
Mapping Toolbox™
User's Guide

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Mapping Toolbox™ User's Guide
© COPYRIGHT 1997–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
May 1997 First printing New for Version 1.0
October 1998 Second printing Version 1.1
November 2000 Third printing Version 1.2 (Release 12)
July 2002 Online only Revised for Version 1.3 (Release 13)
September 2003 Online only Revised for Version 1.3.1 (Release 13SP1)
January 2004 Online only Revised for Version 2.0 (Release 13SP1+)
April 2004 Online only Revised for Version 2.0.1 (Release 13SP1+)
June 2004 Fourth printing Revised for Version 2.0.2 (Release 14)
October 2004 Online only Revised for Version 2.0.3 (Release 14SP1)
March 2005 Fifth printing Revised for Version 2.1 (Release 14SP2)
August 2005 Sixth printing Minor revision for Version 2.1
September 2005 Online only Revised for Version 2.2 (Release 14SP3)
March 2006 Online only Revised for Version 2.3 (Release 2006a)
September 2006 Seventh printing Revised for Version 2.4 (Release 2006b)
March 2007 Online only Revised for Version 2.5 (Release 2007a)
September 2007 Eighth printing Revised for Version 2.6 (Release 2007b)
March 2008 Online only Revised for Version 2.7 (Release 2008a)
October 2008 Online only Revised for Version 2.7.1 (Release 2008b)
March 2009 Online only Revised for Version 2.7.2 (Release 2009a)
September 2009 Online only Revised for Version 3.0 (Release 2009b)
March 2010 Online only Revised for Version 3.1 (Release 2010a)
September 2010 Online only Revised for Version 3.2 (Release 2010b)
April 2011 Online only Revised for Version 3.3 (Release 2011a)
September 2011 Online only Revised for Version 3.4 (Release 2011b)
March 2012 Online only Revised for Version 3.5 (Release 2012a)
September 2012 Online only Revised for Version 3.6 (Release 2012b)
March 2013 Online only Revised for Version 3.7 (Release 2013a)
September 2013 Online only Revised for Version 4.0 (Release 2013b)
March 2014 Online only Revised for Version 4.0.1 (Release 2014a)
October 2014 Online only Revised for Version 4.0.2 (Release 2014b)
March 2015 Online only Revised for Version 4.1 (Release 2015a)
September 2015 Online only Revised for Version 4.2 (Release 2015b)
March 2016 Online only Revised for Version 4.3 (Release 2016a)
September 2016 Online only Revised for Version 4.4 (Release 2016b)
March 2017 Online only Revised for Version 4.5 (Release 2017a)
September 2017 Online only Revised for Version 4.5.1 (Release 2017b)
March 2018 Online only Revised for Version 4.6 (Release 2018a)
September 2018 Online only Revised for Version 4.7 (Release 2018b)
March 2019 Online only Revised for Version 4.8 (Release 2019a)
September 2019 Online only Revised for Version 4.9 (Release 2019b)
March 2020 Online only Revised for Version 4.10 (Release 2020a)
September 2020 Online only Revised for Version 5.0 (Release 2020b)
March 2021 Online only Revised for Version 5.1 (Release 2021a)

Getting Started
1

Mapping Toolbox Product Description . 1-2

Acknowledgments . 1-3

Create Your First World Map . 1-4

Tour Boston with the Map Viewer App . 1-9
Open the Map Viewer App . 1-9

Getting More Help . 1-23
Ways to Get Mapping Toolbox Help . 1-23

Understanding Map Data
2

What Is a Map? . 2-2

What Is Geospatial Data? . 2-3

Vector Geodata . 2-4

Inspect and Display Vector Map Data . 2-5

Raster Geodata . 2-7
Digital Elevation Data . 2-7
Remotely Sensed Image Data . 2-7

Display Shaded Relief Map Using Raster Data . 2-8

Combine Vector and Raster Geodata on the Same Map 2-10
Combining Raster Data and Vector Data on the Same Map 2-10

Create and Display Polygons . 2-12
Simple Polygon . 2-12
Polygons with Holes or Multiple Regions . 2-13
Polygons Using Geographic Coordinates . 2-15
Filled Region of Polygons Using Geographic Coordinates 2-17

Segments Versus Polygons . 2-20

v

Contents

Geographic Data Structures . 2-22
Shapefiles . 2-22
The Contents of Geographic Data Structures . 2-22
Examining a Geographic Data Structure . 2-24
How to Construct Geographic Data Structures . 2-25
Mapping Toolbox Version 1 Display Structures . 2-29

Georeferenced Raster Data . 2-30
Reference Objects . 2-30
Referencing Matrices . 2-30
Referencing Vectors . 2-30

Construct a Global Data Grid . 2-32

Precompute the Size of a Data Grid . 2-34

Geolocated Data Grids . 2-35
Define Geolocated Data Grid . 2-35

Geographic Interpretations of Geolocated Grids 2-39
Type 1: Values Associated with the Upper Left Grid Coordinate 2-39
Type 2: Values Centered Within Four Adjacent Coordinates 2-40
Ordering of Cells . 2-41
Transform Regular to Geolocated Grids . 2-41
Transforming Geolocated to Regular Grids . 2-41

Spatially Reference Imported Rasters . 2-42
Differentiate Between Cells and Postings . 2-42
Spatially Reference an Image . 2-43
Spatially Reference an Elevation Grid . 2-44

Mosaic Spatially Referenced Raster Tiles . 2-46
Mosaic Rasters of Cells . 2-46
Mosaic Rasters of Postings . 2-47

Unprojecting a Digital Elevation Model (DEM) . 2-50

Georeferencing an Image to an Orthotile Base Layer 2-61

Find Geospatial Data Online . 2-73

Find Vector Geodata . 2-74

Find Geospatial Raster Data . 2-76
Download Data . 2-76
Use Web Map Service Data . 2-77

Functions that Read and Write Geospatial Data . 2-78

Export Vector Geodata . 2-81

Exporting Vector Data to KML . 2-82

Export KML Files for Viewing in Earth Browsers 2-93
Generate a Single Placemark Using kmlwritepoint 2-93

vi Contents

Generate Placemarks from Addresses . 2-94
Export Point Geostructs to Placemarks . 2-94

Select Shapefile Data to Read . 2-97
Example 1: Predicate Function in Separate File 2-97
Example 2: Predicate as Function Handle . 2-98
Example 3: Predicate as Anonymous Function . 2-98
Example 4: Predicate (Anonymous Function) Defined Within Cell Array . 2-99
Example 5: Parametrizing the Selector; Predicate as Nested Function . . 2-99

Exporting Images and Raster Grids to GeoTIFF 2-101

Converting Coastline Data (GSHHG) to Shapefile Format 2-116

Understanding Geospatial Geometry
3

The Shape of the Earth . 3-2
Ellipsoid Shape . 3-2
Geoid Shape . 3-2

Reference Spheroids . 3-4
referenceSphere Objects . 3-4
referenceEllipsoid Objects . 3-6
World Geodetic System 1984 . 3-8
Ellipsoid Vectors . 3-9
oblateSpheroid Objects . 3-10

Work with Reference Spheroids . 3-11
Map Projections . 3-11
Curves and Areas . 3-12
3-D Coordinate Transformations . 3-12

Latitude and Longitude . 3-13
Plot Latitude and Longitude . 3-13

Relationship Between Points on Sphere . 3-15

Length and Distance Units . 3-16
Choosing Units of Length . 3-16
Converting Units of Length . 3-16

Compute Conversion Ratio Between Units of Length 3-17

Angle Representations and Angular Units . 3-18
Radians and Degrees . 3-18
Default and Variable Angle Units . 3-19
Degrees, Minutes, and Seconds . 3-19
Converting Angle Units that Vary at Run Time . 3-20

Angles as Binary and Formatted Numbers . 3-22
Formatting Latitudes and Longitudes . 3-22

vii

Convert from Linear Measurements to Spherical Measurements 3-23

Distances on the Sphere . 3-24
Arc Length as an Angle in the distance and reckon Functions 3-25
Summary: Available Distance and Angle Conversion Functions 3-25

