS',6, 'Visible', 'off'},...

{'CLASS',[1 4], 'LineWidth',2});
figure
mapshow('concord roads.shp', 'SymbolSpec', roadspec);
xlabel('easting in meters')
ylabel('northing in meters')

4-53

4 Creating and Viewing Maps

4-54

5
g1ap 10
9.135 1 \
9.13F
n
£ 9125+ 4,
E | ,
[| / l' L '
£ i '.llllhf'i' (/ [N © -
T 9.115 _ -_ﬁﬁo‘é‘wl £ N gﬁ
- Al 0
il s
9.105 [
9.1 i i i i i]
2.06 2.07 2.08 2.09 2.1 2.11 212
easting in meters w102

Map 4: Concord Roads, Override SymbolSpec

Override a graphics property of the SymbolSpec.

roadspec = makesymbolspec('Line', ...
{'ADMIN TYPE',Q, 'Color','black'},
{'ADMIN TYPE',3, 'Color','red'},...
{'CLASS',6, 'Visible','off'},...
{'CLASS',[1 4], 'LineWidth',2});
figure

mapshow('concord roads.shp', 'SymbolSpec',roadspec, 'Color', 'black');

xlabel('easting in meters')
ylabel('northing in meters')

Creating Maps Using MAPSHOW

5
9.4 10

9.135 o

9125

912

9115

northing in meters

9.105

2.06 207 2.08

2.09 2.1 211

easting in meters

Map 5: Boston Roads with SymbolSpec, Override Defaults

Override default property of the SymbolSpec.

roadspec = makesymbolspec('Line",
{'Default', 'Color','green'}, ...
{'ADMIN TYPE',Q, 'Color','black'},

{'ADMIN TYPE',3, 'Color','red'},...

{'CLASS',6, 'Visible','off'},...
{'CLASS',[1 4], 'LineWidth',2});
figure

mapshow('boston roads.shp', 'SymbolSpec'

xlabel('easting in meters')
ylabel('northing in meters')

, roadspec);

212
%107

4-55

4 Creating and Viewing Maps

4-56

5
9.025~ 0

9.02F

w

=

ry

o
T

4

.01

northing in meters
[}
e
o
o
T

8.996

EQQ I I I I
2.32 2.33 2.34 2.35 2.36

easting in meters

Map 6: GeoTIFF Image of Boston

Display the Boston GeoTIFF image; includes material (c) GeoEye™

figure
mapshow boston.tif
axis image manual off

2.37 2.38
% 107

, all rights reserved.

Creating Maps Using MAPSHOW

Read Boston placenames in order to overlay on top of the GeoTIFF image.
S = shaperead('boston placenames.shp');

The projection in the GeoTIFF file is in units of survey feet. The point coordinates in the shapefile are
in meters. Therefore, we need to convert the placename coordinates from meters to survey feet in
order to overlay the points on the image.

surveyFeetPerMeter = unitsratio('sf', 'meter');
for k = 1:numel(S)
S(k).X = surveyFeetPerMeter * S(k).X;
S(k).Y = surveyFeetPerMeter * S(k).Y;

end

Display the placenames.

text([S.X], [S.Y], {S.NAME}, 'Color', [0 O O],
'BackgroundColor',[0.9 0.9 0], 'Clipping','on');

4-57

4 Creating and Viewing Maps

" COPPS HILL

g R
BROAD CANAL 8 =

BCM (SN

FROG POND 4, |

e BOSTON NECK §

BAY FENS &
2% HACK BAY'

Zoom in on a selected region.

xlim([772007, 775582])
ylim([2954572, 2956535])

4-58

Creating Maps Using MAPSHOW

Map 7: Pond with Islands over Orthophoto Backdrop

Display a pond with three large islands (feature 14 in the concord hydro area shapefile). Note that
islands are visible in the orthophoto through three "holes" in the pond polygon. Display roads in the
same figure.

[ortho, cmap] = imread('concord ortho w.tif');

R = worldfileread('concord ortho w.tfw', ‘planar', size(ortho));
figure

mapshow(ortho, cmap, R)

4-59

4 Creating and Viewing Maps

4-60

9.126
9.124
9.122
9.12 8
9.118 &
9.116
9.114

89112

911 o Wt ot BN e s ik
207 2075 2.08 2.085 2.09

%107

Save map limits used for image

xLimits = xlim;

yLimits = ylim;

pond = shaperead('concord hydro area.shp', 'RecordNumbers', 14);
hold on

mapshow(pond, 'FaceColor', [0.3 0.5 1], 'EdgeColor', 'black')
mapshow('concord roads.shp', 'Color', 'red', 'LineWidth', 1);
xlabel('easting in meters')

ylabel('northing in meters')

Creating Maps Using MAPSHOW

northing in meters

2.065 2.07 2.075 2.08 2.085 2.09 2.095 2.1 2105 2.11 2.115
easting in meters w107

Restore map limits to match image

xlim(xLimits)
ylim(yLimits)

4-61

4 Creating and Viewing Maps

4-62

w
-
%
B

0
N

9.12 fe

northing in meters
fa]
e
e
0

2.07 2.075 2.08 2.085 2.09
easting in meters w107

Map 8: Mount Washington SDTS Digital Elevation Model

View the Mount Washington terrain data as a mesh. The data grid is georeferenced to Universal
Transverse Mercator (UTM) zone 19.

figure

h = mapshow('sdts/9129CATD.ddf"', 'DisplayType', 'mesh');
Z = h.ZData;

demcmap(Z)

xlabel('UTM easting in meters')

ylabel('UTM northing in meters')

Creating Maps Using MAPSHOW

[:3
4918 10

4.916

4.914

.

o

=l

[
1

491r1

4908

4.906

UTM northing in meters

4.904

49021

4-9 i i
3.1 3.156 3.2

UTM easting in meters. 10°

View the Mount Washington terrain data as a 3-D surface. Use the default 3-D view, which shows how
the range looks from the southwest.

figure

mapshow('sdts/9129CATD.ddf");
demcmap(Z)

view(3);

axis equal;

xlabel('UTM easting in meters')
ylabel('UTM northing in meters"')
zlabel('Elevation in feet')

4-63

4 Creating and Viewing Maps

4-64

1500
1000
500
4.916
4.914

4.912

Elevation in feet

« 108

4.81
4.908
4.906

4.904

4.902

3.16

%107
3.14

312

UTM easting in meters
UTM northing in meters

Map 9: Mount Washington and Mount Dartmouth on One Map with Contours
Display the grid and contour lines of Mount Washington and Mount Dartmouth.

Read the terrain data files for Mount Washington and Mount Dartmouth. To plot the data using
mapshow, the raster data must be of type single or double. Specify the data type for the raster
using the 'OutputType' name-value pair.

[ZWash,RWash] = readgeoraster('MtWashington-ft.grd"',
'OutputType', 'double');

[ZDart,RDart] = readgeoraster('MountDartmouth-ft.grd",
'OutputType', 'double');

Find missing data using the |georasterinfo| function. The function
returns an object with a |MissingDatalndicator| property that indicates
which value represents missing data. Replace the missing data with |NaN|
values using the |standardizeMissing| function.

0® o° o° o°

infoWash = georasterinfo('MtWashington-ft.grd"');
ZWash = standardizeMissing(ZWash,infoWash.MissingDataIndicator);

infoDart = georasterinfo('MountDartmouth-ft.grd"');
ZDart = standardizeMissing(ZDart,infoDart.MissingDatalndicator);

Ensure the contour lines and labels appear over the terrain data by specifying the 'ZData' name-
value pair as a matrix of zeros. Apply a colormap appropriate for terrain data using demcmap.

Creating Maps Using MAPSHOW

figure

hold on

mapshow(ZWash,RWash, 'DisplayType', 'surface’,
'ZData',zeros(RWash.RasterSize))

mapshow(ZDart,RDart, 'DisplayType', 'surface’,
'ZData',zeros(RDart.RasterSize))

demcmap (ZWash)

xlabel('UTM easting in meters')

ylabel('UTM northing in meters')

axis equal

« 108

4.916

4.814

B
w
—
[os]

-
e
=

B
w
=

UTM northing in meters

e
s
&

302 304 306 308 31 312 314 316 318 3.2
UTM easting in meters w107

Overlay black contour lines and labels.

mapshow(ZWash,RWash, 'DisplayType', 'contour',
'LineColor', 'k', 'ShowText', 'on');

mapshow(ZDart,RDart, 'DisplayType', 'contour’,
'LineColor', 'k', 'ShowText', 'on');

4-65

4 Creating and Viewing Maps

4-66

« 108
4.916

4.914

=
w
—
"

-
0
=

e
i
=

UTM northing in meters

-
o
&

302 304 306 308 31 312 314 316 318 32
UTM easting in meters « 102

4.902

Credits

boston roads.shp, concord roads.shp, concord hydro area.shp, concord ortho e.tif:

Office of Geographic and Environmental Information (MassGIS),
Commonwealth of Massachusetts Executive Office of Environmental Affairs

http://www.state.ma.us/mgis

boston.tif

Copyright GeoEye
Includes material copyrighted by GeoEye, all rights reserved.
(GeoEye was merged into the DigitalGlobe corporation January 29th,

2013.)
For more information, run:

>> type boston.txt

9129CATD.ddf (and supporting files):

United States Geological Survey (USGS) 7.5-minute Digital Elevation
Model (DEM) in Spatial Data Transfer Standard (SDTS) format for the
Mt. Washington quadrangle, with elevation in meters.
http://edc.usgs.gov/products/elevation/dem.html

For more information, run:

>> type 9129.txt

Creating Maps Using MAPSHOW

MtWashington-ft.grd, MountDartmouth-ft.grd:

MtWashington-ft.grd is the same DEM as 9129CATD.ddf, but converted to
Arc ASCII Grid format with elevation in feet.

MountDartmouth-ft.grd is an adjacent DEM, also converted to Arc ASCII
Grid with elevation in feet.

For more information, run:
>> type MtWashington-ft.txt
>> type MountDartmouth-ft.txt

See Also
geoshow | makesymbolspec | mapshow | shaperead

4-67

4 Creating and Viewing Maps

Change Map Projections Using geoshow

4-68

You can display latitude-longitude vector and raster geodata using the geoshow function (use
mapshow to display preprojected coordinates and grids). When you use geoshow to display maps on a
map axes, the data are projected according to the map projection assigned when axesm, worldmap,
or usamap created the map axes (e.g., axesm('mapprojection', 'mercator')).

You can also use geoshow to display latitude-longitude data on a regular axes (created by the axes
function, for example). When you do this, the latitude-longitude data are displayed using a pcarree,
which linearly maps longitude to x and latitude to y.

Change Map Projection with Vector Data Using geoshow

This example shows how to change a map projection when displaying vector data using geoshow . If
you need to change projections when displaying both raster and vector geodata, you can combine
these techniques. Removing vector graphic objects does not affect raster data already displayed.

Display vector data using geoshow.

figure;
axesm miller
h = geoshow('landareas.shp');

Delete the original map and change the projection.

Change Map Projections Using geoshow

delete(h)
setm(gca, 'mapprojection', 'ortho")
geoshow('landareas.shp')

Change Map Projection with Raster Data Using geoshow

Get geoid heights and a geographic postings reference ohject from the EGM96 geoid model. Then,
display the data using a Mercator projection.

[N,R] = egm96geoid;

axesm mercator
geoshow(N,R, 'DisplayType', 'surface')

4-69

4 Creating and Viewing Maps

Change the projection using the setm function.

setm(gca, 'mapprojection', 'mollweid")

4-70

Change Map Projections Using geoshow

4-71

4 Creating and Viewing Maps

Use Geographic and Nongeographic Objects in Map Axes

4-72

This example shows how to use geographic and nongeographic objects in a map axes. The example
illustrates the difference between using MATLAB functions, such as plot and grid, and their
Mapping Toolbox counterparts, plotm and gridm.

Make a Miller map axes with a latitude and longitude grid. These functions create a map axes object,
a map frame enclosing the region of interest, and geographic grid lines. The x-y axes, which are
normally hidden, are displayed, and the axes x-y grid is turned off. The gridm function constructs
lines to illustrate the latitude-longitude grid, unlike the MATLAB grid function, which draws an x-y
grid for the underlying projected map coordinates. Depending on the type of projection, a latitude-
longitude grid (or graticule) can contain curves while a MATLAB grid never does.

axesm miller;
framem on;
gridm on;
mlabel on;
plabel on;
showaxes;
grid off;

180 480 120 W0 W0 W0 W 0 30 B0 B0 EX0 50 80 E

80 N

™ N

60 M

45 N
30 N
18 N
or o
15 5
30 5
45 5

60 =

1t

Ar

s S : : : :
27 i : i : I
00" S . . . :

Place a standard MATLAB text object and a mapped text object, using the two separate coordinate
systems. In the figure, a standard text object is placed at x=-2 and y=-1, while the mapped text object
is placed at (70 degrees N, 150 degrees W) in the Miller projection.

text(-2,-1, 'Standard text object at x = -2, y = -1")
textm(70, -150, 'Mapped text object at lat = 70, lon = -150")

Use Geographic and Nongeographic Objects in Map Axes

180 150 120 W0 B0 \§0 W 0 30 B0 B0 E20 50 80 E

90" N
75 N
60" N
45 N
30 N
15 N
15 S
30° S
45° 8
60 S
75 S

90 S

Change the projection to sinusoidal. The standard text object remains at the same Cartesian position,
which alters its latitude-longitude position. The mapped text object remains at the same geographic
location, so its x-y position is altered. Also, the frame and grid lines reflect the new map projection.
Similarly, vector and raster (matrix) data can be displayed using either mapping functions (plotm)
or standard functions (plot).

setm(gca, 'MapProjection', 'sinusoid")
showaxes;

grid off;

mlabel off

4-73

4 Creating and Viewing Maps

4-74

...

pmlgrd fext object at % = -2y

o0

lon

-150

S e Ay R T T T Ty e

The Map Frame

The Map Frame

The Mapping Toolbox map frame is the outline of the limits of a map, often in the form of a box, the
"edge of the world," so to speak. The frame is displayed if the map axes property Frame is set to
"on'. This can be accomplished upon map axes creation with axesm, or later with setm, or with the
direct command framem on. The frame is geographically defined as a latitude-longitude quadrangle
that is projected appropriately. For example, on a map of the world, the frame might extend from pole
to pole and a full 360° range of longitude. In appearance, the frame would take on the characteristic
shape of the projection. The examples below are full-world frames shown in four very different

projections.
Equidistant cylindrical Robinson
projection projection

Sinusoidal Orthographic

projection

projection

Full-World Map Frames

As a map object, each of the previously displayed frames is identical; however, the selection of a
display projection has varied their appearance.

You can manipulate properties beyond the latitude and longitude limits of the frame. Frame
properties are established upon map axes object creation; you can modify them subsequently with the
setm and the framem functions. The command framem alone is a toggle for the Frame property,
which controls the visibility of the frame. You can also call framem with property names and values to
alter the appearance of the frame:

framem('FlineWidth',4, 'FEdgeColor', 'red")

The frame is actually a patch with a default face color set to 'none' and a default edge color of
black. You can alter these map axes properties by manipulating the FFaceColor and FEdgeColor
properties. For example, the command

setm(gca, 'FFaceColor', 'cyan')

makes the background region of your display resemble water. Since the frame patch is always the
lowest layer of a map display, other patches, perhaps representing land, will appear above the
"water." If an object is subsequently plotted "below" the frame patch, the frame altitude can be
recalculated to lie below this object with the command framem reset. The frame is replaced and
not reprojected.

Set the line width of the edge, which is 2 points by default, using the FLineWidth property.

4-75

4 Creating and Viewing Maps

The primary advantage of displaying the map frame is that it can provide positional context for other

displayed map objects. For example, when vector data of the coasts is displayed, the frame provides
the "edge" of the world.

See the framem reference page for more details.

4-76

Plot Regions of Robinson Frame and Grid Using Map Limits

Plot Regions of Robinson Frame and Grid Using Map Limits

This example shows how to plot four regions of Robinson frame and grid using map limits. Initially,
each of the plots shows the entire world, FLatLimit is [-90 90], and FLonLimit is [-180 180] for
each case. The frame quadrangle can encompass smaller regions, as well, in which case the shape is
a section of a full-world outline or simply a quadrilateral with straight or curving sides.

Plot four quadrangles in the Robinson Projection, symmetric about prime meridian.

figure('color', 'white"')

subplot(2,2,1);

axesm('MapProjection', 'robinson', ...
'"Frame', 'on', 'Grid', 'on')

title('Lat [-90 90], Map lons [-180 180]', 'FontSize',10)

subplot(2,2,2);

axesm('MapProjection', 'robinson', ...
'MapLatLimit',[30 70], 'MapLonLimit',[-90 90],...
'"Frame', 'on','Grid', 'on')

title('Lat [30 70], Lon [-90 90]', 'FontSize',10)

subplot(2,2,3);

axesm('MapProjection', 'robinson', ...
'MapLatLimit',[-90 O], 'MapLonLimit',[-180 -30],....
'"Frame', 'on','Grid', 'on')

title('Lat [-90 0], Lon [-180 -30]','FontSize',10)

subplot(2,2,4);

axesm('MapProjection', 'robinson', ...
'MapLatLimit',[-70 -30], 'MapLonLimit',[60 15017, ...
'"Frame', 'on', 'Grid"', 'on')

title('Lat [-70 -30], Lon [60 150]1','FontSize',10)

4-77

4 Creating and Viewing Maps

4-78

Lat [-90 90], Map lons [-180 180]

Lat [30 70], Lon [-90 90]

.......................................

Lat [-90 0], Lon [-180 -30]
; ! Lat [-70 -30], Lon [60 150]

Plot the same regions but with frame limits altered after projecting. The projections are not centered
on the prime meridian. Instead, the projections are symmetric about map limits.

figure('color', 'white"')

hll = subplot(2,2,1);

axesm('MapProjection', 'robinson', ...
'"Frame', 'on', 'Grid', 'on')

title('Lat [-90 90], Lon [-180 180]")

h1l2 = subplot(2,2,2);

axesm('MapProjection', 'robinson', ...
'"Frame', 'on', 'Grid', 'on')

setm(hl2, 'FLatLimit',[30 70], 'FLonLimit',[-90 901])

title('Lat [30 70], Lon [-90 90]")

h21 = subplot(2,2,3);

axesm('MapProjection', 'robinson', ...
'"Frame', 'on', 'Grid', 'on')

setm(h21, 'FLatLimit',[-90 O], 'FLonLimit',[-180 -30])

title('Lat [-90 O], Lon [-180 -30]")

h22 = subplot(2,2,4);

axesm('MapProjection', 'robinson', ...
'"Frame', 'on', 'Grid"', 'on')

setm(h22, 'FLatLimit',[-70 -30], 'FLonLimit',[60 1501])

title('Lat [-70 -30], Lon [60 150]")

Plot Regions of Robinson Frame and Grid Using Map Limits

Lat [-90 90], Lon [-180 180]

Lat [-90 0], Lon [-180 -30]

To create a symmetric frame in the lower right subplot, reset the map limits instead of the frame

limits, but be sure to reset the origin.

setm(h22, 'MapLonLimit',[60 150], 'Origin',[1)

Lat [30 70], Lon [-90 90]

.......................................

Lat [-70 -30], Lon [60 150]

4-79

4 Creating and Viewing Maps

Lat [-90 90], Lon [-180 180]

Lat [30 70], Lon [-90 90]

.......................................

Lat [-90 0], Lon [-180 -30] Lat [-70 -30], Lon [60 150]

Alter the properties of the frame, which is actually a patch with face color set to 'none"'. Set the face
colorto 'cyan'.

setm(gca, 'FFaceColor', 'cyan')

4-80

Plot Regions of Robinson Frame and Grid Using Map Limits

Lat [-90 90], Lon [-180 180]

Lat [30 70], Lon [-90 90]

.......................................

Lat [-70 -30], Lon [60 150]

Lat [-90 0], Lon [-180 -30]

4-81

4 Creating and Viewing Maps

Map and Frame Limits

4-82

The Mapping Toolbox map and frame limits are two related map axes properties that limit the map
display to a defined region. The map latitude and longitude limits define the extents of geodata to be
displayed, while the frame limits control how the frame fits around the displayed data. Any object that
extends outside the frame limits is automatically trimmed.

The frame limits are also specified differently from the map limits. The map limits are in absolute
geographic coordinates referenced to an origin at the intersection of the prime meridian and the
equator, while the frame limits are referenced to the rotated coordinate system defined by the map
axes origin.

For all nonazimuthal projections, frame limits are specified as quadrangles ([latmin latmax] and
[longmin longmax]) in the frame coordinate system. In the case of azimuthal projections, the
frames are circular and are described by a polar coordinate system. One of the frame latitude limits
must be a negative infinity (- Inf) to indicate an azimuthal frame (think of this as the center of the
circle), while the other limit determines the radius of the circular frame (rlatmax). The longitude
limits of azimuthal frames are inconsequential, since a full circle is always displayed.

If you are uncertain about the correct format for a particular projection frame limit, you can reset the
formats to the default values using empty matrices.

Note For nonazimuthal projections in the normal aspect, the map extent is limited by the minimum
of the map limits and the frame limits; hence, the two limits will coincide after evaluation. Therefore,
if you manually change one set of limits, you might want to clear the other set to get consistent limits.

The Map Grid

The Map Grid

The map grid is the set of displayed meridians and parallels, also known as a graticule. Display the
grid by setting the map axes property Grid to 'on'. You can do this when you create map axes with
axesm, with setm, or with the direct command gridm on.

Control Grid Spacing

To control display of meridians and parallels, set a scalar meridian spacing or a vector of desired
meridians in the MLinelLocation property. The property PLineLocation serves a corresponding
purpose for parallels. The default values place grid lines every 30° for meridians and every 15° for
parallels.

1 'Lﬂ'-.EEI 'Lﬂ‘-.IEEI 'I.-“EEI 'I.-“-.EEI 'l.-“-EI:I Wy EI 3EI EEEI EQEI EIEI:I EEEI EEEI E

Default Grid on a Miller Projection

Layer Grids

By default, the grid is placed as the top layer of any display. You can alter this by changing the
GAltitude property, so that other map objects can be placed "above" the grid. The new grid is
drawn at its new altitude. The units used for GAltitude are specified with the daspectm function.

To reposition the grid back to the top of the display, use the command gridm reset. You can also

control the appearance of grid lines with the GLineStyle and GLineWidth properties, which are
‘:' and 0.5, respectively, by default.

Limit Grid Lines

The Miller projection is an example in which all the meridians can extend to the poles without
appearing to be cluttered. In other projections, such as the orthographic (below), the map grid can

4-83

4 Creating and Viewing Maps

4-84

obscure the surface where they converge. Two map axes properties, MLineLimit and
MLineException, enable you to control such clutter:

* Use the MLineLimit property to specify a pair of latitudes at which to terminate the meridians.
For example, setting MLineLimit to [-75 75] completely clears the region above and below this
latitude range of meridian lines.

» Ifyou want some lines to reach the poles but not others, you can specify them with the
MLineException property. For example, if MLineExceptionissetto [-90 @ 90 180], then
the meridians corresponding to the four cardinal longitudes will continue past the limit on to the
pole.

The use of these properties is illustrated in the figure below. Note that there are two corresponding
map axes properties, PLineLimit and PLineException, for controlling the extent of displayed
parallels.

Default grid allows all displayed
meridians to extend to the poles:

axesm(‘MapProjection’, ‘ortho’,...
‘Origin®, [40,40,14], ...
‘Grid',‘on’, 'Frame’, 'on');

The property MLinelLimit truncates
meridians at given latitudes:

axesm{ 'MapProjection', 'ortho’,...
‘Origin’,[40,40,14], ...
‘Grid',‘on’, 'Frame’, 'on', ...
‘MLineLimit®, [-75 75]);

The property MLineLineException
permits certain meridians to extend to
the poles, regardless of MLinelLimit:

axesm(‘MapProjection’, 'ortho’,...
‘Origin®, [40,40,14], ...
‘Grid',‘'on’, ‘Frame’, 'on', ...
‘MLineLimit’, [-75 75],...
‘MLineException’,[-80 0 90 180]);

Label Grids

You can label displayed parallels and meridians. MeridianLabel and ParallellLabel are on-off
properties for displaying labels on the meridians and parallels, respectively. They are both 'off' by
default. Initially, the label locations coincide with the default displayed grid lines, but you can alter
this by using the PlabelLocation and MlabelLocation properties. These grid lines are labeled
across the north edge of the map for meridians and along the west edge of the map for parallels.
However, the property MlabelParallel allows you to specify 'north', 'south', 'equator’', ora
specific latitude at which to display the meridian labels, and PlabelMeridian allows the choice of
'west', 'east’', 'prime’, or a specific longitude for the parallel labels. By default, parallel labels
are displayed in the range of 0° to 90° north and south of the equator while meridian labels are

The Map Grid

displayed in the range of 0° to 180° east and west of the prime meridian. You can use the
mlabelzero22pi function to redisplay the meridian labels in the range of 0° to 360° east of the
prime meridian.

Properties affecting grid labeling are listed below.

Property Effect

MeridianLabel Toggle display of meridian labels

ParallellLabel Toggle display of parallel labels

MlabelLocation Alternate interval for labeling meridians
PlabelLocation Alternate interval for labeling parallels
MlabelParallel Keyword or latitude for placing meridian labels
PlabelMeridian Keyword or longitude for placing parallel labels
mlabelzero22pi(function) Relabel meridians with positive angle from 0° to 360°

For complete descriptions of all map axes properties, refer to the axesm reference page.

4-85

4 Creating and Viewing Maps

Summary of Polygon Display Functions

4-86

The following table lists the available Mapping Toolbox patch polygon display functions.

Function Used For

fillm Filled 2-D map polygons

fill3m Filled 3-D map polygons in 3-D space

geoshow Display map latitude and longitude data in 2-D
mapshow Display map data without projection in 2-D

patchm Patch objects projected on map axes

patchesm Patches projected as individual objects on map axes

The fillm function makes use of the low-level function patchm. The toolbox provides another patch
drawing function called patchesm. The optimal use of either depends on the application and user
preferences. The patchm function creates one displayed object, which can contain multiple faces that
do not necessarily connect. Mapping Toolbox data arrays contain NaNs to separate unconnected
patch faces, unlike MATLAB patch display functions, which cannot handle NaN-delimited data for
patches. The patchesm function, on the other hand, treats each face as a separate object and returns
an array of patch objects. In general, patchm requires more memory but is faster than patchesm.
The patchesm function is useful if you need to manipulate the appearance of individual patches (as
thematic maps often require).

The geoshow and mapshow functions provide a superset of functionality for displaying unprojected
and projected geodata, respectively, in two dimensions. These functions accept geographic data
structures (geostructs and mapstructs) and coordinate vector arrays, but can also directly read
shapefiles and geolocated raster files. With them, you can map polygon data, controlling rendering by
constructing symbolspecs, data structures that you can construct with the makesymbolspec
function. You can easily construct symbolspecs for point and line data as well as polygon data to
control its display in geoshow, mapshow, and mapview.

See Also

More About
. “Create and Display Polygons” on page 2-12

Display Vector Data as Points and Lines

Display Vector Data as Points and Lines

This example shows how to display vector data as points and lines. Mapping Toolbox vector map
display of line objects works much like MATLAB line display functions. Mapping Toolbox supports
versions of many MATLAB functions that work with geographic coordinates and map projections.

Set up a map axes and frame.

load coastlines
axesm mollweid
framem('FEdgeColor', 'blue', 'FLineWidth',0.5)

Plot the coast vector data using plotm and specify line property names and values.

plotm(coastlat,coastlon, 'LineWidth',1, 'Color', 'blue")

4-87

4 Creating and Viewing Maps

Define the three city geographic locations and plot symbols at these locations. Suppose you have
variables representing the locations of Cairo (30 degrees N, 32 degrees E), Rio de Janeiro (23 degrees
S, 43 degrees W), and Perth (32 degrees S, 116 degrees E), and you want to plot them as markers
only, without connecting line segments. You can also use geoshow (for data in geographic
coordinates) or mapshow (for data in projected coordinates) to create such maps in either a map axes
or a regular axes.

citylats = [30 -23 -32]; citylongs = [32 -43 116];
plotm(citylats,citylongs, 'r*')

4-88

Display Vector Data as Points and Lines

Calculate and plot a great circle track from Cairo to Rio de Janeiro and a rhumb line track from Cairo
to Perth.

[gclat,gclong] = track2('gc',citylats(1l),citylongs(1),...
citylats(2),citylongs(2));
[rhlat,rhlong] = track2('rh',citylats(1l),citylongs(1), ...
))

citylats(3),citylongs(3));
plotm(gclat,gclong, 'm-'); plotm(rhlat,rhlong, 'm-")

’

4-89

4 Creating and Viewing Maps

4-90

Display Vector Maps as Lines or Patches

Display Vector Maps as Lines or Patches

This example shows how to display vector maps as lines or patches (filled-in polygons). Mapping
Toolbox functions let you display patch vector data that uses NaNs to separate closed regions.

Use the who command to examine the contents of the conus (conterminous U.S.) MAT-file and then
load it into the workspace. Vector map data for lines or polygons can be represented by simple
coordinate arrays, geostructs, or mapstructs. The variables uslat and uslon together describe
three polygons (separated by NaNs) the largest of which represent the outline of the conterminous
United States. The two smaller polygons represent Long Island, NY, and Martha's vineyard, an island
off Massachusetts. The variables gtlakelat and gtlakelon describe three polygons (separated by
NaNs) for the Great Lakes. The variables statelat and statelon contain line-segment data
(separated by NaNs) for the borders between states, which is not formatted for patch display.

who -file conus.mat

Your variables are:

description gtlakelon statelat uslat
gtlakelat source statelon uslon
load conus

Verify that line and polygon data contains NaNs (hence multiple objects).
find(isnan(gtlakelon))
ans = 3x1

881
1056
1227

Read the worldrivers shapefile for the region that covers the conterminous United States.
uslatlim = [min(uslat) max(uslat)]
uslatlim = Ix2

25.1200 49.3800

uslonlim = [min(uslon) max(uslon)]
uslonlim = Ix2

-124.7200 -66.9700

rivers = shaperead('worldrivers', 'UseGeoCoords', true,
'BoundingBox', [uslonlim', uslatlim'])

rivers=23x1 struct array with fields:
Geometry
BoundingBox
Lon
Lat

4-91

4 Creating and Viewing Maps

4-92

Name

Note that the Geometry field specifies whether the data is stored as a Point , MultiPoint, Line,
or Polygon .

rivers(1l).Geometry

ans =
'Line’

Set up a map axes to display the state coordinates, turning on the map frame, map grid, and the
meridian and parallel labels.. As conic projections are appropriate for mapping the entire United
States, create a map axes object using an Albers equal-area conic projection ('eqaconic').
Specifying map limits that contain the region of interest automatically centers the projection on an
appropriate longitude. The frame encloses just the mapping area, not the entire globe. As a general
rule, you should specify map limits that extend slightly outside your area of interest (worldmap and
usamap do this for you). Conic projections need two standard parallels (latitudes at which scale
distortion is zero). A good rule is to set the standard parallels at one-sixth of the way from both
latitude extremes. Or, to use default latitudes for the standard parallels, simply provide an empty
matrix in the call to axesm .

figure

axesm('MapProjection', 'egaconic', 'MapParallels', [],
'"MapLatLimit', uslatlim + [-2 2],
'"MapLonLimit', uslonlim + [-2 2])

axis off;

framem;

gridm;

mlabel;

plabel

Display Vector Maps as Lines or Patches

120 W

Plot a patch to display the area occupied by the conterminous United States. Use the geoshow
function with DisplayType set to 'polygon' . Note that the order in which add layers to a map can
affect visibility because some layers can hide other layers. For example, because some U.S. state
boundaries follow major rivers, display the rivers last to avoid obscuring them.

geoshow(uslat,uslon, 'DisplayType', 'polygon', 'FaceColor’',...
[1 .5 .3], 'EdgeColor', 'none')

4-93

4 Creating and Viewing Maps

1200 W

Plot the Great Lakes on top of the land area, using geoshow .

geoshow(gtlakelat,gtlakelon, 'DisplayType', 'polygon’',...
'FaceColor', 'cyan', 'EdgeColor', 'none')

4-94

Display Vector Maps as Lines or Patches

1200 W

Plot the line segment data showing state boundaries, using geoshow with DisplayType set to
'line’ .

geoshow(statelat,statelon, 'DisplayType', 'line', 'Color', 'k")

4-95

4 Creating and Viewing Maps

1200 W

Use geoshow to plot the river network. Note that you can omit DisplayType

geoshow(rivers, 'Color', 'blue')

4-96

Display Vector Maps as Lines or Patches

See Also
axesm | geoshow | shaperead

More About
. “Create and Display Polygons” on page 2-12

4-97

4 Creating and Viewing Maps

Types of Data Grids and Raster Display Functions

Mapping Toolbox functions and GUIs display both regular and geolocated data grids originating in a
variety of formats. Recall that regular data grids require a referencing vector or matrix that describes
the sampling and location of the data points, while geolocated data grids require matrices of latitude
and longitude coordinates.

The data grid display functions are geographic analogies to the MATLAB surface drawing functions,
but operate specifically on map axes objects. Like the line-plotting functions discussed in the previous
chapter, some Mapping Toolbox grid function names correspond to their MATLAB counterparts with
an m appended.

Note Mapping Toolbox functions beginning with mesh are used for regular data grids, while those
beginning with surf are reserved for geolocated data grids. This usage differs from the MATLAB
definition; mesh plots are used for colored wire-frame views of the surface, while surf displays
colored faceted surfaces.

Surface map objects can be displayed in a variety of different ways. You can assign colors from the
figure colormap to surfaces according to the values of their data. You can also display images where
the matrix data consists of indices into a colormap or display the matrix as a three-dimensional
surface, with the z-coordinates given by the map matrix. You can use monochrome surfaces that
reflect a pseudo-light source, thereby producing a three-dimensional, shaded relief model of the
surface. Finally, you can use a combination of color and light shading to create a lighted shaded relief
manp.

The following table lists the available Mapping Toolbox surface map display functions.

Function Used For

geoshow Display map data gridded in latitude and longitude in 2-D
mapshow Display gridded map data without projection in 2-D
meshm Regular data grid warped to projected graticule mesh
surfm Geolocated data grid projected on map axes

pcolorm Projected data grid in z = 0 plane

surfacem Data grid warped to projected graticule mesh

surflm 3-D shaded surface with lighting projected on map axes
meshlsrm 3-D lighted shaded relief of regular data grid

surflsrm 3-D lighted shaded relief of geolocated data grid

4-98

Fit Gridded Data to the Graticule

Fit Gridded Data to the Graticule

The toolbox projects surface objects in a manner similar to the traditional methods of map making. A
cartographer first lays out a grid of meridians and parallels called the graticule. Each graticule cell is
a geographic quadrangle. The cartographer calculates or interpolates the appropriate x-y locations
for every vertex in the graticule grid and draws the projected graticule by connecting the dots.
Finally, the cartographer draws the map data freehand, attempting to account for the shape of the
graticule cells, which usually change shape across the map. Similarly, the toolbox calculates the x-y
locations of the four vertices of each graticule cell and warps or samples the matrix data to fit the
resulting quadrilateral.

In mapping data grids using the toolbox, as in traditional cartography, the finer the mesh (analogous
to using a graticule with more meridians and parallels), the greater precision the projected map
display will have, at the cost of greater effort and time. The graticule in a printed map is analogous to
the spacing of grid elements in a regular data grid, the Mapping Toolbox representation of which is
two-element vectors of the form [number-of-parallels, number-of-meridians]. The graticule
for geolocated data grids is similar; it is the size of the latitude and longitude coordinate matrices:
number-of-parallels = mrows-1 and number-of-meridians = ncols-1. However, because
geolocated data grids have arbitrary cell corner locations, spacing can vary and thus their graticule is
not a regular mesh.