Great Circles . 3-27

Rhumb Lines . 3-28

Azimuth . 3-29
Calculate Azimuth . 3-29

Elevation . 3-31

Generate Vector Data for Points Along Great Circle or Rhumb Line Tracks
. 3-32

Reckoning . 3-34

Calculate Distance Between Two Points in Geographic Space 3-35

Small Circles . 3-36

Calculate Vector Data for Points Along a Small Circle 3-37

Generate Small Circles . 3-38

Measure Area of Spherical Quadrangles . 3-40

Plotting a 3-D Dome as a Mesh Over a Globe . 3-41

Choose a 3-D Coordinate System . 3-47
Earth-Centered Earth-Fixed Coordinates . 3-47
Geodetic Coordinates . 3-48
East-North-Up Coordinates . 3-49
North-East-Down Coordinates . 3-49
Azimuth-Elevation-Range Coordinates . 3-50
Tips . 3-51

Vectors in 3-D Coordinate Systems . 3-52
Tips . 3-53

Find Ellipsoidal Height from Orthometric Height 3-55
Find Ellipsoidal Height from Orthometric and Geoid Height 3-57

Creating and Viewing Maps
4

Introduction to Mapping Graphics . 4-2

viii Contents

Continent, Country, Region, and State Maps Made Easy 4-3

Set Background Colors for Map Displays . 4-4

Create Simple Maps Using worldmap . 4-5

Create Simple Maps Using usamap . 4-7

The Map Axes . 4-11
Tips to Working with Map Axes . 4-11

Access and Change Map Axes Properties . 4-13

Map Limit Properties . 4-19
Specify Map Projection Origin and Frame Limits Automatically 4-20
Create Cylindrical Projection Using Map Limit Properties 4-23
Create Conic Projection Using Map Limit Properties 4-25
Create Southern Hemisphere Conic Projection . 4-26
Create North-Polar Azimuthal Projection . 4-27
Create South-Polar Azimuthal Projection . 4-29
Create Equatorial Azimuthal Projection . 4-30
Create General Azimuthal Projection . 4-31
Create Long Narrow Oblique Mercator Projection 4-32

Switch Between Projections . 4-34
Change Projection Updating Meridian and Parallel Labels 4-34
Change Projection Resetting Frame Limits . 4-36

Reprojection of Graphics Objects . 4-40
Auto-Reprojection of Mapped Objects and Its Limitations 4-40
Reprojectability of Maps Generated Using geoshow 4-41

Create Maps Using geoshow . 4-43

Creating Maps Using MAPSHOW . 4-50

Change Map Projections Using geoshow . 4-68
Change Map Projection with Vector Data Using geoshow 4-68
Change Map Projection with Raster Data Using geoshow 4-69

Use Geographic and Nongeographic Objects in Map Axes 4-72

The Map Frame . 4-75

Plot Regions of Robinson Frame and Grid Using Map Limits 4-77

Map and Frame Limits . 4-82

The Map Grid . 4-83
Control Grid Spacing . 4-83
Layer Grids . 4-83
Limit Grid Lines . 4-83
Label Grids . 4-84

ix

Summary of Polygon Display Functions . 4-86

Display Vector Data as Points and Lines . 4-87

Display Vector Maps as Lines or Patches . 4-91

Types of Data Grids and Raster Display Functions 4-98

Fit Gridded Data to the Graticule . 4-99
Fit Gridded Data to Fine and Coarse Graticules 4-99

Create 3-D Displays with Raster Data . 4-103

Create Map Displays with Geographic Data . 4-106

Creating Map Displays with Data in Projected Coordinate Reference
System . 4-116

Pick Locations Interactively . 4-125

Create an Interactive Map for Selecting Point Features 4-127

Create Small Circle and Track Annotations on Maps Interactively 4-133

Interactively Display Text Annotations on a Map 4-135

Work with Objects by Name . 4-136
Manipulate Displayed Map Objects By Name . 4-136

Making Three-Dimensional Maps
5

Sources of Terrain Data . 5-2
Digital Terrain Elevation Data from NGA . 5-2
Digital Elevation Model Files from USGS . 5-2

Determine and Visualize Visibility Across Terrain 5-3
Compute Line of Sight . 5-3

Light a Terrain Map of a Region . 5-5

Surface Relief Shading . 5-8
Create Monochrome Shaded Relief Map . 5-8

Colored Surface Shaded Relief . 5-13
Create Colored Shaded Relief Map . 5-13

Relief Mapping with Light Objects . 5-17
Illuminate Color 3-D Relief Maps with Light Objects 5-17

x Contents

Drape Data on Elevation Maps . 5-24
Combine Elevation Maps with Other Kinds of Data 5-24
Drape Data over Terrain with Different Gridding 5-24

Drape Geoid Heights Over Topography . 5-25

Combine Dissimilar Grids by Converting Regular Grid to Geolocated Data
Grid . 5-30

Drape Geolocated Grid on Regular Data Grid via Texture Mapping 5-36

The Globe Display Compared with the Orthographic Projection 5-39

Access Basemaps and Terrain for Geographic Globe 5-45
Use Installed Basemap . 5-45
Download Basemaps . 5-45
Add Custom Basemaps . 5-45
Access Terrain . 5-45
Specify Basemaps and Terrain . 5-46

Create Interactive Basemap Picker . 5-47

Visualize Aircraft Line-of-Sight Over Terrain . 5-49

Visualize UAV Flight Path on 2-D and 3-D Maps . 5-58

Customizing and Printing Maps
6

Inset Maps . 6-2

Graphic Scales . 6-9

North Arrows . 6-15

Thematic Maps . 6-18
Choropleth Maps . 6-18
Stem Maps . 6-19
Contour Maps . 6-19
Scatter Maps . 6-20

Create Choropleth Map of Population Density . 6-21

Contour Colormaps . 6-24

Colormaps for Political Maps . 6-27
Explore Colormaps for Political Maps . 6-27
Labeling Colorbars . 6-29
Editing Colorbars . 6-30

Scale Maps for Printing . 6-31

xi

Manipulating Geospatial Data
7

Extract and Join Polygons or Line Segments . 7-2

Link Line Segments with Common Endpoints into Polygons 7-4

Geographic Interpolation of Vectors . 7-5

Interpolate Vertices Between Known Data Points 7-7

Interpolate Coordinates at Specific Locations . 7-8

Vector Intersections . 7-9

Calculate Intersections of Small Circles . 7-11

Calculate Intersection of Rhumb Line Tracks . 7-12

Calculate Intersections of Vector Data . 7-13

Calculate Area of Geographic Polygons . 7-15

Polygon Set Logic . 7-16

Overlay Polygons Using Set Logic . 7-17

Remove Longitude Coordinate Discontinuities at Date Line Crossings
. 7-22

Polygon Buffer Zones . 7-26
Generate Buffer Internal to Polygon . 7-26

Trim Vectors to Preserve Polygonal Patches . 7-28

Simplify Vector Coordinate Data . 7-31

Simplify Polygon and Line Data . 7-32

Convert Vector Data to Raster Format . 7-37
Creating Data Grids from Vector Data . 7-37

Rasterize Polygons Interactively . 7-42

Data Grids as Logical Variables . 7-44

Compute Elevation Profile Along Straight Line . 7-45

Compute Gradient, Slope, and Aspect from Regular Data Grid 7-48

xii Contents

Using Map Projections and Coordinate Systems
8

Map Projections and Distortions . 8-2
Use Inverse Projection to Recover Geographic Coordinates 8-2
Projection Distortions . 8-2

Quantitative Properties of Map Projections . 8-4

The Three Main Families of Map Projections . 8-5
Unwrapping the Sphere to a Plane . 8-5
Cylindrical Projections . 8-5
Conic Projections . 8-6
Azimuthal Projections . 8-7

Projection Aspect . 8-9
The Orientation Vector . 8-9
Control the Map Projection Aspect with an Orientation Vector 8-11

Projection Parameters . 8-16
Projection Characteristics Maps Can Have . 8-16

Visualize Spatial Error Using Tissot Indicatrices 8-22
Visualize Projection Distortions using Tissot Indicatrices 8-22

Visualize Projection Distortions Using Isolines . 8-26

Quantify Map Distortions at Point Locations . 8-30
Use distortcalc to Determine Map Projection Geometric Distortions 8-30

Rotational Transformations on the Globe . 8-34
Reorient Vector Data with rotatem . 8-34
Reorient Gridded Data . 8-36

Create a UTM Map . 8-38
Create a UTM Map . 8-38

Set UTM Parameters Interactively . 8-42

Work in UTM Without a Displayed Map . 8-45

Use the Transverse Aspect to Map Across UTM Zones 8-47

Summary and Guide to Projections . 8-49
Cylindrical Projections . 8-49
Pseudocylindrical Projections . 8-52
Conic Projections . 8-56
Pseudoconic Projections . 8-57
Polyconic Projections . 8-58
Azimuthal Projections . 8-59
Pseudoazimuthal Projections . 8-61
Modified Azimuthal Projections . 8-61

Transform Coordinates to a Different Projected CRS 8-62

xiii

Project and Display Raster Data . 8-65
Project Raster Data . 8-65
Unproject Raster Data . 8-66

Creating Web Map Service Maps
9

Basic WMS Terminology . 9-2

Basic Workflow for Creating WMS Maps . 9-3
Workflow Summary . 9-3
Create a Map of Elevation in Europe . 9-3

Search the WMS Database . 9-5
Introduction to the WMS Database . 9-5
Find Temperature Data in the WMS Database . 9-5

Refine Your Search . 9-7
Refine Search by Text . 9-7
Refine Search by Geographic Limits . 9-7

Update Your Layer . 9-8

Retrieve Your Map . 9-10
Map Retrieval Methods . 9-10
Understand Coordinate Reference System Codes 9-10
Retrieve Your Map with wmsread . 9-11
Use wmsread with Optional Parameters . 9-12
Add a Legend to Your Map . 9-12
Retrieve Your Map with WebMapServer.getMap 9-19

Modify Your Map Request . 9-24
Set Map Request Geographic Limits and Time . 9-24
Edit Web Map Request URL Manually . 9-25

Overlay Multiple Layers . 9-27
Create Composite Map of Multiple Layers from One Server 9-27
Combine Layers from One Server with Data from Other Sources 9-28
Drape Orthoimagery Over DEM . 9-29

Animate Data Layers . 9-33
Create Movie of Terra/MODIS Maps . 9-33
Create Animated GIF File of WMS Maps . 9-34
Animate Time-Lapse Radar Observations . 9-36

Display Animation of Radar Images over GOES Backdrop 9-39

Retrieve Data from Web Map Server . 9-41
Merge Elevation Data with Rasterized Vector Data 9-42
Display Merged Elevation and Bathymetry Layer (SRTM30 Plus) 9-44
Drape WMS Imagery onto Elevation Data . 9-46

xiv Contents

Save Your Favorite Servers . 9-49

Explore Other Layers using a Capabilities Document 9-50

Write WMS Images to a KML File . 9-53

Search for Layers Outside the Database . 9-55

Troubleshoot WMS Servers . 9-56
Connection Errors . 9-56
Wrong Scale . 9-57
Problems with Geographic Limits . 9-58
Problems with Server Changing LayerName . 9-58
Non-EPSG:4326 Coordinate Reference Systems 9-58
Map Not Returned . 9-59
Unsupported WMS Version . 9-60
Other Unrecoverable Server Errors . 9-60

Troubleshoot Access to the Hosted WMS Database 9-61

Introduction to Web Map Display . 9-62
Web Map Coordinate Systems . 9-64

Basic Workflow for Displaying Web Maps . 9-65
Workflow Summary . 9-65

Display a Web Map . 9-66

Select a Base Layer Map . 9-67

Specify a Custom Base Layer . 9-69

Specify a WMS Layer as a Base Layer . 9-71

Add an Overlay Layer to the Map . 9-73

Add Line, Polygon, and Marker Overlay Layers to Web Maps 9-75

Remove Overlay Layers on a Web Map . 9-81

Navigate a Web Map . 9-85

Close a Web Map . 9-87

Annotate a Web Map with Measurement Information 9-88

Compositing and Animating Web Map Service (WMS) Meteorological
Layers . 9-92

Troubleshoot Common Problems with Web Maps 9-107
Why Does My Web Map Contain Empty Tiles? . 9-107
Why Does My Web Map Lose Detail When I Zoom In? 9-107

xv

Mapping Applications
10

Geographic Statistics for Point Locations on a Sphere 10-2
Geographic Means . 10-2
Geographic Standard Deviation . 10-3

Equal-Areas in Geographic Statistics . 10-6
Geographic Histograms . 10-6
Converting to an Equal-Area Coordinate System 10-7

Navigation . 10-9
What Is Navigation? . 10-9
Conventions for Navigational Functions . 10-9

Fix Position . 10-11
Some Possible Situations . 10-11
Using navfix . 10-14
A Numerical Example of Using navfix . 10-16

Plan the Shortest Path . 10-20

Display Navigational Tracks . 10-23

Dead Reckoning . 10-26

Drift Correction . 10-30

Time Zones . 10-32

Map Projections — Alphabetical List
11

xvi Contents

Getting Started

This chapter provides step-by-step examples of basic Mapping Toolbox capabilities and guides you
toward examples and documentation that can help answer your questions. For an alphabetical list of
functions click on MATLAB Functions link at bottom of main Mapping Toolbox page.

• “Mapping Toolbox Product Description” on page 1-2
• “Acknowledgments” on page 1-3
• “Create Your First World Map” on page 1-4
• “Tour Boston with the Map Viewer App” on page 1-9
• “Getting More Help” on page 1-23

1

Mapping Toolbox Product Description
Analyze and visualize geographic information

Mapping Toolbox provides algorithms and functions for transforming geographic data and creating
map displays. You can visualize your data in a geographic context, build map displays from more than
60 map projections, and transform data from a variety of sources into a consistent geographic
coordinate system.

Mapping Toolbox supports a complete workflow for managing geographic data. You can import vector
and raster data from a wide range of file formats and web map servers. The toolbox lets you process
and customize data using trimming, interpolation, resampling, coordinate transformations, and other
techniques. Data can be combined with base map layers from multiple sources in a single map
display. You can export data in file formats such as shapefile, GeoTIFF, and KML.

1 Getting Started

1-2

Acknowledgments
This software was originally developed and maintained through Version 1.3 by Systems Planning and
Analysis, Inc. (SPA), of Alexandria, Virginia.

Except where noted, the information contained in example and sample data files (found in
matlabroot/examples/map/data and matlabroot/toolbox/map/mapdata) is derived from
publicly available digital data sets. These data files are provided as a convenience to Mapping
Toolbox users. MathWorks® makes no claims that any of this data is free of defects or errors, or that
the representations of geographic features or names are up to date or authoritative.

 Acknowledgments

1-3

Create Your First World Map
This example shows how to use the Mapping Toolbox to create a world map. Geospatial data can be
voluminous, complex, and difficult to process. Mapping Toolbox functions handle many of the details
of loading and displaying geospatial data, and use built-in data structures that facilitate data storage.
Spatial data refers to data describing location, shape, and spatial relationships. Geospatial data is
spatial data that is in some way georeferenced, or tied to specific locations on, under, or above the
surface of a planet.

Create an empty map axes, ready to hold the data of your choice. The function worldmap
automatically selects a reasonable choice for your map projection and coordinate limits. To display a
world map, the function chose a Robinson projection centered on the prime meridian and the equator
(0° latitude, 0° longitude).

worldmap world

Import low-resolution world coastline data. The coastline data is a set of discrete vertices that, when
connected in the order given, approximate the coastlines of continents, major islands, and inland
seas. The vertex latitudes and longitudes are stored as vectors in a MAT-file. Load the MAT-file and
view the variables in the workspace.

load coastlines
whos

 Name Size Bytes Class Attributes

1 Getting Started

1-4

 coastlat 9865x1 78920 double
 coastlon 9865x1 78920 double

Determine how many separate elements are in the coastline data vectors. Even though there is only
one vector of latitudes, coastlat, and one vector of longitudes, coastlon, each of these vectors
contain many distinct polygons, forming the worlds coastlines. These vectors use NaN separators and
NaN terminators to divide each vector into multiple parts.

[latcells, loncells] = polysplit(coastlat, coastlon);
numel(latcells)

ans = 241

Plot the coastline data on the map axes using the plotm function. plotm is the geographic equivalent
of the MATLAB plot function. It accepts coordinates in latitude and longitude, transforms them to x
and y via a specified map projection, and displays them in a figure axes. In this example, worldmap
uses the Robinson projection.

plotm(coastlat, coastlon)

Create a new map axes for plotting data over Europe. This time, specify a return argument for the
worldmap function to get a handle to the figure's axes. The axes object on which map data is
displayed is called a map axes. In addition to the graphics properties common to any MATLAB axes
object, a map axes object contains additional properties covering map projection type, projection
parameters, map limits, etc. The getm and setm functions and others allow you to access and modify
these properties.