Fit Gridded Data to Fine and Coarse Graticules

This example shows how to fit gridded data to fine and coarse graticules. The choice of graticule is a
balance of speed over precision in terms of positioning the grid on the map. Typically, there is no
point to specifying a mesh finer than the data resolution (in this example, 180-by-360 grid cells). In
practice, it makes sense to use coarse graticules for development tasks and fine graticules for final
graphics production.

Note that, regardless of the graticule resolution, the grid data is unchanged. In this case, the data
grid is a 180-by-360 matrix, and regardless of where it is positioned, the data values are unchanged.

Load elevation raster data and a geographic cells reference object.

load topo60c

Set up a Robinson projection, specify a coarse (10-by-20) cell graticule, and display the data mapped
to the graticule using a colormap appropriate for elevation data. Notice that for this coarse graticule,
the edges of the map do not appear as smooth curves.

figure

axesm robinson

spacing = [10 20];

m = meshm(topo60c, topo60OCR, spacing);
demcmap (topo60c)

4-99

4 Creating and Viewing Maps

Now reset the graticule, using the setm function, to make it less coarse, [50 100]. (You can also reset
the graticule using the meshgrat function.) Notice that the jagged edges effect is now negligible.

setm(m, 'MeshGrat', [50 100])

4-100

Fit Gridded Data to the Graticule

Reset the graticule again, this time to a very fine grid using the setm function. Notice that the result
does not appear to be any better than the original display with the default [50 100] graticule, but it
took much longer to produce. Making the mesh more precise is a trade-off of resolution versus time
and memory usage.

setm(m, 'MeshGrat', [200 400])

4-101

4 Creating and Viewing Maps

4-102

Create 3-D Displays with Raster Data

Create 3-D Displays with Raster Data

This example shows how to create 3-D displays with raster data by setting up surface views, which
requires explicit horizontal coordinates. The simplest way to display raster data is to assign colors to
matrix elements according to their data values and view them in two dimensions. Raster data maps
also can be displayed as 3-D surfaces using the matrix values as the z data. The difference between
regular raster data and a geolocated data grid is that each grid intersection for a geolocated grid is
explicitly defined with x-y or latitude/longitude matrices or is interpolated from a graticule, while a
regular matrix only implies these locations (which is why it needs a reference vector, matrix, or
object).

Load elevation data and a geographic cells reference object for the Korean peninsula. Transform the
data and reference object to a fully geolocated data grid using the geographicGrid function.

load korea5c
[lat,lon] = geographicGrid(korea5cR);

Next use the km2deg function to convert the units of elevation from meters to degrees, so they are
commensurate with the latitude and longitude coordinate matrices.

korea5c = km2deg(korea5c/1000);

Observe the results by typing the whos command. The lat and lon coordinate matrices form a mesh
the same size as korea5c. This is a requirement for constructing 3-D surfaces. In lon, all columns
contain the same number for a given row, and in lat, all rows contain the same number for a given

column.
whos
Name Size Bytes C(lass Attribute
description 2x64 256 char
korea5c 180x240 345600 double
korea5cR 1x1 128 map.rasterref.GeographicCellsReference
lat 180x240 345600 double
lon 180x240 345600 double
source 2x76 304 char

Now set up a map axes object with the equal area conic projection and, instead of using the meshm
function to make this map, display the geolocated data grid using the surfm function. Set an
appropriate colormap. This produces a map that is really a 3-D view seen from directly overhead (the
default perspective). To appreciate that, all you need to do is to change your viewpoint.

axesm('MapProjection', 'eqaconic', 'MapParallels',[],...
‘MapLatLimit"',[30 45], 'MapLonLimit', [115 135])

surfm(lat,lon, korea5c, korea5c)

demcmap (korea5c)

tightmap

4-103

4 Creating and Viewing Maps

Specify a viewing azimuth of 60 degrees (from the east southeast) and a viewing elevation of 30
degrees above the horizon, using the view function.

view(60,30)

4-104

Create 3-D Displays with Raster Data

4-105

4 Creating and Viewing Maps

Create Map Displays with Geographic Data

4-106

There are many geospatial data sets that contain data with coordinates in latitude and longitude in
units of degrees. This example illustrates how to import geographic data with coordinates in latitude
and longitude, display geographic data in a map display, and customize the display.

In particular, this example illustrates how to

* Import specific geographic vector and raster data sets

* Create map displays and visualize the data

» Display multiple data sets in a single map display

* Customize a map display with a scale ruler and north arrow
* Customize a map display with an inset map

Example 1: Import Polygon Geographic Vector Data

Geographic vector data can be stored in a variety of different formats, for example shapefile and GPS
Exchange (GPX) formats. This example imports polygon geographic vector data from a shapefile.
Vertices in a shapefile can be either in geographic coordinates (latitude and longitude) or in a
projected coordinate reference system.

Read USA state boundaries from the usastatehi. shp file included with the Mapping Toolbox™
software. The state boundaries are in latitude and longitude.

states = shaperead('usastatehi.shp', 'UseGeoCoords', true);

Example 2: Display Polygon Geographic Vector Data

Display the polygon geographic vector data onto a map axes. Since the geographic extent is in the
United States, you can use usamap to setup a map axes. Use geoshow to project and display the
geographic data onto the map axes. Display an ocean color in the background by setting the frame's
face color.

figure
ax = usamap('conus');
oceanColor = [0.3010 0.7450 0.9330];
landColor = [0.9290 0.6940 0.1250];
setm(ax, 'FFaceColor', oceanColor)
geoshow(states, 'FaceColor',landColor)
title({ ...
'Conterminous USA State Boundaries',
'Polygon Geographic Vector Data'})

Create Map Displays with Geographic Data

Conterminous USA State Boundaries
Polygon Geographic Vector Data

1207 W

110" w 100" W 90 W

Example 3: Import Point and Line Geographic Vector Data

Import point geographic vector data from the boston placenames.gpx file included with the
Mapping Toolbox™ software. The file contains latitude and longitude coordinates of geographic point
features in part of Boston, Massachusetts, USA. Use gpxread to read the GPX file and return a
geopoint vector.

placenames = gpxread('boston placenames.gpx');

Import line vector data from the sample route.gpx file included with the Mapping Toolbox™
software. The file contains latitude and longitude coordinates for a GPS route from Boston Logan
International Airport to The MathWorks, Inc in Natick Massachusetts, USA. Use gpxread to read the
GPX file and return a geopoint vector.

route = gpxread('sample route.gpx');

Example 4: Display Point and Line Geographic Vector Data

Display the geographic vector data in a map axes centered around the state of Massachusetts, using
the data from the state boundaries and the GPX files. The coordinates for all of these data sets are in
latitude and longitude.

Find the state boundary for Massachusetts.

stateName = 'Massachusetts';
ma = states(strcmp({states.Name},b stateName));

4-107

4 Creating and Viewing Maps

4-108

Use usamap to setup a map axes for the region surrounding Massachusetts. Color the ocean by
setting the frame's face color. Display the state boundaries and highlight Massachusetts by using
geoshow to display the geographic data onto the map axes. Since the GPX route is a set of points
stored in a geopoint vector, supply the latitude and longitude coordinates to geoshow to display the
route as a line.

figure

ax = usamap('ma');

maColor = [0.4660 0.6740 0.1880];
setm(ax, 'FFaceColor', oceanColor)
geoshow(states, 'FaceColor',landColor)
geoshow(ma, 'FaceColor', maColor)

geoshow(placenames);
geoshow(route.Latitude, route.Longitude);
title({'Massachusetts and Surrounding Region', 'Placenames and Route'})

Massachusetts and Surrounding Region
Placenames and Route

43"

42°

417 M

407 M

5w 7w 73w o7t2w 7w 700w 89w 68 W

Example 5: Set Latitude and Longitude Limits Based on Data Extent

Zoom into the map by computing new latitude and longitude limits for the map using the extent of the
placenames and route data. Extend the limits by .05 degrees.

lat = [route.Latitude placenames.Latitude];

lon = [route.Longitude placenames.Longitude];

latlim [min(lat) max(lat)];

lonlim [min(lon) max(lon)];

[lLatlim, lonlim] = bufgeoquad(latlim, lonlim, .05, .05);

Construct a map axes with the new limits and display the geographic data.

Create Map Displays with Geographic Data

figure

ax = usamap(latlim, lonlim);

setm(ax, 'FFaceColor', oceanColor)
geoshow(ma, 'FaceColor',maColor)
geoshow(placenames)
geoshow(route.Latitude, route.Longitude)
title('Closeup of Placenames and Route')

Closeup of Placenames and Route

424" N

423" N

714 W 713 W 7127 W 7117 W 710 W

Example 6: Import Geographic Raster Data

Geographic raster data can be stored in a variety of different formats, for example GeoTIFF, Esri
Grid, DTED, and ENVI formats. To read data in these formats, use the readgeoraster function.

To read an image associated with a worldfile, use the imread and worldfileread functions instead.
Use imread to read the image and worldfileread to read the worldfile and construct a spatial
referencing object. For this example, import data for the region surrounding Boston, Massachusetts.
The coordinates of the image are in latitude and longitude.

filename = 'boston ovr.jpg’';
RGB = imread(filename);
R = worldfileread(getworldfilename(filename), 'geographic', size(RGB));

Example 7: Display Geographic Raster Data

Display the RGB image onto a map axes. The limits of the map are set to the limits defined by the
spatial referencing object, R. The coordinates of the data are in latitude and longitude.

4-109

4 Creating and Viewing Maps

figure
ax = usamap(RGB, R);
setm(ax, ...
'MLabelLocation', .05, 'PLabellLocation', .05,
'MLabelRound', -2, 'PLabelRound',-2)
geoshow(RGB, R)
title('Boston Overview')

Boston Overview

4240 N

7110 W 71.05 W 71.00° W

Example 8: Display Geographic Vector and Raster Data

You can display raster and vector data in a single map display. Since the coordinates for all of these
data sets are in latitude and longitude, use geoshow to display them in a single map display. Setup
new limits based on the limits of the route, placenames, and the overview image.

lat = [route.Latitude placenames.Latitude R.LatitudelLimits];
lon = [route.Longitude placenames.Longitude R.LongitudelLimits];

latlim = [min(lat) max(lat)];
lonlim = [min(lon) max(lon)];
figure

ax = usamap(latlim, lonlim);
setm(ax, 'GColor','k"', ...
'PLabelLocation', .05, 'PLineLocation',.05)
geoshow(RGB, R)
geoshow(ma.Lat, ma.Lon,
'LineWidth', 2, 'Color', 'y")
geoshow(placenames)

4-110

Create Map Displays with Geographic Data

geoshow(route.Latitude, route.Longitude)
title('Boston Overview and Geographic Vector Data')

Boston Overview and Geographic Vector Data

424" N E ... -: ;

424" N

423" N —

713 W 7127 W 7117 W 710 W

Example 9: Customize a Map Display with a Scale Ruler

Customize a map display by including a scale ruler. A scale ruler is a graphic object that shows
distances on the ground at the correct size for the projection. This example illustrates how to
construct a scale ruler that displays horizontal distances in international miles.

Compute latitude and longitude limits of Massachusetts and extend the limits by .05 degrees by using
the bufgeoquad function.

latlim [min(ma.Lat), max(ma.Lat)];
lonlim [min(ma.Lon), max(ma.Lon)];
[lLatlim, lonlim] = bufgeoquad(latlim, lonlim, .05, .05);

Display the state boundary, placenames, route, and overview image onto the map.

figure

ax = usamap(latlim, lonlim);

setm(ax, 'FFaceColor', oceanColor)

geoshow(states, 'FaceColor', landColor)

geoshow(ma, 'LineWidth', 1.5, 'FaceColor', maColor)
geoshow(RGB, R)

geoshow(placenames)

geoshow(route.Latitude, route.Longitude)

titleText = 'Massachusetts and Surrounding Region';
title(titleText)

4-111

4 Creating and Viewing Maps

Massachusetts and Surrounding Region

425 N

4207 N

415" N

735W 730 W 725 W 7200W 715 W 7A0 W 705 W 700 W

Insert a scale ruler. You can determine a location for the scale ruler by using the ginput function as
shown below:

[xLoc,yLoc] = ginput(1l);

A location previously chosen is set below.

xLoc = -127800;

yLoc = 5014700;

scaleruler('Units', 'mi', 'RulerStyle', 'patches',

‘XLoc', xLoc, 'YLoc', ylLoc);
title({titleText, 'with Scale Ruler'})

4-112

Create Map Displays with Geographic Data

Massachusetts and Surrounding Region
with Scale Ruler

425 N

4207 N

415" N

735W 730 W 725 W 7200W 715 W 710 W 705 W 700 W

Example 10: Customize a Map Display with a North Arrow

Customize the map by adding a north arrow. A north arrow is a graphic element pointing to the
geographic North Pole.

Use latitude and longitude values to position the north arrow.
northArrowLat = 42.5;
northArrowLon = -70.25;

northarrow('Latitude', northArrowLat, 'Longitude', northArrowLon);
title({titleText, 'with Scale Ruler and North Arrow'})

4-113

4 Creating and Viewing Maps

4-114

Massachusetts and Surrounding Region
with Scale Ruler and North Arrow

425 N

4207 N

415" N

735°W 730 W 725 W 7200W 715 W 710 W 705 W 700 W

Example 11: Customize a Map Display with an Inset Map

Customize the map by adding an inset map. An inset map is a small map within a larger map that
enables you to visualize the larger geographic region of your main map. Create a map for the
surrounding region as an inset map. Use the axes function to contain and position the inset map. In
the inset map:

* Display the state boundaries for the surrounding region
* Plot a red box to show the extent of the main map

h2 = axes('Position', [.15 .6 .2 .2], 'Visible', 'off');
usamap({'PA','ME'})
plabel off; mlabel off
setm(h2, 'FFaceColor', 'w');
geoshow(states, 'FaceColor', [0.9 0.9 0.9], 'Parent', h2)
plotm(latlim([1 2 2 1 1]), lonlim([2 2 1 1 2]),
'Color', 'red', 'LineWidth', 2)
title(ax, {titleText, 'with Scale Ruler, North Arrow, and Inset Map'})

Create Map Displays with Geographic Data

Massachusetts and Surrounding Region
with Scale Ruler, North Arrow, and Inset Map

4207 N

415" N

735°W 730 W 725 W 7200W 715 W 710 W 705 W 700 W

Data Set Information

The file boston placenames.gpx is from the Bureau of Geographic Information (MassGIS),
Commonwealth of Massachusetts, Executive Office of Technology and Security Services. For more
information about the data sets, use the command type boston placenames gpx.txt.

The file boston_ovr. jpg includes materials copyrighted by GeoEye, all rights reserved. GeoEye was
merged into the DigitalGlobe corporation on January 29th, 2013. For more information about the data
set, use the command type boston ovr.txt.

See Also
geoplot | geoscatter | geoshow | northarrow | scaleruler | usamap

4-115

4 Creating and Viewing Maps

Creating Map Displays with Data in Projected Coordinate
Reference System

4-116

This example illustrates how to import and display geographic data that contain coordinates in a
projected coordinate reference system.

In particular, this example illustrates how to

» Import specific raster and vector data sets
* Create map displays for visualizing the data
* Display multiple data sets in a map display

» Display multiple data sets with coordinates in geographic and projected coordinate reference
systems in a single map display

Example 1: Import Raster Data in Projected Coordinate Reference System

Geographic raster data that contains coordinates in a projected coordinate reference system can be
stored in a variety of different formats, including standard file formats such as GeoTIFFE, Spatial Data
Transfer Standard (SDTS), NetCDE HDF4, or HDF5. This example illustrates importing data from a
GeoTIFF file. The data in the file contains coordinates in the projected map coordinate reference
system Massachusetts State Plane Mainland Zone coordinate system.

The coordinates of the image in the GeoTIFF file, boston.tif, are in a projected coordinate
reference system. You can determine that by using the geotiffinfo function and examine the PCS
and Projection field values.

info = geotiffinfo('boston.tif');
disp(info.PCS)

NAD83 / Massachusetts Mainland

disp(info.Projection)

SPCS83 Massachusetts Mainland zone (meters)

The length unit of the coordinates are defined by the UOMLength field in the info structure.
disp(info.UOMLength)

US survey foot

To import the image and the spatial referencing object, use readgeoraster.

[boston,R] = readgeoraster('boston.tif');

Example 2: Display Raster Data in Projected Coordinate Reference System

You can display the image on a regular MATLAB axes using mapshow, which displays the image and
sets the axes limits to the limits defined by the referencing object, R. The coordinates, as mentioned
above, are in US survey foot and are relative to an origin to the southwest of the map, which is
why the numbers are large. The coordinates are always positive within the zone.

mapshow(boston,R)
axis image
title('Boston')

Creating Map Displays with Data in Projected Coordinate Reference System

. Dﬁ _ . Eqstnn

766 768 77 772 7.74 776 7.78
% 10°

Example 3: Import Vector Data in Projected Coordinate Reference System

Geographic vector data that contains coordinates in a projected coordinate reference system can be
stored in shapefiles. This example illustrates how to import vector data in a projected coordinate
reference system from the shapefile, boston roads. shp.

Import vector line data from the boston_roads. shp file.

roads = shaperead('boston roads.shp');

To get information about the projected coordinate reference system, first return information about
the shapefile as a structure. Then, query the CoordinateReferenceSystem field.

roadsInfo = shapeinfo('boston roads.shp');
roadsInfo.CoordinateReferenceSystem

ans =
projcrs with properties:

Name: "NAD83 / Massachusetts Mainland"
GeographicCRS: [1x1 geocrs]
ProjectionMethod: "Lambert Conic Conformal (2SP)"
LengthUnit: "meter"
ProjectionParameters: [1x1 map.crs.ProjectionParameters]

4-117

4 Creating and Viewing Maps

4-118

Example 4: Display Vector and Raster Data in Projected Coordinate Reference System

The vector and raster data in this example are in the same projected coordinate reference system.
However, the vector data is in length units of meter, while the raster data is in length unit of survey
foot. Convert the raster data to length units of meter and display the data on the same axes.

Convert the coordinates of the raster image from units of US survey foot to meter.