 Create Your First World Map

1-5

h = worldmap('Europe');

Determine which map projection worldmap is using.

getm(h,'MapProjection')

ans =
'eqdconic'

Add data to the map of Europe by using the geoshow function to import and display several sample
shapefiles. Note how the geoshow function can plot data directly from files onto a map axes without
first importing it into the workspace. To change the color of the marker, use the MarkerEdgeColor
property and, for some markers, the MarkerFaceColor property.

geoshow('landareas.shp', 'FaceColor', [0.15 0.5 0.15])
geoshow('worldlakes.shp', 'FaceColor', 'cyan')
geoshow('worldrivers.shp', 'Color', 'blue')
geoshow('worldcities.shp', 'Marker', '.',...
 'MarkerEdgeColor', 'magenta')

1 Getting Started

1-6

Place a label on the map to identify the Mediterranean Sea.

labelLat = 35;
labelLon = 14;
textm(labelLat, labelLon, 'Mediterranean Sea')

 Create Your First World Map

1-7

1 Getting Started

1-8

Tour Boston with the Map Viewer App
The Map Viewer app is an interactive tool for browsing map data. With it you can:

• Assemble layers of vector and raster geodata and render them in 2-D
• Import, reorder, symbolize, hide, and delete data layers
• Identify coordinate locations
• List data attributes
• Display selected data attributes as data tips (signposts that identify attribute values, such as place

names or route numbers)

The following example illustrates these capabilities.

Open the Map Viewer App
1 Open the Map Viewer app. On the Apps tab, in the Image Processing and Computer Vision

section, click Map Viewer . You can also start the Map Viewer using the mapview
command. The Map Viewer opens with a blank canvas. (No data is present.)

Note that The Map Viewer is designed primarily for working with data sets that refer to a
projected map coordinate system (as opposed to a geographic, latitude-longitude system), so the
coordinate axes are named X and Y.

2 Import map data. In the Map Viewer, select the File menu and then choose Import From File.
Navigate to the matlabroot/examples/map/data folder, where matlabroot represents your
MATLAB® installation folder, and open the GeoTIFF file boston.tif.

The file opens in the Map Viewer. The image is a visible red, green, and blue composite from a
georeferenced IKONOS-2 panchromatic/multispectral product created by GeoEye. Copyright ©
GeoEye, all rights reserved. For further information about the image, refer to the text files
boston.txt and boston_metadata.txt. To open boston.txt, type the following at the
command line:

open 'boston.txt'
3 Set the map scale in the Map Viewer. To do this, you must first set the map distance units. Click

the Map units menu at the bottom center and select US Survey Feet.

 Tour Boston with the Map Viewer App

1-9

4 Set the map scale. Type 1:25000 in the Scale box, which is above the Map units menu, and
press Enter. The Map Viewer now looks like this.

5 Get the map coordinates for a location on the map, interactively. Place the cursor over a location
on the map. The example puts the cursor over the bridge that goes over the pond in Boston
Garden. The map coordinates for this location are shown at the lower left as 772,423.18 feet
easting (X), 2,954,372.40 feet northing (Y), in Massachusetts State Plane coordinates.

6 Import a vector data layer. For this example, import a line shapefile that contains data about the
streets and highways in the central Boston area.

boston_roads = shaperead('boston_roads.shp');

The shaperead function returns the data as a geographic data structure.
7 Convert the X and Y coordinate fields of boston_roads.shp from meters to U.S. survey feet. As

is frequently the case when overlaying geodata, the coordinate system used by
boston_roads.shp (in units of meters) does not completely agree with the one for the satellite

1 Getting Started

1-10

image, boston.tif (in units of feet). If you were to ignore this, the two data sets would be out
of registration by a large distance.

surveyFeetPerMeter = unitsratio('survey feet','meter');
for k = 1:numel(boston_roads)
 boston_roads(k).X = surveyFeetPerMeter * boston_roads(k).X;
 boston_roads(k).Y = surveyFeetPerMeter * boston_roads(k).Y;
end

The unitsratio function computes conversion factors between a variety of units of length.
8 In the Map Viewer File menu, select Import From Workspace > Vector Data > Geographic

Data Structure.

In the Import Vector Data dialog box, select the variable boston_roads as the data to import
from the workspace, and click OK.

 Tour Boston with the Map Viewer App

1-11

You could clear the workspace now if you wanted, because all the data that the Map Viewer
needs is now loaded into it.

9 After the Map Viewer finishes importing the roads layer, it selects a random color and renders all
the shapes with that color as solid lines. The view looks like this.

Being random, the color you see for the road layer may differ.
10 Explore the attributes of the vector layer. First, make the vector layer the active layer using the

Active layer menu at the bottom right. Select boston_roads. You can designate any layer to be
the active layer; it does not need to be the topmost layer. By default, the first layer imported is
active. Changing the active layer has no visual effect on the map. Doing so allows you to query
attributes of the layer you select. For example, once you make the vector layer the active layer,

1 Getting Started

1-12

the Info tool button near the right end of the toolbar becomes enabled. Select the Info tool, the
cursor changes to a cross-hairs shape. Click any location on the map to view attributes of the
selected object.

The selected road is Massachusetts Avenue (Route 2A). As the above figure shows, the
boston_roads vectors have six attributes, including an implicit INDEX attribute added by the
Map Viewer. Use this tool to explore other roads. Dismiss open Info windows by clicking their
close boxes.

11 Use a data tip to annotate the map with other attribute values. From the Layers menu, select
boston_roads > Set Label Attribute.

 Tour Boston with the Map Viewer App

1-13

From the list in the Attribute Names dialog, select CLASS and click OK.

1 Getting Started

1-14

12 From the Tools menu, select the Datatip tool. A dialog box appears to remind you how to change
attributes. Click OK to dismiss the box.

The cursor assumes a cross-hairs (+) shape. Click on a road segment in the map and the data tip
tool puts a small marker on the road that contains a numeric identifier that indicates the
administrative class. The class of the road crossing the Charles river we explored earlier is of
class 3.

 Tour Boston with the Map Viewer App

1-15

13 You can change how the roads are rendered by identifying an attribute to which to key line
symbology. Color roads according to their CLASS attribute, which takes on the values 1:6. Do this
by creating a symbolspec in the workspace. A symbolspec is a cell array that associates attribute
names and values to graphic properties for a specified geometric class ('Point',
'MultiPoint', 'Line', 'Polygon', or 'Patch'). To create a symbolspec for line objects (in
this case roads) that have a CLASS attribute, type:

roadcolors = makesymbolspec('Line', ...
{'CLASS',1,'Color',[1 1 1]}, {'CLASS',2,'Color',[1 1 0]}, ...
{'CLASS',3,'Color',[0 1 0]}, {'CLASS',4,'Color',[0 1 1]}, ...
{'CLASS',5,'Color',[1 0 1]}, {'CLASS',6,'Color',[0 0 1]})

The following output appears:

roadcolors =
 ShapeType: 'Line'
 Color: {6x3 cell}

1 Getting Started

1-16

14 The Map Viewer recognizes and imports symbolspecs from the workspace. To apply the one you
just created, from the Layers menu, select boston_roads > Set Symbol Spec. From the Layer
Symbols dialog, select the roadcolors symbolspec you just created and click OK.

After the Map Viewer has read and applied the symbolspec, the map looks like this.

 Tour Boston with the Map Viewer App

1-17

15 Remove the data tips before going on. To dismiss data tips, right-click one of them and select
Delete all data tips from the menu that appears.

16 Add another layer, a set of points that identifies 13 Boston landmarks. As you did with the
boston_roads layer, import it from a shapefile:

boston_placenames = shaperead('boston_placenames.shp');
17 Convert the coordinates of these landmarks to units of survey feet before importing them into

Map Viewer. The locations for these landmarks are given in meters.

surveyFeetPerMeter = unitsratio('survey feet','meter');
for k = 1:numel(boston_placenames)
 boston_placenames(k).X = ...
 surveyFeetPerMeter * boston_placenames(k).X;
 boston_placenames(k).Y = ...
 surveyFeetPerMeter * boston_placenames(k).Y;
end

18 From the File menu, select Import From Workspace > Vector Data > Geographic Data
Structure. Choose boston_placenames as the data to import from the workspace and click
OK.

1 Getting Started

1-18

19 The boston_placenames markers are symbolized as small x markers, but these markers do not
show up over the orthophoto. To solve this problem, create a symbolspec for the markers to
represent them as red filled circles. At the MATLAB command line, type:

places = makesymbolspec('Point',{'Default','Marker','o', ...
'MarkerEdgeColor','r','MarkerFaceColor','r'})

The Default keyword causes the specified symbol to be applied to all point objects in a given
layer unless specifically overridden by an attribute-coded symbol in the same or a different
symbolspec.

20 To activate this symbolspec, pull down the Layers menu, select boston_placenames, slide right,
and select Set Symbol Spec. In the Layer Symbols dialog that appears, highlight places and
click OK. The Map Viewer reads the workspace variable places; the cross marks turn into red
circles. Note that a layer need not be active in order for you to apply a symbolspec to it.

21 To see the name of a Boston place name, make boston_placenames the currently active layer
(using the Active layer menu, and then select Datatip from the Tools menu. The cursor changes
to a cross-hair shape. Click any red circle and the tool places a data tip annotation on the map
with the name of the location.

 Tour Boston with the Map Viewer App

1-19

22 Zoom in on Beacon Hill for a closer view of the Massachusetts State House and Boston Common.
Select the Zoom in tool; move the (magnifier) cursor until the X readout is approximately
774,011 and the Y readout is roughly 2,955,615; and click once to enlarge the view. The scale
changes to about 1:12,500 and the map appears as below.

23 From the Tools menu, choose Select Annotations to change from the Datatip tool back to the
original cursor. Right-click any of the data tips and select Delete all datatips from the pop-up
context menu. This clears the place names you added to the map.

24 Select an area of interest to save as an image file. Click the Select area tool, and then hold the
mouse button down as you draw a selection rectangle. If you do not like the selection, repeat the
operation until you are satisfied. If you know what ground coordinates you want, you can use the
coordinate readouts to make a precise selection. The selected area appears as a red rectangle.

Note The Select area tool is not supported in MATLAB Online™. To view a particular region
on the map, use the Zoom in, Zoom out, and Pan tools instead.

1 Getting Started

1-20

25 In order to be able to save a file in the next step, change your working folder to a writable folder.
26 Save your selection as an image file. From the File menu, select Save As Raster Map >

Selected Area to open an Export to File dialog.

In the Export to File dialog, navigate to a folder where you want to save the map image, and save
the selected area's image as a .tif file, calling it central_boston.tif. (PNG and JPG formats
are also available.) A world file, central_boston.tfw, is created along with the TIF.

Whenever you save a raster map in this manner, two files are created:

• An image file (file.tif, file.png, or file.jpg)
• An accompanying world file that georeferences the image (file.tfw, file.pgw, or

file.jgw)

The following steps show you how to read world files and display a georeferenced image outside
of mapview.

 Tour Boston with the Map Viewer App

1-21

27 Read in the saved image and its colormap with the MATLAB function imread, create a reference
object for it by reading in central_boston.tfw with worldfileread, and display the map
with mapshow:

[X,cmap] = imread('central_boston.tif');
R = worldfileread('central_boston.tfw','planar',size(X));
figure
mapshow(X,cmap,R);

See the documentation for mapshow for another example of displaying a georeferenced image.
28 Experiment with other tools and menu items. For example, you can annotate the map with lines,

arrows, and text; fit the map to the window; draw a bounding box for any layer; and print the
current view. You can also spawn a new Map Viewer using New View from the File menu. A new
view can duplicate the current view, cover the active layer's extent, cover all layer extents, or
include only the selected area, if any.

When you are through with a viewing session, close the Map Viewer using the window's close
box or select Close from the File menu. For more information about the Map Viewer, see the
mapview reference page.

1 Getting Started

1-22

Getting More Help

Ways to Get Mapping Toolbox Help
Help is available for individual commands and classes of Mapping Toolbox commands:

• help functionname for help on a specific function, often including examples
• doc functionname to read a function's reference page in the Help browser, including examples

and illustrations
• help map for a list of functions by category
• mapdemos for a list of Mapping Toolbox examples
• maps to see a list of all Mapping Toolbox map projections by class, name, and ID
• maplist to return a structure describing all Mapping Toolbox map projections
• projlist to list map projections supported by projfwd and projinv

 Getting More Help

1-23

Understanding Map Data

• “What Is a Map?” on page 2-2
• “What Is Geospatial Data?” on page 2-3
• “Vector Geodata” on page 2-4
• “Inspect and Display Vector Map Data” on page 2-5
• “Raster Geodata” on page 2-7
• “Display Shaded Relief Map Using Raster Data” on page 2-8
• “Combine Vector and Raster Geodata on the Same Map” on page 2-10
• “Create and Display Polygons” on page 2-12
• “Segments Versus Polygons” on page 2-20
• “Geographic Data Structures” on page 2-22
• “Georeferenced Raster Data” on page 2-30
• “Construct a Global Data Grid” on page 2-32
• “Precompute the Size of a Data Grid” on page 2-34
• “Geolocated Data Grids” on page 2-35
• “Geographic Interpretations of Geolocated Grids” on page 2-39
• “Spatially Reference Imported Rasters” on page 2-42
• “Mosaic Spatially Referenced Raster Tiles” on page 2-46
• “Unprojecting a Digital Elevation Model (DEM)” on page 2-50
• “Georeferencing an Image to an Orthotile Base Layer” on page 2-61
• “Find Geospatial Data Online” on page 2-73
• “Find Vector Geodata” on page 2-74
• “Find Geospatial Raster Data” on page 2-76
• “Functions that Read and Write Geospatial Data” on page 2-78
• “Export Vector Geodata” on page 2-81
• “Exporting Vector Data to KML” on page 2-82
• “Export KML Files for Viewing in Earth Browsers” on page 2-93
• “Select Shapefile Data to Read” on page 2-97
• “Exporting Images and Raster Grids to GeoTIFF” on page 2-101
• “Converting Coastline Data (GSHHG) to Shapefile Format” on page 2-116

2

What Is a Map?
Mapping Toolbox software manipulates electronic representations of geographic data. It lets you
import, create, use, and present geographic data in various forms and to various ends. In the digital
network era, it is easy to think of geospatial data as maps and maps as data, but you should take care
to note the differences between these concepts.

The simplest (although perhaps not the most general) definition of a map is a representation of
geographic data. Most people today generally think of maps as two-dimensional; to the ancient
Egyptians, however, maps first took the form of lists of place names in the order they would be
encountered when following a given road. Today such a list would be considered as map data rather
than as a map. When most people hear the word "map" they tend to visualize two-dimensional
renditions such as printed road, political, and topographic maps, but even classroom globes and
computer graphic flight simulation scenes are maps under this definition.

In this toolbox, map data is any variable or set of variables representing a set of geographic locations,
properties of a region, or features on a planet's surface, regardless of how large or complex the data
is, or how it is formatted. Such data can be rendered as maps in a variety of ways using the functions
and user interfaces provided.

2 Understanding Map Data

2-2

What Is Geospatial Data?
Geospatial data comes in many forms and formats, and its structure is more complicated than tabular
or even nongeographic geometric data. It is, in fact, a subset of spatial data, which is simply data that
indicates where things are within a given coordinate system. Mileposts on a highway, an engineering
drawing of an automobile part, and a rendering of a building elevation all have coordinate systems,
and can be represented as spatial data when properly quantified (digitized). Such coordinate systems,
however, are local and not explicitly tied or oriented to the Earth's surface; thus, most digital
representations of mileposts, machine parts, and buildings do not qualify as geospatial data (also
called geodata).

What sets geospatial data apart from other spatial data is that it is absolutely or relatively positioned
on a planet, or georeferenced. That is, it has a terrestrial coordinate system that can be shared by
other geospatial data. There are many ways to define a terrestrial coordinate system and also to
transform it to any number of local coordinate systems, for example, to create a map projection.
However, most are based on a framework that represents a planet as a sphere or spheroid that spins
on a north-south axis, and which is girded by an equator (an imaginary plane midway between the
poles and perpendicular to the rotational axis).

Geodata is coded for computer storage and applications in two principal ways: vector and raster
representations. It has been said that "raster is faster but vector is corrector." There is truth to this,
but the situation is more complex. For more information, see “Vector Geodata” on page 2-4 and
“Raster Geodata” on page 2-7.

 What Is Geospatial Data?