R.XWorldLimits
R.YWorldLimits

R.XWorldLimits * unitsratio('m','sf');
R.YWorldLimits * unitsratio('m','sf');

Display the raster image and vector data using mapshow.

figure

mapshow(boston,R)
mapshow(roads)
title('Boston and Roads')

100 Boston and Roads

9.02r

9.015

9.01 1

9.005

N

8.995

2325 2.33 2.335 2.34 2.345 2.35 2.355 2.36 2.365 2.37 2.375
5
=10

Example 5: Display Data in both Geographic and Projected Coordinate Reference Systems

You may have geographic data whose coordinates are in latitude and longitude and other data whose
coordinates are in a projected coordinate reference system. You can display these data sets in the
same map display. This example illustrates how to display data in a geographic coordinate reference
system (latitude and longitude) with data in a projected map coordinate reference system
(Massachusetts State Plane Mainland Zone coordinate system).

Read a raster image with a worldfile whose coordinates are in latitude and longitude. Use imread to
read the image and worldfileread to read the worldfile and construct a spatial referencing object.

Creating Map Displays with Data in Projected Coordinate Reference System

filename "boston_ovr.jpg';
overview imread(filename);
overviewR = worldfileread(getworldfilename(filename), 'geographic', size(overview));

To display the overview image and the GeoTIFF image in the same map display, you need to create a
map display using a Mapping Toolbox™ projection structure containing the projection information for
the data in the projected coordinate reference system, Massachusetts State Plane Mainland Zone
coordinate system. To make a map display in this system, you can use the projection information
contained in the GeoTIFF file. Use the geotiff2mstruct function to construct a Mapping Toolbox™
projection structure, from the contents of the GeoTIFF information structure. The geotiff2mstruct
function returns a projection in units of meters. Use the projection structure to define the projection
parameters for the map display.

mstruct = geotiff2mstruct(info);
Use the latitude and longitude limits of the Boston overview image.

latlim
lonlim

overviewR.LatitudeLimits;
overviewR.LongitudelLimits;

Create a map display by using the projection information stored in the map projection structure and
set the map latitude and longitude limits. Display the geographic data in the map axes. geoshow
projects the latitude and longitude coordinates.

figure('Renderer', 'opengl')

ax = axesm(mstruct, 'Grid', 'on',...
'GColor', [.9 .9 .9],
'MapLatlimit', latlim, 'MapLonLimit', lonlim, ...
'ParallelLabel', 'on', 'PLabelLocation', .025, 'PlabelMeridian', 'west',
'MeridianLabel', 'on', 'MlabellLocation', .05, 'MLabelParallel', 'south',
'MLabelRound', -2, 'PLabelRound', -2,

'PLineVisible', 'on', 'PLinelLocation', .025,
'MLineVisible', 'on', 'MlinelLocation', .05);
geoshow(overview, overviewR)
axis off
tightmap

title({'Boston and Surrounding Region', 'Geographic Coordinates'})

4-119

Creating and Viewing Maps

4-120

Boston and Surrounding Region
Geographic Coordinates

4235 N

42.33° N REEREEE SRS e .

7110 W 7105 W 71.00° W

Since the coordinates of the GeoTIFF image are in a projected coordinate reference system, use
mapshow to overlay the more detailed Boston image onto the display. Plot the boundaries of the
Boston image in red.

mapshow(boston, R)
plot(R.XWorldLimits([1 1 2 2 1]), R.YWorldLimits([1 2 2 1 1]), 'Color', 'red')
title({'Boston and Surrounding Region', 'Geographic and Projected Coordinates'})

Creating Map Displays with Data in Projected Coordinate Reference System

Boston and Surrounding Region
Geographic and Projected Coordinates

42 40 N

4233 N [EEEE SRR g

7110 W 7105 W

Zoom to the geographic region of the GeoTIFF image by setting the axes limits to the limits of the

Boston image and add a small buffer. Note that the buffer size (delta) is expressed in meters.

delta = 1000;

xLimits = R.XWorldLimits + [-delta deltal;
yLimits = R.YWorldLimits + [-delta deltal;
xlim(ax,xLimits)

ylim(ax,yLimits)

setm(ax, 'Grid', 'off');

4-121

4 Creating and Viewing Maps

Boston and Surrounding Region
Geographic and Projected Coordinates

You can overlay the road vectors onto the map display. Use a symbol specification to give each class
of road its own color.

roadColors = makesymbolspec('Line’',...
{'CLASS', 2, 'Color', 'k'},

{'CLASS', 3, 'Color', 'g'},...
{'CLASS', 4, 'Color', 'magenta'},
{'CLASS', 5, 'Color', 'cyan'},
{'CLASS', 6, 'Color', 'b'},...
{'Default', 'Color', 'k'});

mapshow(roads, 'SymbolSpec', roadColors)
title({'Boston and Surrounding Region', 'Including Boston Roads'})

4-122

Creating Map Displays with Data in Projected Coordinate Reference System

Boston and Surrounding Region
Including Boston Roads

You can also overlay data from a GPS stored in a GPX file. Import point geographic vector data from
the boston placenames.gpx file included with the Mapping Toolbox™ software. The file contains
latitude and longitude coordinates of geographic point features in part of Boston, Massachusetts,
USA. Use gpxread to read the GPX file and return a geopoint vector.

placenames = gpxread('boston placenames')
placenames =
13x1 geopoint vector with properties:

Collection properties:
Geometry: 'point'
Metadata: [1x1 struct]
Feature properties:
Latitude: [42.3501 42.3515 42.3598 42.3584 42.3529 42.3626 42.3668 42.3668 42.3668 42.355
Longitude: [-71.0870 -71.0926 -71.0662 -71.0598 -71.0662 -71.0789 -71.0995 -71.0564 -71.08
Name: {''BACK BAY'' 'BACK BAY FENS' 'BEACON HILL' 'BOSTON' 'BOSTON NECK' 'BROAD
Description: {'PPL-SUBDVSN' 'MARSH' ‘'HILL' 'PPL' 'PENINSULA' 'CANAL' 'PPL' 'HILL' 'PI

Overlay the placenames onto the map and increase the marker size, change the markers to circles
and set their edge and face colors to yellow.

geoshow(placenames, 'Marker','o', 'MarkerSize', 6,

'MarkerEdgeColor', 'y', 'MarkerFaceColor','y")
title({'Boston and Surrounding Region', 'Including Boston Roads and Placenames'})

4-123

4 Creating and Viewing Maps

Boston and Surrounding Region

Including Boston Roads and Placenames
= T

Data Set Information

The files boston. tif and boston ovr.jpg include materials copyrighted by GeoEye, all rights
reserved. GeoEye was merged into the DigitalGlobe corporation on January 29th, 2013. For more
information about the data sets, use the commands type boston.txt and type boston ovr.txt.

The files boston_roads.shp and boston_placenames.gpx are from the Bureau of Geographic
Information (MassGIS), Commonwealth of Massachusetts, Executive Office of Technology and
Security Services. For more information about the data sets, use the commands type

boston roads.txt and type boston placenames gpx.txt.

4-124

Pick Locations Interactively

Pick Locations Interactively

You can use Mapping Toolbox functions and GUISs to interact with maps, both in mapview and in
figures created with axesm. This section describes two useful graphic input functions, inputm and
gcpmap. The inputm function (analogous to the MATLAB ginput function) allows you to get the
latitude-longitude position of a mouse click. The gcpmap function (analogous to the MATLAB function
get(gca, 'CurrentPoint')) returns the current mouse position, also in latitude and longitude.

Explore inputm with the following commands, which display a map axes with its grid and then
request three mouse clicks, the locations of which are stored as geographic coordinates in the
variable points. Then the plotm function plots the points you clicked as red markers. The display
you see depends on the points you select:

axesm sinusoid
framem on; gridm on
points=inputm(3)

points =
-41.7177 -145.0293
7.9211 -0.5332
38.5492 149.2237

plotm(points, 'r*')

Note If you click outside the map frame, inputm returns a valid but incorrect latitude and longitude,
even though the point you indicated is off the map.

One reason you might want to manually identify points on a map is to interactively explore how much
distortion a map projection has at given locations. For example, you can feed the data acquired with
inputm to the distortcalc function, which computes area and angular distortions at any location
on a displayed map axes. If you do so using the points variable, the results of the previous three
mouse clicks are as follows:

[areascale,angledef] = distortcalc(points(1,1),points(1,2))

areascale =
1.0000
angledef =
85.9284

[areascale,angledef]

distortcalc(points(2,1),points(2,2))

4-125

4 Creating and Viewing Maps

areascale =
1.0000
angledef =
3.1143

[areascale,angledef] = distortcalc(points(3,1),points(3,2))

areascale =
1.0000
angledef =
76.0623

This indicates that the current projection (sinusoidal) has the equal-area property, but exhibits
variable angular distortion across the map, less near the equator and more near the poles.

See Also
gcpmap | inputm

Related Examples
. “Create an Interactive Map for Selecting Point Features” on page 4-127

4-126

Create an Interactive Map for Selecting Point Features

Create an Interactive Map for Selecting Point Features

This example shows how to construct a map of major world cities enhanced with coastlines and
terrain. It uses the modified azimuthal Briesemeister map projection. The example includes some
optional code that allows a user to interactively pick a location and get the name and location of the
nearest city. To see this part of the example, you must run the complete example, pop-out the last
illustration into a separate MATLAB figure, and then run the optional code at the MATLAB command

line.

Step 1: Set up a Map Axes Object and Render a Global Elevation Grid

Create a map axes object.

figure
axesm bries

text(2.8,-1.8, 'Briesemeister projection', 'HorizontalAlignment', 'right"')

framem('FLineWidth',1)

Briesemeister projection

Load elevation raster data and a geographic cells reference object. Display the data on the map.

load topo60c

geoshow(topo60c, topob0OcR, ‘DisplayType', 'texturemap"')

4-127

4 Creating and Viewing Maps

4-128

Briesemeister projection

Step 2: Improve the Terrain Display

Apply a colormap appropriate for elevation data. Make the display brighter.

demcmap (topo60c)

brighten(0.5)

Create an Interactive Map for Selecting Point Features

Eriesemeister projection

Step 3: Add Simplified Coastlines

Load global coastline coordinates. Generalize the coastlines to 0.25-degree tolerance. Then, plot the
coastlines in brown.

load coastlines

[rlat,rlon] = reducem(coastlat,coastlon,0.25);
geoshow(rlat, rlon, 'Color',[.6 .5 .2],'LineWidth',1.5)

4-129

4 Creating and Viewing Maps

Eriesemeister projection

Step 4: Plot City Locations with Red Point Markers

Read a shapefile containing names of cities worldwide and their coordinates in latitude and longitude.
cities = shaperead('worldcities', 'UseGeoCoords',true);

Extract the point latitudes and longitudes with extractfield, and add them to the map.

lats = extractfield(cities, 'Lat');

lons = extractfield(cities, 'Lon');

geoshow(lats, lons,...
'DisplayType', 'point',...

'Marker', 'o',...
'MarkerEdgeColor', 'r',...
'MarkerFaceColor', 'r',...

'MarkerSize', 3)
text(-2.8,-1.8, 'Major World Cities')

4-130

Create an Interactive Map for Selecting Point Features

Major World Cities Eriesemeister projection

Step 5: Select Cities Interactively (Optional)

Now, using the map you've created, you can set up a simple loop to prompt for clicks on the map and
display the name and coordinates of the nearest city. You must pop the last map you created in Step 4
into a separate MATLAB figure window, using the button that appears at the top of the map. Also, in
the following code, set runCitySelectionLoop to true, and execute the code at the command line.

The code first displays text instructions at the upper left of the map. Then, it enters a loop in which it
captures selected latitudes and longitudes with inputm. Use distance to calculate the great circle
distance between each selected point and every city in the database. Determine index of the closest
city, change the appearance of its marker symbol, and display the city's name and latitude/longitude
coordinates.

runCitySelectionLoop = false; % Set to true to run optional city selection loop

if(runCitySelectionLoop)

hl = text(-2.8, 1.9, 'Click on a dot for its city name. Press ENTER to stop');
h2 = text(-2.8, 1.7, '');
h3 = text(-2.8, 1.5, 'City Coordinates.');

while true
[selected lat,selected lon] = inputm(1);
if isempty(selected lat)
break % User typed ENTER
end
d = distance(lats, lons, selected lat, selected lon);
k = find(d == min(d(:)),1);
city = cities(k);

4-131

4 Creating and Viewing Maps

geoshow(city.Lat, city.Lon,
'‘DisplayType', 'point’',

'Marker', 'o', ...
'MarkerkEdgeColor', 'k',
'MarkerFaceColor', 'y',
'MarkerSize', 3)
h2.String = city.Name;
h3.String = num2str([city.Lat, city.Lon], '%10.2f");
end
disp('End of input.')
end
See Also

demcmap | geoshow | inputm | shaperead

4-132

Create Small Circle and Track Annotations on Maps Interactively

Create Small Circle and Track Annotations on Maps
Interactively

You can generate geographic line annotations, such as navigational tracks and small circles,
interactively. Great circle tracks are the shortest distance between points that, when closed, partition
the Earth into equal halves. A small circle is the locus of points at a constant distance from a
reference point. Use trackg and scircleg to create them by clicking on the map. Double-click the
tracks or circles to modify the lines. Shift+click the tracks to type specific parameters into a control
panel. The control panels also allow you to retrieve or set properties of tracks and circles (for
instance, great circle distances and small circle radii).

Set up an orthographic view centered over the Pacific Ocean. Use the coastlines MAT-file.

axesm('ortho','origin', [30 180])
framem;

gridm

load coastlines
plotm(coastlat,coastlon, 'k')

Create a track with the trackg function, which prompts for two endpoints. The default track type is
a great circle. Create a great circle track from Los Angeles, California, to Tokyo, Japan, and a 1000
km radius small circle centered on the Hawaiian Islands.

trackg
Trackl: Click on starting and ending points

Now create a small circle around Hawaii with the scircleg function, which prompts for a center
point and a point on the perimeter. Make the circle's radius about 2000 km, but don't worry about
getting the size exact.

scircleg
Circle 1: Click on center and perimeter

The map should look approximately like this.

4-133

4 Creating and Viewing Maps

4-134

To adjust the size of the small circle to be 2000 km, Shift+click anywhere on its perimeter. The
Small Circles dialog box appears.

Type 2000 into the Radius field.
Click Close. The small circle adjusts to be 2000 km around Hawaii.

To adjust the track between Los Angeles and Tokyo, Shift+click on it. This brings up the Track
dialog, with which you specify a position and initial azimuth for either endpoint, as well as the length
and type of the track.

Change the track type from Great Circle to Rhumb Line with the Track pop-up menu. The track
immediately changes shape.

Experiment with the other Track dialog controls. Also note that you can move the endpoints of the
track with the mouse by dragging the red circles, and obtain the arc's length in various units of
distance.

The following figure shows the Small Circles and Track dialog boxes.

J Figure No. 1 (=]

File Edit Wiew Insert Tools Window Help

DeEds "AA/ oo

Aglll o Starting Point
Center Point ' - 3 |Lat I 34 8463
Lat I 20.1464 R) i |Lon I -120.0293
Lon I -156.3108 " ' Az I 2729938
Size Ending Point
Units IKiIometels vl L Lat I 38.9334
Radius | 2000 ; |Lon [iszza7
Track Iﬁleal Circle vl L Az I 92.9938
Npt
P I 100 Size
Close | Units [Kilometers ~|

Distance 8701.6558

Track [Rhumb Line v[

Mpts 100

Close |

Interactively Display Text Annotations on a Map

Interactively Display Text Annotations on a Map

Interactively place text annotations on a map using the gtextm function. Call the function by
specifying text and optional properties as arguments. Then, choose a location for the text by clicking
on the map.

gtextm('Hawaii', 'color','r")
gtextm('Tokyo")
gtextm('Los Angeles')

After you place text, you can move it interactively using the selection tool in the map figure window.

To display text on a map by specifying numerical arguments, use the textm function. For more
information, see “Use Geographic and Nongeographic Objects in Map Axes” on page 4-72.

4-135

4 Creating and Viewing Maps

Work with Objects by Name

4-136

You can manipulate displayed map objects by name. Many Mapping Toolbox functions assign
descriptive names to the Tag property of the objects they create. The namem and related functions
allow you to control the display of groups of similarly named objects, determine the names and
change them if desired, and use the name in the set and get functions. There is also a Mapping
Toolbox graphical user interface, mobjects, to help you manage the display and control of objects.

Some mapping display functions like framem, gridm, and contourm assign object tags by default.
You can also set the name upon display by assigning a value to the Tag property in mapping display
functions that use property name/property value pairs. If the Tag does not contain a value, the name
defaults to an object's Type property, such as 'line' or 'text'.

Manipulate Displayed Map Objects By Name

This example shows how to manipulate displayed map objects by name. Many functions assign
descriptive names to the Tag property of the objects they create. The namem and related functions
allow you to control the display of groups of similarly named objects, determine the names and
change them, if desired, and use the name in calls to get and set .

Display a vector map of the world.

f = axesm('fournier')

f:
Axes with properties:
XLim: [0 1]
YLim: [0 1]

XScale: 'linear'
YScale: 'linear'
GridLineStyle: '-'
Position: [0.1300 0.1100 0.7750 0.8150]
Units: 'normalized'

Show all properties

framem on;

gridm on;

plabel on;

mlabel('MLabelParallel',0)

load coastlines
plotm(coastlat,coastlon, 'k', 'Tag', 'Coastline")

Work with Objects by Name

List the names of the objects in the current axes using namem .

namem

ans = 6x9 char array
'PLabel '
'MLabel '
'"Parallel '
'Meridian '
'Coastline’
'"Frame !

Use handlem to get handles to graphic objects in the map. You use these handles to get or set object
properties. For example, to change the line width of the coastline with set . If you call handlem with

no arguments, it opens a graphical user interface that lists all the map axes objects. You can select
objects interactively.

set(handlem('Coastline'), 'LineWidth',2)

4-137

4 Creating and Viewing Maps

Change the colors of the meridian and parallel labels separately.