2-3

Vector Geodata
Vector data (in the computer graphics sense rather than the physics sense) can represent a map.
Such vectors take the form of sequences of latitude-longitude or projected coordinate pairs
representing a point set, a linear map feature, or an areal map feature. For example, points
delineating the boundary of the United States, the interstate highway system, the centers of major
U.S. cities, or even all three sets taken together, can be used to make a map. In such representations,
the geographic data is in vector format and displays of it are referred to as vector maps. Such data
consists of lists of specific coordinate locations (which, if describing linear or areal features, are
normally points of inflection where line direction changes), along with some indication of whether
each is connected to the points adjacent to it in the list.

In the Mapping Toolbox environment, vector data consists of sequentially ordered pairs of geographic
(latitude, longitude) or projected (x,y) coordinate pairs (also called tuples). Successive pairs are
assumed to be connected in sequence; breaks in connectivity must be delineated by the creation of
separate vector variables or by inserting separators (usually NaNs) into the sets at each breakpoint.
For vector map data, the connectivity (topological structure) of the data is often only a concern
during display, but it also affects the computation of statistics such as length and area.

For an example of vector data, see “Inspect and Display Vector Map Data” on page 2-5. For further
information on how Mapping Toolbox software manages map projections, see the Getting Started
topic. For details on data structures that the toolbox uses to represent vector geodata, see
“Geographic Data Structures” on page 2-22.

2 Understanding Map Data

2-4

Inspect and Display Vector Map Data
This example shows how to display vector map data and examine vector data values.

Load vector data set MAT-file of world coastlines and look at the variables created in the workspace.
The variables coastlat and coastlon are vectors which together form a vector map of the
coastlines of the world.

load coastlines
whos

 Name Size Bytes Class Attributes

 coastlat 9865x1 78920 double
 coastlon 9865x1 78920 double

View a map of this vector data. The example presents the map using a Mercator projection. A map
projection displays the surface of a sphere (or a spheroid) in a two-dimensional plane. Points on the
sphere are geometrically projected to a plane surface. There are many possible ways to project a
map, all of which introduce various types of distortions.

axesm mercator
framem
plotm(coastlat,coastlon)

Inspect the first 20 coordinate values of the coastline vector data set.

 Inspect and Display Vector Map Data

2-5

[coastlat(1:20) coastlon(1:20)]

ans = 20×2

 -83.8300 -180.0000
 -84.3300 -178.0000
 -84.5000 -174.0000
 -84.6700 -170.0000
 -84.9200 -166.0000
 -85.4200 -163.0000
 -85.4200 -158.0000
 -85.5800 -152.0000
 -85.3300 -146.0000
 -84.8300 -147.0000
 ⋮

To see where these coastline vector points fall on the map, plot them in red. As you might have
deduced by looking at the first column of the data, there is only one continent that lies below -80
latitude: Antarctica.

plotm(coastlat(1:20),coastlon(1:20),'r')

2 Understanding Map Data

2-6

Raster Geodata
You can map data represented as a matrix (a 2-D MATLAB array) in which each row-and-column
element corresponds to a rectangular patch of a specific geographic area, with implied topological
connectivity to adjacent patches. This is commonly referred to as raster data. Raster is actually a
hardware term meaning a systematic scan of an image that encodes it into a regular grid of pixel
values arrayed in rows and columns.

When data in raster format represents the surface of a planet, it is called a data grid, and the data is
stored as an array or matrix. The toolbox leverages the power of MATLAB matrix manipulation in
handling this type of map data. This documentation uses the terms raster data and data grid
interchangeably to talk about geodata stored in two-dimensional array form.

A raster can encode either an average value across a cell or a value sampled (posted) at the center of
that cell. While geolocated data grids explicitly indicate which type of values are present (see
“Geolocated Data Grids” on page 2-35), external metadata/user knowledge is required to be able to
specify whether a regular data grid encodes averages or samples of values. To see an example, view
“Display Shaded Relief Map Using Raster Data” on page 2-8.

Digital Elevation Data
When raster geodata consists of surface elevations, the map can also be referred to as a digital
elevation model/matrix (DEM), and its display is a topographical map. The DEM is one of the most
common forms of digital terrain model (DTM), which can also be represented as contour lines,
triangulated elevation points, quadtrees, octree, or otherwise.

The topo60c MAT-file, which contains global terrain data, is an example of a DEM. In this 180-by-360
matrix, each row represents one degree of latitude, and each column represents one degree of
longitude. Each element of this matrix is the average elevation, in meters, for the one-degree-by-one-
degree region of the Earth to which its row and column correspond.

Remotely Sensed Image Data
Raster geodata also encompasses georeferenced imagery. Like data grids, images are organized into
rows and columns. There are subtle distinctions, however, which are important in certain contexts.
One distinction is that an image may contain RGB or multispectral channels in a single array, so that
it has a third (color or spectral) dimension. In this case a 3-D array is used rather than a 2-D (matrix)
array. Another distinction is that while data grids are stored as class double in the toolbox, images
may use a range of MATLAB storage classes, with the most common being uint8, uint16, double,
and logical. Finally, for grayscale and RGB images of class double, the values of individual array
elements are constrained to the interval [0 1].

In terms of georeferencing—converting between column/row subscripts and 2-D map or geographic
coordinates—images and data grids behave the same way (which is why both are considered to be a
form of raster geodata). However, when performing operations that process the values raster
elements themselves, including most display functions, it is important to be aware of whether you are
working with an image or a data grid, and for images, how spectral data is encoded.

 Raster Geodata

2-7

Display Shaded Relief Map Using Raster Data
This example shows how to generate a shaded relief map using a raster data set, also known as a
data grid. Note that the content, symbolization, and the projection of the map are completely
independent. The structure and content of the topo60c data grid are the same no matter how you
display it, although how it is projected and symbolized can affect its interpretation.

Load elevation raster data and a geographic cells reference object.

load topo60c

Create a map axes object using a sinusoidal projection. Display the data using a shaded relief map.
One way to do this is to use geoshow and apply a colormap appropriate for elevation data using
demcmap.

axesm sinusoid
geoshow(topo60c,topo60cR,'DisplayType','texturemap')
demcmap(topo60c)

Create a new map axes object using a Hammer projection. Then, display the elevation data as a
lighted shaded relief map using meshlsrm. By default, the meshlsrm function applies a colormap
appropriate for elevation data and illuminates the map from the east.

figure
axesm hammer
meshlsrm(topo60c,topo60cR)

2 Understanding Map Data

2-8

 Display Shaded Relief Map Using Raster Data

2-9

Combine Vector and Raster Geodata on the Same Map
Vector map variables and data grid variables are often used or displayed together. For example,
continental coastlines in vector form might be displayed with a grid of temperature data to make the
latter more useful. When several map variables are used together, regardless of type, they can be
referred to as a single map. To do this, of course, the different data sets must use the same
coordinate system (i.e., geographic coordinates on the same ellipsoid or an identical map projection).

Combining Raster Data and Vector Data on the Same Map
This example shows how to combine raster data and vector data on the same map using the geoshow
function.

First, load elevation raster data and a geographic cells reference object. Get the coordinates of
coastlines as vectors.

load topo60c
load coastlines

Create a map axes object that uses the Robinson projection. Then, display the raster and apply a
colormap appropriate for elevation data.

axesm robinson
geoshow(topo60c,topo60cR,'DisplayType','texturemap')
demcmap(topo60c)

2 Understanding Map Data

2-10

Display the vectors in red on top of the elevation map.

geoshow(coastlat,coastlon,'Color','r')

 Combine Vector and Raster Geodata on the Same Map

2-11

Create and Display Polygons
Polygons represent geographic objects that cover area, such as continents, islands, and lakes. They
may contain holes or multiple regions. Create a polygon by listing vertices that define its boundaries
without intersecting. The order of the vertices determines what parts of the polygon are filled. List
external boundaries clockwise and internal boundaries counterclockwise, such that the inside of the
polygon is always to the right of the boundary.

Simple Polygon
Display a simple polygon with one region and no holes. First, list its vertices in a clockwise order.
Close the polygon by repeating the first vertex at the end of the list.

x1 = [0 3 4 1 0];
y1 = [0 1 3 2 0];

Display the vertices as a polygon using the mapshow function by specifying 'DisplayType' as
'polygon'.

mapshow(x1,y1,'DisplayType','polygon')

2 Understanding Map Data

2-12

Polygons with Holes or Multiple Regions
Define polygons with multiple regions or holes by separating the boundaries with NaN values. List the
vertices of external boundaries in a clockwise order and the vertices of internal boundaries in a
counterclockwise order.

x2 = [0 1 8 6 0 NaN 1 4 2 1 NaN 5 6 7 3 5];
y2 = [0 6 8 2 0 NaN 1 3 5 1 NaN 3 5 7 6 3];

These vectors define a polygon with one external boundary and two internal boundaries. The
boundaries are separated using NaN values. Verify the vertex order of the boundaries using the
ispolycw function. The ispolycw function returns 1 when the vertices are in a clockwise order.

ispolycw(x2,y2)

ans = 1x3 logical array

 1 0 0

Display the polygon. The internal boundaries create holes within the polygon.

figure
mapshow(x2,y2,'DisplayType','polygon')

 Create and Display Polygons

2-13

Now, list the vertices for a polygon with two nonintersecting regions. One of the regions has a hole.
Verify the vertex order of the boundaries using ispolycw.

x3 = [0 1 5 6 0 NaN 1 5 4 2 1 NaN 7 6 8 8 7];
y3 = [0 6 7 2 0 NaN 1 3 6 5 1 NaN 4 7 8 7 4];
ispolycw(x3,y3)

ans = 1x3 logical array

 1 0 1

Display the polygon. The external boundaries create two nonintersecting regions and the internal
boundary creates a hole.

figure
mapshow(x3,y3,'DisplayType','polygon')

2 Understanding Map Data

2-14

Polygons Using Geographic Coordinates
In general, you can use geographic coordinates when you define polygons over small regions and call
functions such as ispolycw. This is true except in cases where the polygon wraps a pole or crosses
the Antimeridian.

For example, display the state of Michigan on a map using polygons with geographic coordinates.
First, read the vertices of the state boundaries.

states = shaperead('usastatehi','UseGeoCoords',true);
michigan = states(22);
lat = michigan.Lat;
lon = michigan.Lon;

Count the boundaries and verify their vertex order. To use ispolycw with geographic coordinates,
list the longitude vector as the first argument and the latitude vector as the second argument. The 1-
by-6 output array means there are six boundaries. Each element of the array is 1, which means that
each boundary is the exterior boundary of its own region.

ispolycw(lon,lat)

ans = 1x6 logical array

 1 1 1 1 1 1

 Create and Display Polygons

2-15

Display the polygon on a map using the geoshow function, specifying 'DisplayType' as
'polygon'.

usamap 'Michigan'
geoshow(lat,lon,'DisplayType','polygon')

Clip the polygon to the latitude and longitude limits of Isle Royale National Park using the maptrimp
function. Display the clipped polygon on a new map.

latlim = [47.8 48.2];
lonlim = [-89.3 -88.4];
[latT,lonT] = maptrimp(lat,lon,latlim,lonlim);

figure
usamap(latlim,lonlim)
geoshow(latT,lonT,'DisplayType','polygon')

2 Understanding Map Data

2-16

Filled Region of Polygons Using Geographic Coordinates
When you display a polygon on the Earth, the boundary divides the Earth into two regions. Both of
these regions have finite area, so either could be the inside region of the polygon.

As a result, when you project the vertices of a polygon onto a map using the geoshow function, the
filled region may be different than you expect. Change which region is filled by reversing the order of
the vertices.

For example, display a small polygon on a world map.

 Create and Display Polygons

2-17

lat2 = [0 10 40 30 0];
lon2 = [0 20 30 10 0];

figure
worldmap('world')
geoshow(lat2,lon2,'DisplayType','polygon')

The outside region of the polygon is filled. Reverse the order of the vertices by applying the flip
function to the coordinate vectors. Then, display the polygon again.

lat2f = flip(lat2);
lon2f = flip(lon2);

figure
worldmap('world')
geoshow(lat2f,lon2f,'DisplayType','polygon')

2 Understanding Map Data

2-18

The inside region of the polygon is filled instead.

See Also
geoshow | ispolycw | mapshow | polyshape | worldmap

 Create and Display Polygons

2-19

Segments Versus Polygons
Geographic objects represented by vector data might or might not be formatted as polygons. Imagine
two variables, latcoast and loncoast, that correspond to a sequence of points that caricature the
coast of the island of Great Britain. If this data returns to its starting point, then a polygon describing
Great Britain exists. This data might be plotted as a patch or as a line, and it might be logically
employed in calculations as either.

Now suppose that you want to represent the Anglo-Scottish border, proceeding from the west coast at
Solway Firth to the east coast at Berwick-upon-Tweed. This data can only be properly defined as a
line, defined by two or more points, which you can represent with two more variables, latborder
and lonborder. When plotted together, the two pairs of variables can form a map. The patch of
Great Britain plus the line showing the Scottish border might look like two patches or regions, but
there is no object that represents England and no object that represents Scotland, either in the
workspace or on the map axes.

In order to represent both regions properly, the Great Britain polygon needs to be split at the two
points where the border meets it, and a copy of latborder and lonborder concatenated to both
lines (placing one in reverse order). The resulting two polygons can be represented separately (e.g.,
in four variables named latengland, lonengland, latscotland, and lonscotland) or in two
variables that define two polygons each, delineated by NaNs (e.g., latuk, lonuk).

The distinction between line and polygon data might not appear to be important, but it can make a
difference when you are performing geographic analysis and thematic mapping. For example,
polygon data can be treated as line data and displayed with functions such as linem, but line data
cannot be handled as polygons unless it is restructured to make all objects close on themselves, as
described in “Link Line Segments with Common Endpoints into Polygons” on page 7-4.

See Also
geoshow | polymerge

2 Understanding Map Data

2-20

More About
• “Create and Display Polygons” on page 2-12

 Segments Versus Polygons

2-21

Geographic Data Structures
In examples provided in prior chapters, geodata was in the form of individual variables. Mapping
Toolbox software also provides an easy means of displaying, extracting, and manipulating collections
of vector map features organized in geographic data structures.

A geographic data structure is a MATLAB structure array that has one element per geographic
feature. Each feature is represented by coordinates and attributes. A geographic data structure that
holds geographic coordinates (latitude and longitude) is called a geostruct, and one that holds map
coordinates (projected x and y) is called a mapstruct. Geographic data structures hold only vector
features and cannot be used to hold raster data (regular or geolocated data grids or images).

Shapefiles
Geographic data structures most frequently originate when vector geodata is imported from a
shapefile. The Environmental Systems Research Institute designed the shapefile format for vector
geodata. Shapefiles encode coordinates for points, multipoints, lines, or polygons, along with non-
geometrical attributes.

A shapefile stores attributes and coordinates in separate files; it consists of a main file, an index file,
and an xBASE file. All three files have the same base name and are distinguished by the
extensions .shp, .shx, and .dbf, respectively. (For example, given the base name
'concord_roads' the shapefile file names would be 'concord_roads.shp',
'concord_roads.shx', and 'concord_roads.dbf').

The Contents of Geographic Data Structures
The shaperead function reads vector features and attributes from a shapefile and returns a
geographic data structure array. The shaperead function determines the names of the attribute
fields at run-time from the shapefile xBASE table or from optional, user-specified parameters. If a
shapefile attribute name cannot be directly used as a field name, shaperead assigns the field an
appropriately modified name, usually by substituting underscores for spaces.

2 Understanding Map Data

2-22

Fields in a Geographic Data Structure
Field Name Data Type Description Comments
Geometry character vector One of the following shape types:

'Point', 'MultiPoint',
'Line', or 'Polygon'.

For a 'PolyLine', the
value of the Geometry
field is simply 'Line'.

BoundingBox 2-by-2 numerical
array

Specifies the minimum and
maximum feature coordinate
values in each dimension in the
following form:

min(X) min(Y)
max(X) max(Y)

Omitted for shape type
'Point'.

X, Y, Lon, or Lat 1-by-N array of
class double

Coordinate vector.

Attr character vector
or scalar number

Attribute name, type, and value. Optional. There are
usually multiple
attributes.

The shaperead function does not support any 3-D or "measured" shape types: 'PointZ',
'PointM', 'MultipointZ', 'MultipointM', 'PolyLineZ', 'PolyLineM', 'PolygonZ',
'PolylineM', or 'Multipatch'. Also, although 'Null Shape' features can be present in a
'Point', 'Multipoint', 'PolyLine', or 'Polygon' shapefile, they are ignored.

PolyLine and Polygon Shapes

In geographic data structures with Line or Polygon geometries, individual features can have
multiple parts—disconnected line segments and polygon rings. The parts can include
counterclockwise inner rings that outline "holes." For an illustration of this, see “Create and Display
Polygons” on page 2-12. Each disconnected part is separated from the next by a NaN within the X and
Y (or Lat and Lon) vectors. You can use the isShapeMultipart function to determine if a feature
has NaN-separated parts.