)

set (handlem('Mlabel'), 'Color’ 2 0]
0]1)

,[.5
set (handlem('Plabel'), 'Color',[.2 .5

4-138

Work with Objects by Name

Change the color of the labels to be the same.

setm(f, 'fontcolor', [.4 .5 .6])

4-139

4 Creating and Viewing Maps

Use handlem specifying the 'all' modifier to get a list of all text objects or all line objects.
t = handlem('alltext"')

t =
26x1 Text array:
Text (PLabel)
Text (PLabel)
Text (PLabel)
Text (PLabel)
Text (PLabel)
Text (PLabel)
Text (PLabel)
Text (PLabel)
Text (PLabel)
Text (PLabel)
Text (PLabel)
Text (PLabel)
Text (PLabel)
Text (MLabel)
Text (MLabel)
Text (MLabel)
Text (MLabel)
Text (MLabel)
Text (MLabel)
Text (MLabel)
Text (MLabel)

4-140

Work with Objects by Name

Text (MLabel)
Text (MLabel)
Text (MLabel)
Text (MLabel)
Text (MLabel)

handlem('allline')

3x1 Line array:
Line (Parallel)

Line (Meridian)
Line (Coastline)

4-141

Making Three-Dimensional Maps

» “Sources of Terrain Data” on page 5-2

* “Determine and Visualize Visibility Across Terrain” on page 5-3

* “Light a Terrain Map of a Region” on page 5-5

* “Surface Relief Shading” on page 5-8

* “Colored Surface Shaded Relief” on page 5-13

+ “Relief Mapping with Light Objects” on page 5-17

* “Drape Data on Elevation Maps” on page 5-24

» “Drape Geoid Heights Over Topography” on page 5-25

* “Combine Dissimilar Grids by Converting Regular Grid to Geolocated Data Grid” on page 5-30
* “Drape Geolocated Grid on Regular Data Grid via Texture Mapping” on page 5-36
* “The Globe Display Compared with the Orthographic Projection” on page 5-39

* “Access Basemaps and Terrain for Geographic Globe” on page 5-45

* “Create Interactive Basemap Picker” on page 5-47

* “Visualize Aircraft Line-of-Sight Over Terrain” on page 5-49

* “Visualize UAV Flight Path on 2-D and 3-D Maps” on page 5-58

5 Making Three-Dimensional Maps

Sources of Terrain Data

5-2

Nearly all published terrain elevation data is in the form of data grids. “Types of Data Grids and
Raster Display Functions” on page 4-98 described basic approaches to rendering surface data grids
with Mapping Toolbox functions, including viewing surfaces in 3-D axes. The following sections
describe some common data formats for terrain data, and how to access and prepare data sets for
particular areas of interest.

Digital Terrain Elevation Data from NGA

The Digital Terrain Elevation Data (DTED) Model is a series of gridded elevation models with global
coverage at resolutions of 1 kilometer or finer. DTED files are products of the U. S. National
Geospatial Intelligence Agency (NGA), formerly the National Imagery and Mapping Agency (NIMA),
and before that, the Defense Mapping Agency (DMA). The data is provided as 1-by-1 degree tiles of
elevations on geographic grids with product-dependent grid spacing. In addition to NGA's own DTED
files, terrain data from Shuttle Radar Topography Mission (SRTM), a cooperative project between
NASA and NGA, are also available in DTED format, levels 1 and 2 (see below).

The lowest resolution data is the DTED Level 0, with a grid spacing of 30 arc-seconds, or about 1
kilometer. The DTED files are binary. The files have file names with the extension dtN, where N is the
level of the DTED product. You can find published specifications for DTED at the NGA website.

NGA also provides higher resolution terrain data files. DTED Level 1 has a resolution of 3 arc-
seconds, or about 100 meters, increasing to 18 arc-seconds near the poles. It was the primary source
for the USGS 1:250,000 (1 degree) DEMs. Level 2 DTED files have a minimum resolution of 1 arc-
second near the equator, increasing to 6 arc-seconds near the poles. DTED files are available on from
several sources on CD-ROM, DVD, and on the Internet.

Note For information on locating map data for download over the Internet, see the following
documentation at the MathWorks website: “Find Geospatial Data Online” on page 2-73.

Digital Elevation Model Files from USGS

The United States Geological Survey (USGS) has prepared terrain data grids for the U.S. suitable for
use at scales between 1:24,000 and 1:250,000 and beyond. Some of this data originated from Defense
Mapping Agency DTED files. Specifications and data quality information are available for these
digital elevation models (DEMs) and other U.S. National Mapping Program geodata from the USGS.
USGS no longer directly distributes 1:24,000 DEMs and other large-scale geodata. U.S. DEM files in
SDTS format are available from private vendors, either for a fee or at no charge, depending on the
data sets involved.

The largest scale USGS DEMs are partitioned to match the USGS 1:24,000 scale map series. The grid
spacing for these elevations models is 30 meters on a Universal Transverse Mercator grid. Each file
covers a 7.5-minute quadrangle. (Note, however, that only a subset of paper quadrangle maps are
projected with UTM, and that USGS vector geodata products might not use this coordinate system.)
The map and data series is available for much of the conterminous United States, Hawaii, and Puerto
Rico.

Determine and Visualize Visibility Across Terrain

Determine and Visualize Visibility Across Terrain

You can use regular data grids of elevation data to answer questions about the mutual visibility of
locations on a surface (intervisibility). For example,

» Is the line of sight from one point to another obscured by terrain?

* What area can be seen from a location?
* What area can see a given location?

The first question can be answered with the 1os2 function. In its simplest form, 10s2 determines the
visibility between two points on the surface of a digital elevation map. You can also specify the
altitudes of the observer and target points, as well as the datum with respect to which the altitudes
are measured. For specialized applications, you can even control the actual and effective radius of the
Earth. This allows you to assume, for example, that the Earth has a radius 1/3 larger than its actual
value, a setting which is frequently used in modeling radio wave propagation.

Compute Line of Sight

The following example shows a line-of-sight calculation between two points on a regular data grid
generated by the peaks function. The calculation is performed by the 1os2 function, which returns a
logical result: 1 (points are mutually visible—intervisible), or 0 (points are not intervisible).

1 Create an elevation grid using peaks with a maximum elevation of 500, and set its origin at (0°N,
0°W), with a spacing of 1000 cells per degree):

map = 500*peaks(100);
maplegend = [1000 0 0O];

2 Define two locations on this grid to test intervisibility:

latl = -0.027;
lonl = 0.05;
lat2 = -0.093;
lon2 = 0.042;

3 Calculate intervisibility. The final argument specifies the altitude (in meters) above the surface of
the first location (latl, Lon1l) where the observer is located (the viewpoint):

los2(map,maplegend, latl, lonl,lat2,lon2,100)
ans =

5-3

5 Making Three-Dimensional Maps

S
\\ Terrain
Visible

000k 2 Obscured
= # Observer
= Line of Sight
]
& 20001
E e
o =y
e -3000F e
s =
= S
z 5
8
2 4000 ¢
[} 2y
=

-5000 F

1 1 1 1 | i L
0 1000 2000 3000 4000 5000 6000 7000

Horizontal Distance from Observer

The los2 function produces a profile diagram in a figure window showing visibility at each grid cell
along the line of sight that can be used to interpret the Boolean result. In this example, the diagram
shows that the line between the two locations just barely clears an intervening peak.

You can also compute the viewshed, a name derived from watershed, which indicates the elements of
a terrain elevation grid that are visible from a particular location. The viewshed function checks for
a line of sight between a fixed observer and each element in the grid. See the viewshed function
reference page for an example.

Light a Terrain Map of a Region

Light a Terrain Map of a Region

Light a terrain map of a region around South Boulder Peak in Colorado.

First, import elevation data and a geographic postings reference object. To plot the data using
geoshow, the raster data must be of type double or single. Therefore, specify the data type for the
raster using the 'OutputType' name-value pair.

[Z,R] = readgeoraster('n39 wl06 3arc v2.dtl', 'OutputType', 'double');

Then, display the data as a surface. Apply a colormap appropriate for terrain data using the demcmap
function.

usamap(R.LatitudeLimits,R.LongitudeLimits);
geoshow(Z,R, 'DisplayType', 'surface")
demcmap(Z)

400 N | o
o -
L‘ [] :
395 N : i
L& [“_- .
™
K .
F't
a | i
390 N
106.0° W 1055 W 1065.00 W

Set the vertical exaggeration using the daspectm function. Then, specify a light source in the top left
corner of the map. Find the coordinates of the top left corner by querying the LatitudeLimits and
Longitudelimits properties of the reference object.

daspectm('m',20)

cornerlat = R.LatitudelLimits(2);
cornerlon = R.LongitudeLimits(1);
lightm(cornerlat, cornerlon)

5-5

Making Three-Dimensional Maps

5-6

390 N B

106.0° W 1055 W 105.00 W

Restore the luminance of the map by specifying the ambient, diffuse, and specular light strength.

ambient 0.7;

diffuse 1;

specular = 0.6;

material([ambient diffuse specular])

Light a Terrain Map of a Region

400 N

Q

I
Lo

395 N [

1060 W 1055 W 1060 W

The DTED file used in this example is courtesy of the US Geological Survey.

See Also
daspectm | Lightm

More About

. “Lighting Overview”

5-7

5 Making Three-Dimensional Maps

Surface Relief Shading

You can make dimensional monochrome shaded-relief maps with the function surflm, which is
analogous to the MATLAB surfl function. The effect of surflm is similar to using lights, but the
function models illumination itself (with one “light source” that you specify when you invoke it, but
cannot reposition) by weighting surface normals rather than using light objects.

Shaded relief maps of this type are usually portrayed two-dimensionally rather than as perspective
displays. The surflm function works with any projection except globe.

The surflm function accepts geolocated data grids only. Recall, however, that regular data grids are
a subset of geolocated data grids, to which they can be converted using the geographicGrid
function. The following example illustrates this procedure.

Create Monochrome Shaded Relief Map

Simulate a single light source in a figure using surflm. First, load elevation data and a geographic
cells reference object for the Korean peninsula. Import coastline vector data using shaperead.
Create a map with appropriate latitude and longitude limits using worldmap.

load koreasc

latlim = korea5cR.LatitudeLimits;

lonlim = korea5cR.LongitudelLimits;

coastline = shaperead('landareas’',...
'UseGeoCoords', true,...
'BoundingBox', [lonlim' latlim']);

worldmap(latlim, lonlim)

Display the coastline data using geoshow.

geoshow(coastline, 'FaceColor', 'none')

Surface Relief Shading

M]

40" N

30" N —

s, ¢

120° £ 125 E 130" E 136 E

Transform the regular data grid to a geolocated data grid using the geographicGrid function.
Then, generate a shaded relief map using surflm. By default, the lighting direction is 452
counterclockwise from the viewing direction. Therefore, the light source is in the southeast. Change
the colormap to the monochromatic colormap 'copper'.

[klat,klon] = geographicGrid(korea5cR);

s = surflm(klat, klon,korea5c);
colormap('copper')

5-9

5 Making Three-Dimensional Maps

30“ N

115" E 1,:3.5o E

120" E 125 E 130" E

Clear the map. Then, display the shaded relief map with a different light source by specifying the
azimuth as 1352 and the elevation as 609. The surface lightens and has a new character because it is
lit closer to overhead and from a different direction.

clmo(s)
s = surflm(klat,klon, korea5c,[135 60]);

5-10

Surface Relief Shading

35"

30“ N

115" E 1,3'5 E

120" E 125 E 130" E

Shift the light to the northwest by specifying the azimuth as -1352. Lower the light to 402 above the
horizon. A lower light source decreases the overall reflectance of the surface when viewed from
above. Therefore, specify a 1-by-4 vector of reflectance constants that describe the relative
contributions of ambient light, diffuse reflection, specular reflection, and the specular shine
coefficient.

clmo(s);
ht = surflm(klat, klon,korea5c,[-135 30],[0.65 0.4 0.3 10]);

5-11

5 Making Three-Dimensional Maps

5-12

40" N

30“ N

115" E 1,:3.5o E

120" E 125 E 130" E

The mountain ridges that run from northeast to southwest are approximately perpendicular to the
light source. Therefore, these parameters demonstrate appropriate lighting for the terrain.

The monochromatic coloration in this example does not differentiate land from water. For an example
that differentiates land from water, see “Colored Surface Shaded Relief” on page 5-13.

Colored Surface Shaded Relief

Colored Surface Shaded Relief

The functions meshlsrm and surflsrm display maps as shaded relief with surface coloring as well
as light source shading. You can think of them as extensions to surflm that combine surface coloring
and surface light shading. Use meshlsrm to display regular data grids and surflsrm to render
geolocated data grids.

These two functions construct a new colormap and associated CData matrix that uses grayscales to
lighten or darken a matrix component based on its calculated surface normal to a light source. While
there are no analogous MATLAB display functions that work like this, you can obtain similar results
using MATLAB light objects, as “Relief Mapping with Light Objects” on page 5-17 explains.

For further information, see the reference pages for surflsrm, meshlsrm, daspectm, and view.

Create Colored Shaded Relief Map

Display surface illumination over colored elevation data using surflsrm. First, load elevation data
and a geographic cells reference object for the Korean peninsula. Georeference the regular data grid
using geographicGrid.

load koreasc
[klat,klon] = geographicGrid(korea5cR);

Create a colormap appropriate for elevation data. Plot the colored shaded relief map by specifying a
light source with an azimuth of -130° and an altitude of 502. The surflsrm function transforms the
colormap to shade relief according to the light source. Eliminate white space around the map using
tightmap.

[cmap,clim] = demcmap(korea5c);

axesm('miller', 'MapLatLimit', [30 45], 'MapLonLimit',[115 135])
surflsrm(klat, klon,korea5c,[-130 50],cmap,clim)

tightmap

5-13

5 Making Three-Dimensional Maps

You can achieve the same effect using meshlsrm, which operates on regular data grids.

The surface has more contrast than if it were not shaded. Lighten the surface uniformly by 25%.

brighten(0.25)

5-14

Colored Surface Shaded Relief

Display an oblique view of the surface. Hide the bounding box by setting the Box property,
exaggerate terrain relief by a factor of 50 using daspectm, and set the view to an azimuth of -302 and
an altitude of 30°.

set(gca, 'Box"', 'off")

daspectm('meters',50)
view(-30,30)

5-15

5 Making Three-Dimensional Maps

You can continue rotating the perspective using view or the Rotate 3D tool in the figure window. You
can continue changing the vertical exaggeration using daspectm. To change the built-in lighting
direction, you must generate a new view using surflsrm.

5-16

Relief Mapping with Light Objects

Relief Mapping with Light Objects

This example shows how to create a light object to mimic the map produced in “Colored Surface
Shaded Relief” on page 5-13, which uses shaded relief computations rather than light objects.

The meshlsrm and surflsrm functions simulate lighting by modifying the colormap with bands of
light and dark. The map matrix is then converted to indices for the new "shaded" colormap based on
calculated surface normals. Using light objects allows for a wide range of lighting effects. The toolbox
manages light objects with the 1ightm function, which depends upon the MATLAB 1ight function.
Lights are separate MATLAB graphic objects.

For more information, consult the reference pages for lightm, daspectm, material, lighting,
and view, along with “Lighting, Transparency, and Shading”.

llluminate Color 3-D Relief Maps with Light Objects

Add a light source to a surface colored data grid using 1ightm. First, load elevation data and a
geographic cells reference object for the Korean peninsula. Display the data without lighting effects
using meshm. Apply a colormap appropriate for elevation data using demcmap. Eliminate extra white
space around the map using tightmap.

load koreasc

axesm('miller', 'MapLatLimit',[30 45], 'MapLonLimit',[115 135])
meshm(korea5c, korea5cR,size(korea5c),korea5c)

demcmap (korea5c)

tightmap

5-17

5 Making Three-Dimensional Maps

Place a light source at the northwest corner of the grid, one degree high, using Lightm. The lightm
function is similar to the MATLAB® function light, but accepts latitude and longitude inputs instead
of x, y, and z. Note that the figure becomes darker.

lightm(45,115,1)

Exaggerate the vertical dimension to make any relief viewable in perspective. Note that the figure
becomes darker still.

daspectm('meters',50)

5-18

Relief Mapping with Light Objects

Set the ambient (direct), diffuse (skylight), and specular (highlight) surface reflectivity
characteristics, respectively.

material([0.7 0.9 0.8])

5-19

5 Making Three-Dimensional Maps

By default, the lighting is flat (plane facets). Change the light to use Gouraud shading (interpolated
normal vectors at facet corners).

lighting Gouraud

5-20

Relief Mapping with Light Objects

Remove the edges of the bounding box. Change the view by specifying an azimuth of -302 and an
altitude of 30°.

ax = gca;

ax.Box = 'off';
view(-30,30)

5-21

5 Making Three-Dimensional Maps

If there is only one light in the current figure, you can remove it using clmo.

clmo(handlem('light"'))

5-22

Relief Mapping with Light Objects

5-23

5 Making Three-Dimensional Maps

Drape Data on Elevation Maps

5-24

Combine Elevation Maps with Other Kinds of Data

Lighting effects can provide important visual cues when elevation maps are combined with other
kinds of data. The shading resulting from lighting a surface makes it possible to "drape" satellite data
over a grid of elevations. It is common to use this kind of display to overlay georeferenced land cover
images from Earth satellites such as LANDSAT and SPOT on topography from digital elevation
models.

When the elevation and image data grids correspond pixel-for-pixel to the same geographic locations,
you can build up such displays using the optional altitude arguments in the surface display functions.
If they do not, you can interpolate one or both source grids to a common mesh.

Note The geoid can be described as the surface of the ocean in the absence of waves, tides, or land
obstructions. It is influenced by the gravitational attraction of denser or lighter materials in the
Earth's crust and interior and by the shape of the crust. A model of the geoid is required for
converting ellipsoidal heights (such as might be obtained from GPS measurements) to orthometric
heights. Geoid heights vary from a minimum of about 105 meters below sea level to a maximum of
about 85 meters above sea level.

Drape Data over Terrain with Different Gridding

If you want to combine elevation and attribute (color) data grids that cover the same region but are
gridded differently, you must resample one matrix to be consistent with the other. That is, you can
construct a geolocated grid version of the regular data grid values or construct a regular grid version
of the geolocated data grid values.

It helps if at least one of the grids is a geolocated data grid, because their explicit horizontal
coordinates allow them to be resampled using the geointerp function. To combine dissimilar grids,
you can do one of the following:

The following two examples illustrate these closely related approaches.

* “Combine Dissimilar Grids by Converting Regular Grid to Geolocated Data Grid” on page 5-30
* “Drape Geolocated Grid on Regular Data Grid via Texture Mapping” on page 5-36

Drape Geoid Heights Over Topography

Drape Geoid Heights Over Topography

Display geoid data draped over topographic relief. For this example, display the geoid data as a color
attribute instead of a 3-D surface.

Load topographic raster data and a geographic cells reference object. Get geoid heights by calling
the egm96geoid function and specifying the reference object.

load topo60c
[N,R] = egm96geoid(topo60cR);

Create a map axes object using a Gall stereographic cylindrical projection (a perspective projection).
Use meshm to plot a colored display of the geoid's variations, but specify topo60c as the final
argument, to give each geoid grid cell the height (z value) of the corresponding topographic grid cell.
Low geoid heights are shown as blue, high ones as yellow.

axesm gstereo;
meshm(N,R,size(N), topo60c)

For reference, plot the world coastlines in black, raise their elevation to 1000 meters (high enough to
clear the surface in their vicinity), and expand the map to fill the frame.

load coastlines
plotm(coastlat,coastlon, 'k")
zdatam(handlem('allline'),1000)
tightmap

5-25

5 Making Three-Dimensional Maps

Due to the vertical view and lack of lighting, the topographic relief is not visible, but it is part of the
figure's surface data. Bring it out by exaggerating relief greatly, and then setting a view from the
south-southeast.

daspectm('m',200); tightmap
view(20,35)

5-26

Drape Geoid Heights Over Topography

Remove the bounding box, shine a light on the surface (using the default position, offset to the right
of the viewpoint), and render again with Gouraud shading.

ax = gca;

ax.Box = 'off"';
camlight;
lighting Gouraud

5-27

5 Making Three-Dimensional Maps

Finally, set the perspective to converge slightly (the default perspective is orthographic). Notice that
the geoid mirrors the topography of the major mountain chains such as the Andes, the Himalayas,
and the Mid-Atlantic Ridge. You can also see that large areas of high or low geoid heights are not
simply a result of topography.

ax.Projection = 'perspective';

5-28

Drape Geoid Heights Over Topography

5-29

5 Making Three-Dimensional Maps

Combine Dissimilar Grids by Converting Regular Grid to
Geolocated Data Grid

5-30

This example shows how to combine an elevation data grid and an attribute (color) data grid that
cover the same region but are gridded differently. The example drapes slope data from a regular data
grid on top of elevation data from a geolocated data grid. The example uses the geolocated data grid
as the source for surface elevations and transforms the regular data grid into slope values, which are
then sampled to conform to the geolocated data grid (creating a set of slope values for the diamond-
shaped grid) and color-coded for surface display. This approach works with any dissimilar grids,
although the two data sets in this example actually have the same origin (the geolocated grid derives
from the topo60c data set).

Load the geolocated data grid from the mapmtx file and the regular data grid from the topo60c file.
The mapmtx file actually contains two regions but this example only uses the diamond-shaped
portion, 1t1, 1gl, and mapl, centered on the Middle East.

load mapmtx 1tl 1gl mapl
load topo60c

Compute the surface aspect, slope, and gradients for topo60c. This example only uses the slopes in
subsequent steps.

[aspect,slope,gradN,gradE] = gradientm(topo60c, topo60OcR);

Use the geointerp function to interpolate slope values to the geolocated grid specified by 1t1 and
191l . The output is a 50-by-50 grid of elevations matching the coverage of the map1l variable.

slopel = geointerp(slope,topo60cR,1tl,1gl);

Set up a figure with a Miller projection and use surfm to display the slope data. Specify the z -values
for the surface explicitly as the map1l data, which is terrain elevation. The map mainly depicts steep
cliffs, which represent mountains (the Himalayas in the northeast), and continental shelves and
trenches.

figure
axesm miller
surfm(1tl,1gl,slopel,mapl)

Combine Dissimilar Grids by Converting Regular Grid to Geolocated Data Grid

The coloration depicts steepness of slope. Change the colormap to make the steepest slopes magenta,
the gentler slopes dark blue, and the flat areas light blue:

colormap cool

5-31

5 Making Three-Dimensional Maps

Use view to get a southeast perspective of the surface from a low viewpoint. In 3-D, you immediately
see the topography as well as the slope.

view(20,30)
daspectm('meter',200)

5-32

Combine Dissimilar Grids by Converting Regular Grid to Geolocated Data Grid

The default rendering uses faceted shading (no smooth interpolation). Render the surface again, this

time making it shiny with Gouraud shading and lighting from the east (the default of camlight lights
surfaces from over the right shoulder of the viewer).

material shiny
camlight
lighting Gouraud

5-33

5 Making Three-Dimensional Maps

Finally, remove white space and re-render the figure in perspective mode.
axis tight

ax = gca;
ax.Projection = 'perspective';

5-34

Combine Dissimilar Grids by Converting Regular Grid to Geolocated Data Grid

5-35

5 Making Three-Dimensional Maps

Drape Geolocated Grid on Regular Data Grid via Texture
Mapping

This example shows how to create a new regular data grid that covers the region of the geolocated
data grid, then embed the color data values into the new matrix. The new matrix might need to have
somewhat lower resolution than the original, to ensure that every cell in the new map receives a
value. The example combines dissimilar data grids by creating a new regular data grid that covers
the region of the geolocated data grid's z-data. This approach has the advantage that more
computational functions are available for regular data grids than for geolocated ones. Color and
elevation grids do not have to be the same size. If the resolutions of the two data grids are different,
you can create the surface as a three-dimensional elevation map and later apply the colors as a
texture map. You do this by setting the surface CData property to contain the color matrix, and
setting the surface face color to 'texturemap'.

Load elevation raster data and a geographic cells reference object from topo60c.mat. Get individual
variables containing terrain data from mapmtx.mat.

load topo60c
load mapmtx 1tl 1gl mapl

Identify the geographic limits of the geolocated grid that was loaded from mapmtx.

latlim(1l) = 2*floor(min(ltl(:))/2);
lonlim(1l) = 2*floor(min(lgl(:))/2);
latlim(2) = 2*ceil(max(1tl(:))/2);
lonlim(2) = 2*ceil(max(lgl(:))/2);

Crop the global elevation data to the rectangular region enclosing the smaller grid.
[topol, topolR] = geocrop(topo60c,topo60cR,latlim,lonlim);
Allocate a regular grid filled uniformly with -Inf, to receive texture data.

L1IR = georefcells(latlim,lonlim,2,2);
L1 = zeros(L1R.RasterSize);

L1 = L1 - Inf;

Overwrite L1 using imbedm, converting it from a geolocated grid to a regular grid, in which the
values come from the discrete Laplacian of the elevation grid map1.

L1 = imbedm(1tl,1gl,del2(mapl),L1,L1R);

Set up a map axes with the Miller projection and use meshm to display the cropped data. Render the
figure as a 3-D view from a 20 degree azimuth and 30 degree altitude, and exaggerate the vertical
dimension by a factor of 200. Both the surface relief and coloring represent topographic elevation.

figure

axesm miller

h = meshm(topol,topolR,size(topol),topol);
view(20,30)

daspectm('m',200)

5-36

Drape Geolocated Grid on Regular Data Grid via Texture Mapping

Apply the L1 matrix as a texture map directly to the surface using the set function. The area not
covered by the [1t1,1gl,mapl] geolocated data grid appears dark blue because the corresponding
elements of L1 were set to -Inf.

h.CData = L1;

h.FaceColor = 'texturemap';
material shiny

camlight

lighting gouraud

axis tight

5-37

5 Making Three-Dimensional Maps

5-38

The Globe Display Compared with the Orthographic Projection

The Globe Display Compared with the Orthographic Projection

This example illustrates the differences between the two-dimensional orthographic projection, which
looks spherical but is really flat, and the three-dimensional globe display. Use the Rotate 3D tool to
manipulate the display.

Render 2-D Orthographic Projection

Load elevation raster data and a geographic cells reference object. Display the data using a two-
dimensional orthographic map projection.

load topo60Oc

axesm ortho

framem

meshm(topo60c, topo6OcR)
demcmap (topo60Oc)

View the map obliquely.

view(3)
daspectm('m',1)

5-39

5 Making Three-Dimensional Maps

You can view the map in 3-D from any perspective, even from underneath. To visualize this, define a

geolocated data grid with the geographicGrid function, populate it with a constant z-value, and
render it as a stem plot with stem3m.

topo60cRg = topo60OcR;

topo60cRg.RasterSize = [20 20];

[latgrat,longrat] = geographicGrid(topo60cRg);
stem3m(latgrat, longrat,500000*ones(size(latgrat)),'r')

5-40

The Globe Display Compared with the Orthographic Projection

Use the Rotate 3D tool on the figure window toolbar to change your viewpoint. No matter how you
position the view, you are looking at a disc with stems protruding perpendicularly.

Render 3-D Globe Display

Display the elevation data using a three-dimensional globe rather than an orthographic projection.

figure

axesm('globe', 'Geoid',earthRadius)
meshm(topo60c, topo60cR)

demcmap (topo60c)

view(3)

5-41

5 Making Three-Dimensional Maps

Include the stem plot to visualize the difference in surface normals on a sphere.

stem3m(latgrat, longrat,500000*ones(size(latgrat)),'r')

5-42

The Globe Display Compared with the Orthographic Projection

You can apply lighting to the display, but its location is fixed, and does not move as the camera
position is shifted.

camlight('headlight', 'infinite"')

5-43

5 Making Three-Dimensional Maps

You can use the LabelRotation property when you use the orthographic or any other Mapping
Toolbox™ projection to align meridian and parallel labels with the graticule. Because the globe

display is not a true map projection and is handled differently internally, LabelRotation does not
work with it.

See Also
camlight | geographicGrid | stem3m | view

5-44

Access Basemaps and Terrain for Geographic Globe

Access Basemaps and Terrain for Geographic Globe

Geographic globe objects created using the geoglobe function plot data over basemaps and terrain.
You can access different basemap and terrain choices in different ways.

MathWorks offers a selection of basemaps, including two-tone, color terrain, and high-zoom-level
displays. Six of the basemaps are tiled data sets created using Natural Earth. Five of the basemaps
are high-zoom-level maps provided by Esri. For more information about basemap options, see
geobasemap.

Use Installed Basemap

The 'darkwater' basemap is installed with MATLAB. The other basemaps are not installed with
MATLAB, but you can access them over an Internet connection.

Download Basemaps

To work offline or to improve map responsiveness, you can download the basemaps created using
Natural Earth onto your local system. The basemaps provided by Esri are not available for download.

Download basemaps using the Add-On Explorer.

On the MATLAB Home tab, in the Environment section, click Add-Ons > Get Add-Ons.

In the Add-On Explorer, scroll to the MathWorks Optional Features section, and click Show
All to find the basemap add-ons. You can also search for the basemap add-ons by name (listed in
the following table) or click Optional Features in Filter by Type.

3 Select the basemap add-ons that you want to download.

Basemap Name Basemap Data Package Name
'bluegreen’ MATLAB Basemap Data - bluegreen
'grayland’ MATLAB Basemap Data - grayland
'colorterrain' MATLAB Basemap Data - colorterrain
'grayterrain’ MATLAB Basemap Data - grayterrain
'landcover’ MATLAB Basemap Data - landcover

Add Custom Basemaps

Add custom basemaps using the addCustomBasemap function. An active Internet connection is
required to add and use custom basemaps.

Access Terrain

By default, the geographic globe uses terrain data hosted by MathWorks and derived from the
GMTED2010 model by the USGS and NGA. You need an active Internet connection to access this
terrain data, and you cannot download it.

To work offline or to improve terrain responsiveness, add custom terrain from DTED files using the
addCustomTerrain function. You do not need an active Internet connection to add or use custom
terrain.

5-45

5 Making Three-Dimensional Maps

5-46

Alternatively, you can set the Terrain property of the geographic globe object to 'none’.

Specify Basemaps and Terrain

To specify a basemap for a geographic globe, you can either:

» Use the geobasemap function. Specify the geographic globe as the first argument.

uif = uifigure;
g = geoglobe(uif);
geobasemap(g, 'streets')

» Set the Basemap property of the GeographicGlobe object. You can set this property by using a
name-value pair or by using dot notation.

uif = uifigure;
g = geoglobe(uif, 'Basemap', 'streets');
g.Basemap = 'topographic';

To specify terrain for the geographic globe, set the Terrain property of the GeographicGlobe
object. You can set this property by using a name-value pair or by using dot notation.

uif = uifiqgure;
g = geoglobe(uif, 'Terrain', 'none');
g.Terrain = 'gmted2010"';

See Also
addCustomBasemap | addCustomTerrain | geobasemap | geoglobe

More About
. “System Requirements for Graphics”
. “Resolving Low-Level Graphics Issues”

Create Interactive Basemap Picker

Create Interactive Basemap Picker

Interactively change the basemap of a geographic globe by adding a drop-down menu to the figure.

First, create a program file called basemapPicker.m. Within the program file:

Create a geographic globe in a figure created using the uifigure function.

Specify a position for the menu. In this example, the values of x, y, w, and h position the menu in
the upper-right corner of the figure window.

Specify the basemaps to include in the menu.

Create the menu. Use a ValueChangedFcn callback that executes when you make a selection
from the menu. The callback changes the basemap using the geobasemap function.

Write custom code to reposition the menu when you change the size of the figure. To do this,
disable automatic resizing of the menu. Then, create custom behavior by defining a
SizeChangedFcn callback. The repositionDropdown function repositions the menu, so that it
stays in the upper-right corner of the figure.

function basemapPicker

uif = uifiqure;
gl = geoglobe(uif);

X = 0.8;

y =0.9;

w=0.2;

h=20.1;

uifW = uif.Position(3);

uifH = uif.Position(4);

pos = [x*uifW y*uifH w*uifW h*uifH];

basemaps = ["satellite" "streets" "streets-light" "streets-dark"
"landcover" "darkwater" "grayland" "bluegreen"
"grayterrain" "colorterrain"];

dd = uidropdown(uif, 'Position',pos, 'Items', basemaps);
dd.ValueChangedFcn = @(src,eventdata)geobasemap(gl,src.Value);

uif.AutoResizeChildren = 'off';
uif.SizeChangedFcn = @(src,eventdata)repositionDropdown(dd,x,y,w,h);

end

function repositionDropdown(dd,x,y,w,h)

fig = dd.Parent;

uifW = fig.Position(3);

uifH = fig.Position(4);

dd.Position = [x*uifW y*uifH w*uifW h*uifH];

end

Run the program file. Change the basemap to 'colorterrain' using the drop-down menu.

5-47

5 Making Three-Dimensional Maps

colorterrain

ermain source: GMTED2010 7.5 arc-second resolution (approamately 250 melers) for most of the globe . Data available from
e LS. Geological Surwey.

See Also
geobasemap | geoglobe | uidropdown

More About
. “Callback Definition”

5-48

Visualize Aircraft Line-of-Sight Over Terrain

Visualize Aircraft Line-of-Sight Over Terrain

This example shows how to compute and visualize the line-of-sight visibility of an aircraft from a
ground location over terrain. First, import terrain data for a region and apply it to a 3-D geographic
globe. Then, perform point-to-point visibility analysis from a ground location to a simulated flight
path, and display the results on a 3-D geographic globe. Finally, perform point-to-area visibility
analysis from the ground location corresponding to aircraft flying at constant altitude, and display the
results on a 2-D geographic axes.

Use line-of-sight analysis for ground-to-air scenarios where unobstructed visibility is important, such
as for radar surveillance, communications, and UAV path planning. This example applies the analysis
to radar surveillance for an airport.

Import Terrain Data

Specify a DTED-format terrain file to use for data analysis and 3-D visualization. The terrain file was
downloaded from the "SRTM Void Filled" data set available from the United States Geological Survey
(USGS).

dtedfile = "n39 wl06 3arc v2.dtl";
attribution = "SRTM 3 arc-second resolution. Data available from the U.S. Geological Survey.";

Import DTED file data into the workspace as an array and a geographic raster reference object,
specifying the return type as double so that the data works with all analysis functions.

[Zterrain,Rterrain] = readgeoraster(dtedfile, "OutputType", "double");

View the geographic limits and sample resolution of the terrain data by accessing properties of the
geographic raster reference object. The limits for the file correspond to the region around Boulder,
Colorado, US, and the resolution corresponds to the DTED level-1 format, which has sample
resolution of 3 arc seconds, or about 90 meters.

latlim = Rterrain.LatitudeLimits;

lonlim = Rterrain.LongitudelLimits;

latspc = Rterrain.SampleSpacingInLatitude;

lonspc = Rterrain.SampleSpacingInLongitude;

disp("Latitude limits of terrain: " + mat2str(latlim) + newline + ...
"Longitude limits of terrain: " + mat2str(lonlim) + newline + ...
"Terrain resolution in latitude: " + latspc*3600 + " arc seconds" + newline + ...
"Terrain resolution in longitude: " + lonspc*3600 + " arc seconds")

Latitude limits of terrain: [39 40]

Longitude limits of terrain: [-106 -105]

Terrain resolution in latitude: 3 arc seconds

Terrain resolution in longitude: 3 arc seconds

Visualize Aircraft Trajectory Line-of-Sight on a 3-D Map
Create Geographic Globe with Custom Terrain

Add custom data with the DTED file for use with 3-D visualization.

addCustomTerrain("southboulder",dtedfile, "Attribution",attribution)

Specify the custom terrain with a new geographic globe. Preserve the custom terrain on the globe
when data is added by setting hold on.

5-49

5 Making Three-Dimensional Maps

fig = uifigure;
g = geoglobe(fig,"Terrain","southboulder");
hold(g, "on")

View Radar Ground Location

Define a radar ground location at Rocky Mountain Metropolitan Airport. The radar is mounted on a
tower 10 meters above the ground. The radar altitude is the sum of the ground elevation and the
radar tower height, referenced to mean sea level.

rdrlat = 39.913756;

rdrlon = -105.118062;
rdrtowerht = 10;

rdralt = 1717 + rdrtowerht;

Plot the radar location on the geographic globe.

geoplot3(g, rdrlat, rdrlon,rdralt,"co",
"LineWidth",6,
"MarkerSize",1)

r

erman source: SHTM 2 ac-second resolufion. Data svailable from the L5, Gedlogical Survey. = Source: Esnl, Meaxar,

se0Eye, Earthstar Geuglébhicﬁ. CHNES/Airbus DS, USDA, USGS, A=nGRID, IGN, and the GIS User Gommunity

Simulate Aircraft Trajectory
Simulate the trajectory of an aircraft circling over the mountains.

Define the center location of a circling aircraft.

5-50

Visualize Aircraft Line-of-Sight Over Terrain

tlatd = 39.80384;
tlon® = -105.49916;
tht0 = 3000;

Define trajectory waypoints for the aircraft using east-north-up (ENU) Cartesian coordinates. Specify
a curve with a radius of 5 km (5000 m) and a vertical offset of 1 km (1000 m) over 1.5 revolutions.
Then, convert the ENU coordinates to geodetic coordinates that are referenced to the WGS84
ellipsoid.

azs = 1:540;

r = 5000;

[X,Y] = pol2cart(deg2rad(azs),r);

Z = linspace(0,1000,numel(azs));

wgs84 = wgs84Ellipsoid;

[tlat,tlon,tht] = enu2geodetic(X,Y,Z,tlato,tlon0d,thtd,wgs84);

View Aircraft Trajectory Over Terrain

Plot the aircraft trajectory on the geographic globe. The default view, or camera position, is overhead
and oriented down.

traj = geoplot3(g,tlat,tlon,tht,"y",
"HeightReference", "ellipsoid",
"LinewWidth",3);

emrain source: SRTM 2 anc-second resolufion. Data available from the U.S. Geological Survey. = Source: Esn, Maear,
SepEye, Earthstar Geographics, CHNESAirbus OS5, USDA, USGS, AemGRID, IGN, and the GIS Liser Community

View the 3-D terrain and radar location from a distance by changing the camera position and rotation
angles.

5-51

5 Making Three-Dimensional Maps

campos(g,39.77114,-105.62662,6670)
camheading(g,70)
campitch(g,-12)

‘erman soumce: SRTM 2 anc-second resolufion. Data available from the U5, Geological Survey. -~ Sounce: Esri, Maxar,
GeoEye, Earthsiar Geographics, CNESfArbus OS5, USDA] LUISGES, AernGRID, IGN, and the GIS User, Commumnity

Compute Line-of-Sight Visibility with Aircraft Trajectory
Compute line-of-sight visibility with the 10s2 function and the DTED data.

The los2 function supports either orthometric height (height above mean sea level) or height above
ground level. Convert the aircraft trajectory heights from ellipsoidal height to orthometric height.
Then, compute the line-of-sight from the airport radar location to each aircraft trajectory waypoint
and convert the results to a logical array.

numwaypts = numel(tlat);
isvis = zeros(1l,numwaypts);
talt = tht - egm96geoid(tlat,tlon);
for k = 1l:numwaypts
isvis(k) = los2(Zterrain,Rterrain, rdrlat, rdrlon,tlat(k),tlon(k),rdralt,talt(k),"MSL","MSL");
end
isvis = logical(isvis);

Note that Los2 calculates line-of-sight visibility assuming the data is referenced to a spherical Earth,
whereas the data is actually referenced to the WGS84 ellipsoid, and as a result there may be minor
discrepancies. The line-of-sight calculation also corresponds to optical line-of-sight and does not
account for refraction through the atmosphere.

5-52

Visualize Aircraft Line-of-Sight Over Terrain

Visualize Line-of-Sight Visibility Over Terrain

Plot the line-of-sight visibility. Use green markers where the aircraft is visible from the airport and
magenta markers where it is not visible.

delete(traj)
geoplot3(g,tlat(isvis),tlon(isvis),tht(isvis),"og",

"HeightReference", "ellipsoid",

"LinewWidth", 2,

"MarkerSize",1)
geoplot3(g,tlat(~isvis),tlon(~isvis),tht(~isvis), "om",

"HeightReference", "ellipsoid",

“"LinewWidth",2, ...

"MarkerSize",1)

4 S

Temain source: SRTM 3 anc-second resclution. Diata available from the U.5. GeologicalSurvey. = Source: Esri, Maxar,

GeoEye, Earthstar Geographics, CNES{Airbus 05, USDA, USGS, AeroGRID, IGN, and fhe GIS User Commnunity

View the line-of-sight plot from the perspective of the airport. Get the geodetic coordinates of the
position that is 900 meters east, 200 meters north, and 100 meters up from the radar location. Then,
set the camera position and rotation angles. The green markers appear in view, but the magenta
markers are either completely or partially obstructed by terrain.

rdrht = rdralt + egm96geoid(rdrlat, rdrlon);

[camlat, camlon, camht] = enu2geodetic(900,200,100,rdrlat, rdrlon,rdrht,wgs84);
campos (g, camlat, camlon, camht)

camheading(g, -110)

campitch(g,0)

5-53

5 Making Three-Dimensional Maps

5-54

Temain source: SRTM 3 arc-second resglution. Data available from the U.S. Geological Survey. - Source: Esri, Maxar,
GeoEye, Earthstar Geographics, CHNES/Airbus DS, USDA, USGS, AeroGRID, IGM, and the GIS User Commmunity

Visualize Aircraft Line-of-Sight Visibility Contours on a 2-D Map

The previous sections performed point-to-point line-of-sight analysis and visualization from a radar
location to an aircraft trajectory. Now perform point-to-area line-of-sight analysis and visualization
from the same radar location over the terrain region. The visualization displays the edge of visibility
for an aircraft flying at constant altitude.

Plot Radar Location and Terrain Limits on a 2-D Map

Plot the radar location in a new figure with a topographic 2-D map.

figure
geoplot(rdrlat,rdrilon,"co",
"LineWidth",6,
"MarkerSize",3,
"DisplayName", "Radar location")
hold on
geobasemap topographic
gx = gca;
gx.InnerPosition = gx.OuterPosition;

Display the limits of the custom terrain as a rectangle on the map.

latmin
latmax

latlim(1);
latlim(2);

Visualize Aircraft Line-of-Sight Over Terrain

lonmin lonlim(1);

lonmax lonlim(2);

geoplot([latmin latmin latmax latmax latmin], [lLonmin lonmax lonmax lonmin lonmin],
"LineWidth",1,
"Color","k", ...
"DisplayName","Terrain limits")

Display a legend in the northwest corner.

legend("Location", "northwest")

Radar location
Terrain limits =

Arapaho .
MNational
fome:sl
> Denver
Castle Ri
Pike
e Matonal
P2 Il Fo re st
10 km
5 mi . | ;

- — Esri-HERE Garmin, FAD, USGS, EPA, NP5

Plot Visibility Contours for Aircraft Flying at Constant Altitude
Specify three altitudes above mean sea level for the aircraft. For each altitude:

* Compute the viewshed using the radar location as the observer. The viewshed defines the area
that has line-of-sight visibility.

* Find the edge of aircraft visibility by computing contours from the viewshed data.

* Remove small contour segments.

» Plot the contours on the geographic axes.

tgtalts = [3000 4000 5000];
minVertices = 10;

cfig = figure("Visible","off"); % Suppress contour plot using invisible figure
cax = axes("Parent",cfig);

5-35

5 Making Three-Dimensional Maps

for tgtalt = tgtalts
vis = viewshed(Zterrain,Rterrain,rdrlat,rdrlon,rdralt, tgtalt, "MSL", "MSL");

C = contourm(vis,Rterrain, "LevellList",1,"Parent",cax);
clat = C(2,:);
clon = C(1,:);

clats
clons
k =1;
while k < size(C,2)
numVertices = clat(k);
if numVertices > minVertices % Do not plot small segments
clats [clats clat(k+1l:k+numVertices) NaN]; %#ok<AGROW>
clons [clons clon(k+1:k+numVertices) NaN]; %#ok<AGROW>

[1;
[1;

end
k = k + numVertices + 1;
end

geoplot(gx,clats,clons,"LineWidth",2,
"DisplayName", "Aircraft: " + string(tgtalt) + " m");

end
= T T T T T i
Radar location
Terrain limits
Aircraft: 3000 m
Aircraft: 4000 m
Aircraft: 5000 m
Denver
Castle R
A 25 1T
/
10 km "*:
5 mi <t
gt S . — ['|‘|'*[LY or HERE Carmin, FAD, USGS, EPA, NPS

The contours appear primarily to the west of the radar location over the mountains. The contours do
not appear in other directions because visibility is not constrained by the terrain in those directions
within the terrain data limits.

5-56

Visualize Aircraft Line-of-Sight Over Terrain

If the radar is constrained by line-of-sight visibility, then the contours correspond to radar coverage
regions for varying altitude, where the nearest contour to the radar corresponds to radar coverage
for an aircraft flying at 3000 meters and the furthest contour corresponds to radar coverage for an
aircraft flying at 5000 meters.

As with los2, the viewshed function calculates line-of-sight visibility assuming the data is
referenced to a spherical Earth, whereas the data is actually referenced to the WGS84 ellipsoid, and
as a result there may be minor discrepancies. The line-of-sight calculation also corresponds to optical
line-of-sight and does not account for refraction through the atmosphere.

Clean Up
Clean up by closing the geographic globe and removing the imported terrain data.
if isvalid(fig)

close(fig)

end
removeCustomTerrain("southboulder")

See Also

Functions
addCustomTerrain | campos | geoglobe | geoplot3 | los2 | readgeoraster

Objects
GeographicPostingsReference

More About

. “Find Ellipsoidal Height from Orthometric Height” on page 3-55
. “Find Geospatial Raster Data” on page 2-76

3-57

5 Making Three-Dimensional Maps

Visualize UAV Flight Path on 2-D and 3-D Maps

5-58

This example visualizes a simulated unmanned aerial vehicle (UAV) flight from the Mauna Loa
Baseline Observatory to the top of the Mauna Loa Volcano in Hawaii. First, display the track on
geographic axes and a geographic globe. Then, synchronize the view and visualize the flight path by
using camera navigation functions. Finally, view the top of the Mauna Loa volcano as a panorama.

Visualize Region of Interest in 2-D

The use of UAVs to track characteristics of changing topology, gasses, and ash clouds around
volcanos is becoming an important area of research for scientists [1]. A UAV can travel in regions that
are hazardous for a volcanologist. Simulating the flight path of the UAV prior to sending it out on a
mission can assist with understanding the topology and terrain. To gain an overview and 2-D
perspective of the region, view the locations of the Mauna Loa Baseline Observatory and the Mauna
Loa Volcano in a geographic axes.

Get Coordinates of Mauna Loa Baseline Observatory

Specify the coordinates of the Mauna Loa Baseline Observatory [2]. The height of the observatory is
in meters above mean sea level (MSL).

obslat 19.5362;
obslon -155.5763;
obsH = 3397.00;

Get Coordinates of Mauna Loa Volcano

Specify the coordinates of the top of Mauna Loa [3]. The height of the volcano is orthometric and is in
meters.

mllat = 19.475;
mllon = -155.608;
mlH = 4169;

View Mauna Loa Baseline Observatory and Mauna Loa Volcano in 2-D

For a 2-D perspective of the region, use geoaxes and geoplot to plot the location of the observatory
and the top of the volcano.

figure

geoaxes("Basemap", "satellite","ZoomLevel",612);

hold("on")

geoplot(obslat,obslon,"ow","MarkerSize", 10, "MarkerFaceColor", "magenta",
"DisplayName", "Mauna Loa Observatory");

geoplot(mllat,mllon, "ow", "MarkerSize",10, "MarkerFaceColor","blue",
"DisplayName", "Mauna Loa Volcanao");

legend

https://www.esrl.noaa.gov/gmd/obop/mlo/
https://www.esrl.noaa.gov/gmd/obop/mlo/
https://www.usgs.gov/volcanoes/mauna-loa

Visualize UAV Flight Path on 2-D and 3-D Maps

10°32'M

Latitude

10°30'M

10°28'M

Flesource Mapoing Hawai, Geabya, Earthsiar Seagraphics

155°38'W 155°36"W 155734 "W 155%32"W
Longitude

Synchronize View of Mauna Loa Baseline Observatory in 2-D and 3-D

Use the geographic axes to view the observatory in 2-D and the geographic globe to view the
observatory in 3-D.

Create Geographic Axes and Geographic Globe in Same Figure

Set up a 2-D and 3-D map display by creating geographic axes and a geographic globe in the same UI
figure. To view more of the 2-D map, set the InnerPosition of the geographic axes to its
OuterPosition. To view both map displays with the same basemap, set the basemap of the
geographic axes to "satellite".

figpos = [1000 500 800 400];
uif = uifigure("Position",figpos);

ug = uigridlayout(uif,[1,2]);

pl = uipanel(ug);

p2 = uipanel(ug);

gx = geoaxes(pl,"Basemap","satellite");
gg = geoglobe(p2);

gx.InnerPosition = gx.OuterPosition;
gg.Position = [0 0 1 1];

5-59

5 Making Three-Dimensional Maps

! EOOD km

|
| 5000 mi
I .

Earlhetar Goographics
i

5-60

View Observatory in 2-D

View the observatory from 200 meters above the terrain. Control the view of the geographic axes by
changing its map center and zoom level. You can synchronize the view of the geographic axes with
the view of the geographic globe by converting the camera height of the globe to a zoom level for the
axes. Calculate an approximate zoom level from terrain height by using the heightToZoomLevel
local function.

heightAboveTerrain = 200;

gx.MapCenter = [obslat, obslon];

zoomLevel = heightToZoomLevel (heightAboveTerrain, obslat);
gx.ZoomLevel = zoomLevel;

View Observatory in 3-D

Control the view of the geographic globe by changing the position of the camera. The campos
function requires you to specify ellipsoidal height (relative to the WGS84 ellipsoid) instead of
orthometric height (relative to mean sea level). Convert the height of the observatory to ellipsoidal
height. All heights are in meters.

N = egm96geoid(obslat, obslon);

obsh = obsH + N;

ellipsoidalHeight = obsh + heightAboveTerrain;
campos (gg,obslat,obslon,ellipsoidalHeight)
drawnow

Visualize UAV Flight Path on 2-D and 3-D Maps

Import Flight Track Data and Calculate Heading and 3-D Distance

Import the simulated flight track from the Mauna Loa Baseline Observatory to the top of the Mauna
Loa volcano. The file contains the latitudes, longitudes, and altitudes of the UAV path, referenced to
mean sea level.

trk = gpxread("sample uavtrack.gpx");

tlat = trk.Latitude;
tlon = trk.Longitude;
talt = trk.Elevation;

Calculate Flight Headings

Calculate the UAV heading at each track point using the azimuth function.

wgs84 = wgs84Ellipsoid;
theading = azimuth(tlat(l:end-1),tlon(l:end-1),tlat(2:end),tlon(2:end),wgs84);
theading [theading(1l);theading(:)];

Calculate 3-D Distances

Calculate the cumulative distance for the UAV flight track. The distance function does not take into
account changes in elevation or altitude. In order to calculate the distance the UAV moves from point
to point in 3-D, you need to work in geocentric Cartesian coordinates (X, Y, Z). Compute the point-to-
point offset components (in meters) using the ecef0ffset function. The altitude data of the UAV
flight is referenced to the mean sea level. To use the ecefOffset function, the heights must be
referenced to the ellipsoid. Convert the orthometric heights of the flight track to ellipsoidal height
(relative to the WGS84 ellipsoid). All heights are in meters.

N
h

egm96geoid(tlat, tlon);
talt + N;

Compute distance offsets.

5-61

5 Making Three-Dimensional Maps

5-62

latl = tlat(l:end-1);
lat2 = tlat(2:end);
lonl = tlon(l:end-1);
lon2 = tlon(2:end);

hl = h(l:end-1);
h2 = h(2:end);
[dx,dy,dz] = ecefOffset(wgs84,latl,lonl,hl,lat2,lon2,h2);

Calculate the Euclidean distance between each pair of adjacent points using the hypot function. The
distance is in meters.

distanceIncrementIn3D = hypot (hypot(dx, dy), dz);
Compute cumulative distance in 3-D and the total distance in meters.

cumulativeDistanceIn3D = cumsum(distanceIncrementIn3D);
totalDistanceIn3D = sum(distanceIncrementIn3D);
fprintf("Total UAV track distance is %f meters.\n",totalDistanceIn3D)

Total UAV track distance is 8931.072120 meters.

Assign a variable for the cumulative distance to be used for plotting the animation.
tdist = [0 cumulativeDistanceIn3D];

Plot Flight Line from Mauna Loa Baseline Observatory to top of Mauna Loa Volcano

Plot the simulated flight line from the Mauna Loa Baseline Observatory to the top of the Mauna Loa
volcano.

Plot the flight line. By default, the geographic globe places the line at the center of the display. Hold
the geographic axes to preserve the basemap. Its location will not change because you have
previously set the MapCenter and ZoomLevel.

geoplot3(gg, tlat,tlon,talt,"c","LineWidth",2,"HeightReference", "geoid")
hold(gx, "on")
ptrack = geoplot(gx,tlat,tlon,"c","LineWidth",62);

Set the map center and zoom level to be consistent with the 3-D view by converting the camera
height for the globe to the zoom level for the axes.

[clat,clon,cheight] = campos(gg);

gx.MapCenter = [clat,clon];

gx.ZoomLevel = heightToZoomLevel(cheight, clat);
drawnow

Visualize UAV Flight Path on 2-D and 3-D Maps

Set Initial View from Mauna Loa Baseline Observatory to Top of Mauna Loa Volcano

View the flight line from the start position by setting the camera position to the first coordinate of the
track. For a better perspective, set the camera height to 75 meters about the height of the track.
View straight down to the observatory by setting the camera pitch to -90. View the track by setting
the heading to the third element of the calculated heading array since the first two points of the track
are the same location and the calculated heading for those locations is 0.

campos(gg,tlat(1),tlon(1))
camheight(gg,talt(1l) + 75)
campitch(gg,-90)

camheading(gg, theading(3))

Show the location of the UAV in the 2-D map, and the start and end locations of the flight track with

markers. Create a legend for the UAV track and markers.

marker = geoplot(gx,tlat(l),tlon(1l),"ow","MarkerSize",10, "MarkerFaceColor","k");
mstart = geoplot(gx,tlat(l),tlon(1l),"ow","MarkerSize",10, "MarkerFaceColor", "magenta");
mend = geoplot(gx,tlat(end),tlon(end),"ow","MarkerSize", 10, "MarkerFaceColor","blue");

"Current Location";
"Start Location";

marker.DisplayName
mstart.DisplayName

mend.DisplayName = "End Location";
ptrack.DisplayName = "UAV Track";
legend(gx)

View the topology of the region by changing the basemap.
gx.Basemap = "topographic";

View the coordinate location, altitude, and heading of the UAV by using a custom data tip that
corresponds with the location of the UAV. Include the distance from the observatory.

5-63

5 Making Three-Dimensional Maps

dt = datatip(ptrack, "Datalndex",1,"Location", "southeast");
dtrow = dataTipTextRow("Distance", tdist);

dtrow(end+1l) = dataTipTextRow("Altitude",talt);
dtrow(end+1l) = dataTipTextRow("Heading", theading);
ptrack.DataTipTemplate.DataTipRows (end+1:end+3) = dtrow;

1 km
1 mi
L

LAy Track
Current Location
Start Location
End Location

ece

Latiude 19.5362
Longltude -135.576

Distance 0
Allude 3393.18
Heading 0

MAUNA LOA

Ecri, HERE, Garmin, USGE, NGA, EPA, UEDA

5-64

Fly from Mauna Loa Baseline Observatory to Top of Mauna Loa Volcano

Animate a flight from the Mauna Loa Baseline Observatory to the top of the Mauna Loa volcano. View
the location of the UAV on the 2-D map by animating a marker and data tip. Animate the 3-D flight by
setting the camera position. For a better view of the UAV track, set the camera height to 100 meters
above the flight track. Update the camera pitch value for a better view of the flight track as the UAV
navigates to the top of the volcano. To view the current location, altitude, and heading of the UAV,
update the data tip with the current index.

pitch = -2.7689;
campitch(gg,pitch)

for k = 2:(length(tlat)-1)
campos (gg,tlat(k),tlon(k))
camheight(gg,talt(k)+100)
camheading(gg,theading(k))

set(marker, "LatitudeData",tlat(k), "LongitudeData",tlon(k));
dt.DataIndex = k;

drawnow
pause(.25)
end

campos(gg,tlat(end),tlon(end),talt(end)+100)
dt.DataIndex = length(tlat);

Visualize UAV Flight Path on 2-D and 3-D Maps

LAV Track
Current Locafion
Start Location
End Location

aee

Latitude 19.5362
Longltude -155.576
Distance 40
Altitude 3433.18
Heading 0

MAUNA LOA

Esri, HERE, Garmin, USGSE, NGA, EPA, LSDA

View a 360-Degree Panorama from Top of Mauna Loa Volcano

View a 360-degree panorama from the top of Mauna Loa by rotating the camera heading 360

degrees. Rotate clockwise with a step size of 5-degrees and start at the next 5 degree step. Update
the heading data tip.

initialHeading
increment = 5;
initialHeading = initialHeading + (increment - mod(initialHeading,increment));

camheading(gg);

filename = 'panoramic.gif';

for degree = initialHeading:increment:initialHeading+360
heading = mod(degree,360);
ptrack.DataTipTemplate.DataTipRows(end).Value(dt.DataIndex) = heading;
camheading(gg,heading);
drawnow

end

5-65

5 Making Three-Dimensional Maps

LAV Track
Current Locafion
Start Location
End Location

ane

Latitude 19.475

; 4
Longiude -155.508 |4 L OA
Distance £331.07

IL‘_‘ Altiude 4177.89
tmi Heading 245

JRE, Garmin, USGS, NGA, EPA, USDA

Local Functions
Convert Height (in meters above WGS84 ellipsoid) to Zoom Level

function zoomLevel = heightToZoomLevel(height, lat)
earthCircumference = 2 * pi * 6378137;

zoomLevel = log2((earthCircumference *cosd(lat)) / height) + 1;
zoomLevel = max(0, zoomLevel);
zoomLevel = min(19, zoomLevel);

end

References

[1] Williams, Sarah C. P. “Studying Volcanic Eruptions with Aerial Drones.” Proceedings of the
National Academy of Sciences of the United States of America 110, no. 27 (July 2, 2013):
10881. https://doi.org/10.1073/pnas.1309922110.

[2] NOAA. “Mauna Loa Baseline Observatory.” Global Monitoring Laboratory. Accessed June 16, 2020.
https://www.esrl.noaa.gov/gmd/obop/mlo/.

[3] USGS. “Mauna Loa.” Hawaiian Volcano Observatory. Accessed June 16, 2020. https://
www.usgs.gov/volcanoes/mauna-loa.

See Also

Functions
azimuth | camheading | campitch | campos | camroll | egm96geoid

Objects
GeographicGlobe

5-66

https://doi.org/10.1073/pnas.1309922110
https://www.esrl.noaa.gov/gmd/obop/mlo/
https://www.usgs.gov/volcanoes/mauna-loa
https://www.usgs.gov/volcanoes/mauna-loa

Visualize UAV Flight Path on 2-D and 3-D Maps

Properties
GeographicAxes Properties

More About
. “Find Ellipsoidal Height from Orthometric Height” on page 3-55

5-67

Customizing and Printing Maps

* “Inset Maps” on page 6-2

* “Graphic Scales” on page 6-9

* “North Arrows” on page 6-15

* “Thematic Maps” on page 6-18

* “Create Choropleth Map of Population Density” on page 6-21
* “Contour Colormaps” on page 6-24

* “Colormaps for Political Maps” on page 6-27

» “Scale Maps for Printing” on page 6-31

6 Customizing and Printing Maps

Inset Maps

6-2

Inset maps are often used to display widely separated areas, generally at the same scale, or to place a
map in context by including overviews at smaller scales. You can create inset maps by nesting
multiple axes in a figure and defining appropriate map projections for each. To ensure that the scale
of each of the maps is the same, use axesscale to resize them. In this example, create an inset map
of California at the same scale as the map of South America, to relate the size of that continent to a
more familiar region.

Begin by defining a map frame for South America using worldmap.

figure
hl = worldmap('south america');

60" W 407w

Use shaperead to read the world land areas polygon shapefile.
land = shaperead('landareas.shp', 'UseGeoCoords', true);
Display the data in the map axes.

geoshow([land.Lat], [land.Lon])
setm(hl, 'FFaceColor', 'w') % set the frame fill to white

Inset Maps

Place axes for an inset in the lower middle of the map frame, and project a line map of California:

h2
CA

axes('pos',[.5 .2 .1 .1]);
shaperead('usastatehi', 'UseGeoCoords', true,
'Selector', {@(name) isequal(name, 'California'), 'Name'});
usamap('california')
geoshow([CA.Lat],[CA.Lon])

6-3

6 Customizing and Printing Maps

Set the frame fill color and set the labels.

setm(h2, 'FFaceColor', 'w')
mlabel; plabel; gridm % toggle off

6-4

Inset Maps

Make the scale of the inset axes, h2 (California), match the scale of the original axes, h1 (South
America). Hide the map border.

axesscale(hl)

6 Customizing and Printing Maps

set([hl h2], 'Visible', 'off')

Note that the toolbox software chose a different projection and appropriate parameters for each
region based on its location and shape. You can override these choices to make the two projections
the same.

Find out what map projections are used, and then make South America's projection the same as
California's.

getm(hl, 'mapprojection')

ans =
"eqdconic'

getm(h2, 'mapprojection')

ans =
'lambert'

setm(hl, 'mapprojection', getm(h2, 'mapprojection'))

6-6

Inset Maps

Note that the parameters for South America defaulted properly (those appropriate for California were
not used).

Finally, experiment with changing properties of the inset, such as its color.

setm(h2, 'ffacecolor', 'y')

6 Customizing and Printing Maps

6-8

Graphic Scales

Graphic Scales

This example shows how to add graphic scales to maps and how to modify the display properties of
graphic scales.

Graphic scale elements are used to provide indications of size even more frequently than insets are.
These are ruler-like objects that show distances on the ground at the nominal scale of the projection.
You can use the scaleruler function to add a graphic scale to the current map. You can check and
modify the scaleruler settings using getm and setm. You can also move the graphic scale to a new
position by dragging its baseline.

Use usamap to plot a map of Texas and surrounding states as filled polygons.

states = shaperead('usastatehi.shp', 'UseGeoCoords', true);
figure
usamap('Texas"')
faceColors = makesymbolspec('Polygon',...
{'INDEX', [1 numel(states)],
"FaceColor', polcmap(numel(states))});
geoshow(states, 'DisplayType', 'polygon',
'SymbolSpec', faceColors)

a5

an”

25 N

108 W 100° W 95 W

Because polcmap randomizes patch colors, your display can look different.

Add a default graphic scale and then move it to a new location.

6-9

6 Customizing and Printing Maps

scaleruler on

setm(handlem('scalerulerl'), .
'XLoc',-6.2e5, 'YLoc',3.1e6,
'MajorTick',0:200:600)

a5

an”

100 O 200

25 N

105 W 100" W 95 W

The units of scaleruler default to kilometers. Note that handlem accepts the keyword
'scaleruler' or 'scalerulerl’ for the first scaleruler, 'scaleruler2’ for the second one,
etc. If there is more than one scaleruler on the current axes, specifying the keyword
'scaleruler' returns a vector of handles.

Return the scaleruler as a Group object using the handlem function and inspect its properties
using getm.

s = handlem('scaleruler');
getm(s)

ans = struct with fields:
Azimuth: 0
Children: T[]
Color: [0 0 0]
FontAngle: 'normal’
FontName: 'Helvetica'
FontSize: 9
FontUnits: 'points'
FontWeight: 'normal’
Label: ''
Lat: 29.6479

6-10

Graphic Scales

Long:

LineWidth:
MajorTick:
MajorTickLabel:
MajorTickLength:
MinorTick:
MinorTickLabel:
MinorTickLength:
Radius:
RulerStyle:
TickDir:
TickMode:

Units:

XLoc:

YLoc:

ZLoc:

Change the font size of the scaleruler to 8 points.

setm(s, 'fontsize',8)

-101.7263
0.5000

[0 200 400 600]
{4x1 cell}

20

[0 25 50 75 100]
'100'

12.5000

'earth’

'ruler'’

"up”

'manual’

Ikml

-620000
3100000

[]

a5

an”

25 N

Place a second graphic scale, this one in units of nautical miles.

scaleruler('units','n

106 W

m')

6-11

6 Customizing and Printing Maps

105 W 100" W 95 W

Modify the tick properties of the second graphic scale.

setm(handlem('scaleruler2'), 'YLoc', 3.0e6,
'MajorTick', 0:100:300,...
'MinorTick', 0:25:50, 'TickDir', ‘'down',
'MajorTickLength', km2nm(25),...
'MinorTickLength', km2nm(12.5))

6-12

Graphic Scales

& R T
25 Nl s00 100 200 300nm

108 W 100" W 95 W

Experiment with the two other ruler styles available.

setm(handlem('scalerulerl'), 'RulerStyle', 'lines')
setm(handlem('scaleruler2'), 'RulerStyle', 'patches')

6-13

6 Customizing and Printing Maps

® [— S—
25 Nl s0 0 100 200 300nm
105 W 100" W 95 W

6-14

North Arrows

North Arrows

The north arrow element provides the orientation of a map by pointing to the geographic North Pole.
You can use the northarrow function to display a symbol indicating the direction due north on the
current map. The north arrow symbol can be repositioned by clicking and dragging its icon. The
orientation of the north arrow is computed, and does not need manual adjustment no matter where
you move the symbol. Ctrl+clicking the icon creates an input dialog box with which you can change
the location of the north arrow:

Create a map centered at the South Pole. Add a north arrow symbol at a specified geographic
position.

Antarctica = shaperead('landareas', 'UseGeoCoords', true,
‘Selector',{@(name) strcmpi(name,{'Antarctica'}), 'Name'});

figure

worldmap('south pole')

geoshow(Antarctica)

northarrow('latitude', -57, 'longitude', 135);

Click and drag the north arrow symbol to another corner of the map. Note that it always points to the
North Pole.

Drag the north arrow back to the top left corner.

6-15

6 Customizing and Printing Maps

Right-click or Ctrl+click the north arrow. The Inputs for North Arrow dialog opens, which lets you
specify the line weight, edge and fill colors, and relative size of the arrow. Set some properties and
click OK.

Also set some north arrow properties manually, just to get a feel for them.

h = handlem('NorthArrow');
set(h, 'FaceColor', [1.000 0.8431 0.0000],...
"EdgeColor', [0.0100 0.0100 0.9000])

Make three more north arrows, to show that from the South Pole, every direction is north. Note:
north arrows are created as objects in the MATLAB® axes (and thus have Cartesian coordinates), not
as mapping objects. As a result, if you create more than one north arrow, any Mapping Toolbox™
function that manipulates a north arrow will affect only the last one drawn.

northarrow('latitude',-57, 'longitude', 45);
northarrow('latitude',-57, 'longitude',225);
northarrow('latitude',-57, 'longitude',315);

6-16

North Arrows

6-17

6 Customizing and Printing Maps

Thematic Maps

6-18

Most published and online maps fall into four categories:

* Navigation maps, including topographic maps and nautical and aeronautical charts

* Geophysical maps, that show the structure and dynamics of earth, oceans and atmosphere
* Location maps, that depict the locations and names of physical features

* Thematic maps, that portray attribute data about locations and features

Although online maps often combine these categories in new and unexpected ways, published maps
and atlases tend to respect them.

Thematic maps tend to be more highly stylized than other types of maps and frequently omit
locational information such as place names, physical features, coordinate grids, and map scales. This
is because rather than showing physical features on the ground, such as shorelines, roads,
settlements, topography, and vegetation, a thematic map displays quantified facts (a "theme"), such
as statistics for a region or sets of regions. Examples include the locations of traffic accidents in a
city, or election results by state. Thematic maps have a wide vocabulary of cartographic symbols,
such as point symbols, dot distributions, "quiver" vectors, isolines, colored zones, raised prisms, and
continuous 3-D surfaces. Mapping Toolbox functions, listed in the following table, can generate most
of these types of map symbology.

Function Used For

quiverm Plots directed vectors in 2-D from specified latitudes and longitudes with
lengths also specified as latitudes and longitudes

quiver3m Plots directed vectors in 3-D from specified latitudes, longitudes, and
altitudes with lengths also specified as latitudes and longitudes and
altitudes

scatterm Draws fixed or proportional symbol maps for each point in a vector with

specified marker symbol. Similar maps can be generated using geoshow
and mapshow using appropriate symbol specifications ("symbolspecs").

stem3m Projects a 3-D stem plot map on the current map axes. The stem3m
function allows you to display geographic bar graphs.

tissot Calculates and displays Tissot Indicatrices, which graphically portray the

shape distortions of any map projection.

Choropleth Maps

The most familiar form of thematic map is probably the choropleth map (from the Greek choros, for
place, and plethos, for magnitude). Choropleth maps use colors or patterns to represent attributes
associated with certain geographic regions. For example, the global distribution of malaria-carrying
mosquitoes can be illustrated in a choropleth map, with the habitat of each mosquito represented by
a different color. In this example, colors are used to represent nominal data; the categories of
mosquitoes have no inherent ranking. If the data is ordinal, rather than nominal, the map may contain
a colorbar with shades of colors representing the ranking. For instance, a map of crime rates in
different areas could show high crime areas in red, lower crime areas in pink, and lowest crime areas
in white. See “Create Choropleth Map of Population Density” on page 6-21 for an example of

creating a choropleth map where the color of each location indicates the population density.

To create a choropleth map with the Mapping Toolbox:

Thematic Maps

Start with a geographic data structure on page 2-22.
Create a symbolspec to map attribute values to face colors.

Apply either geoshow or mapshow, depending on whether you are working with latitude-
longitude or pre-projected map coordinates.

Stem Maps

Stem plots are 3-D geographic bar graphs portraying numeric attributes at point locations, usually on
vector base maps. Below is an example of a stem plot over a map of the continental United States.
The bars could represent anything from selected city populations to the number of units of a product
purchased at each location:

Contour Maps

Contour and quiver plots can be useful in analyzing matrix data. In the following example, contour
elevation lines have been drawn over a topographical map of the Gulf of Mexico. Quiver plots have
been added to visualize the gradient of the topographical matrix.

Here is the displayed map:

6-19

6 Customizing and Printing Maps

Scatter Maps

The scatterm function plots symbols at specified point locations, like the MATLAB scatter
function. If the symbols are small and inconspicuous and do not vary in size, the result is a dot-
distribution map. If the symbols vary in size and/or shape according to a vector of attribute values,
the result is a proportional symbol map.

6-20

Create Choropleth Map of Population Density

Create Choropleth Map of Population Density

This example shows how to create a choropleth map of population density for the six New England
states in the year 2000.

Import low-resolution U.S. state boundary polygons, setting the map limits for the New England

region.

MapLatLimit = [41 48];

MapLonLimit = [-74 -66];

NEstates = shaperead('usastatelo', 'UseGeoCoords', true,

'BoundingBox', [MapLonLimit' MapLatLimit']);

Set up map axes with a projection suitable to display the New England states.

axesm('MapProjection', 'eqaconic', 'MapParallels', [],...
'MapLatLimit', MapLatLimit, 'MapLonLimit', MapLonLimit,...
'GLineStyle', '-"')

geoshow(NEstates, 'DisplayType', 'polygon', 'FaceColor','green')

Identify the maximum population density for New England states.
maxdensity = max([NEstates.PopDens2000])

1.1345e+03

maxdensity

6-21

6 Customizing and Printing Maps

Create an autumn colormap for the six New England states, and then use the flipud command to
invert the matrix.

fall = flipud(autumn(numel(NEstates)));

Make a symbol specification structure, a symbolspec, that assigns an autumn color to each polygon
according to the population density.

densityColors = makesymbolspec('Polygon', {'PopDens2000',
[0 maxdensity], 'FaceColor', fall});

Display the map.

geoshow(NEstates, 'DisplayType', 'polygon',
'SymbolSpec', densityColors)

title ({'Population Density in New England in 2000',
'in Persons per Squ