Each multipoint or NaN-separated multipart line or polygon entity constitutes a single feature and
thus has one character vector or scalar double value per attribute field. It is not possible to assign
distinct attributes to the different parts of such a feature; any character vector or numeric attribute
imported with (or subsequently added to) the geostruct or mapstruct applies to all the feature's parts
in combination.

Mapstructs and Geostructs

By default, shaperead returns a mapstruct containing X and Y fields. This is appropriate if the data
set coordinates are already projected (in a map coordinate system). Otherwise, if the data set
coordinates are unprojected (in a geographic coordinate system), use the parameter-value pair
'UseGeoCoords',true to make shaperead return a geostruct having Lon and Lat fields.

Coordinate Types. If you do not know whether a shapefile uses geographic coordinates or map
coordinates, here are some things you can try:

• If the shapefile includes a projection file (.prj), use shapeinfo to get information about the
coordinate reference system. If the CoordinateReferenceSystem field of the returned
structure is a projcrs object, you have map coordinates. If the field is a geocrs object, you have
geographic coordinates.

 Geographic Data Structures

2-23

• If the shapefile does not include a projection file, use shapeinfo to obtain the BoundingBox. By
looking at the ranges of coordinates, you may be able to tell what kind of coordinates you have.

• Ask your data provider.

The geoshow function displays geographic features stored in geostructs, and the mapshow function
displays geographic features stored in mapstructs. If you try to display a mapstruct with geoshow,
the function issues a warning and calls mapshow. If you try to display a geostruct with mapshow, the
function projects the coordinates with a Plate Carree projection and issues a warning.

Examining a Geographic Data Structure
Here is an example of an unfiltered mapstruct returned by shaperead:

S = shaperead('concord_roads.shp')

The output appears as follows:

S =
609x1 struct array with fields:
 Geometry
 BoundingBox
 X
 Y
 STREETNAME
 RT_NUMBER
 CLASS
 ADMIN_TYPE
 LENGTH

The shapefile contains 609 features. In addition to the Geometry, BoundingBox, and coordinate
fields (X and Y), there are five attribute fields: STREETNAME, RT_NUMBER, CLASS, ADMIN_TYPE, and
LENGTH.

Look at the 10th element:

S(10)

The output appears as follows:

ans =
 Geometry: 'Line'
 BoundingBox: [2x2 double]
 X: [1x9 double]
 Y: [1x9 double]
 STREETNAME: 'WRIGHT FARM'
 RT_NUMBER: ''
 CLASS: 5
 ADMIN_TYPE: 0
 LENGTH: 79.0347

This mapstruct contains 'Line' features. The tenth line has nine vertices. The values of the first two
attributes are character vectors. The second happens to be an empty character vector. The final three
attributes are numeric. Across the elements of S, X and Y can have various lengths, but STREETNAME
and RT_NUMBER must always contain character vectors, and CLASS, ADMIN_TYPE and LENGTH must
always contain scalar doubles.

2 Understanding Map Data

2-24

In this example, shaperead returns an unfiltered mapstruct. If you want to filter out some attributes,
see “Select Shapefile Data to Read” on page 2-97 for more information.

How to Construct Geographic Data Structures
Functions such as shaperead or gshhs return geostructs when importing vector geodata. However,
you might want to create geostructs or mapstructs yourself in some circumstances. For example, you
might import vector geodata that is not stored in a shapefile (for example, from a MAT-file, from an
Microsoft® Excel® spreadsheet, or by reading in a delimited text file). You also might compute vector
geodata and attributes by calling various MATLAB or Mapping Toolbox functions. In both cases, the
coordinates and other data are typically vectors or matrices in the workspace. Packaging variables
into a geostruct or mapstruct can make mapping and exporting them easier, because geographic data
structures provide several advantages over coordinate arrays:

• All associated geodata variables are packaged in one container, a structure array.
• The structure is self-documenting through its field names.
• You can vary map symbology for points, lines, and polygons according to their attribute values by

constructing a symbolspec for displaying the geostruct or mapstruct.
• A one-to-one correspondence exists between structure elements and geographic features, which

extends to the children of hggroup objects constructed by mapshow and geoshow.

Achieving these benefits is not difficult. Use the following example as a guide to packaging vector
geodata you import or create into geographic data structures.

Making Point and Line Geostructs

The following example first creates a point geostruct containing three cities on different continents
and plots it with geoshow. Then it creates a line geostruct containing data for great circle
navigational tracks connecting these cities. Finally, it plots these lines using a symbolspec.

1 Begin with a small set of point data, approximate latitudes and longitudes for three cities on
three continents:

latparis = 48.87084; lonparis = 2.41306; % Paris coords
latsant = -33.36907; lonsant = -70.82851; % Santiago
latnyc = 40.69746; lonnyc = -73.93008; % New York City

2 Build a point geostruct; it needs to have the following required fields:

• Geometry (in this case 'Point')
• Lat (for points, this is a scalar double)
• Lon (for points, this is a scalar double)

% The first field by convention is Geometry (dimensionality).
% As Geometry is the same for all elements, assign it with deal:
[Cities(1:3).Geometry] = deal('Point');

% Add the latitudes and longitudes to the geostruct:
Cities(1).Lat = latparis; Cities(1).Lon = lonparis;
Cities(2).Lat = latsant; Cities(2).Lon = lonsant;
Cities(3).Lat = latnyc; Cities(3).Lon = lonnyc;

% Add city names as City fields. You can name optional fields
% anything you like other than Geometry, Lat, Lon, X, or Y.

 Geographic Data Structures

2-25

Cities(1).Name = 'Paris';
Cities(2).Name = 'Santiago';
Cities(3).Name = 'New York';
% Inspect your completed geostruct and its first member
Cities

Cities =
1x3 struct array with fields:
 Geometry
 Lat
 Lon
 Name

Cities(1)

ans =
 Geometry: 'Point'
 Lat: 48.8708
 Lon: 2.4131
 Name: 'Paris'

3 Display the geostruct on a Mercator projection of the Earth's land masses stored in the
landareas.shp shapefile, setting map limits to exclude polar regions:

axesm('mercator','grid','on','MapLatLimit',[-75 75]); tightmap;
% Map the geostruct with the continent outlines
geoshow('landareas.shp')

% Map the City locations with filled circular markers
geoshow(Cities,'Marker','o',...
 'MarkerFaceColor','c','MarkerEdgeColor','k');

% Display the city names using data in the geostruct field Name.
% Note that you must treat the Name field as a cell array.
textm([Cities(:).Lat],[Cities(:).Lon],...
 {Cities(:).Name},'FontWeight','bold');

2 Understanding Map Data

2-26

4 Next, build a Line geostruct to package great circle navigational tracks between the three cities:

% Call the new geostruct Tracks and give it a line geometry:
[Tracks(1:3).Geometry] = deal('Line');

% Create a text field identifying kind of track each entry is.
% Here they all will be great circles, identified as 'gc'
% (character vector used by certain functions to signify great circle arcs)
trackType = 'gc';
[Tracks.Type] = deal(trackType);

% Give each track an identifying name
Tracks(1).Name = 'Paris-Santiago';
[Tracks(1).Lat Tracks(1).Lon] = ...
 track2(trackType,latparis,lonparis,latsant,lonsant);

Tracks(2).Name = 'Santiago-New York';
[Tracks(2).Lat Tracks(2).Lon] = ...
 track2(trackType,latsant,lonsant,latnyc,lonnyc);

Tracks(3).Name = 'New York-Paris';
[Tracks(3).Lat Tracks(3).Lon] = ...
 track2(trackType,latnyc,lonnyc,latparis,lonparis);

5 Compute lengths of the great circle tracks:

% The distance function computes distance and azimuth between
% given points, in degrees. Store both in the geostruct.
for j = 1:numel(Tracks)
 [dist az] = ...
 distance(trackType,Tracks(j).Lat(1),...
 Tracks(j).Lon(1),...
 Tracks(j).Lat(end),...
 Tracks(j).Lon(end));
 [Tracks(j).Length] = dist;
 [Tracks(j).Azimuth] = az;
end
% Inspect the first member of the completed geostruct
Tracks(1)

ans =
 Geometry: 'Line'
 Type: 'gc'
 Name: 'Paris-Santiago'
 Lat: [100x1 double]
 Lon: [100x1 double]
 Length: 104.8274
 Azimuth: 235.8143

6 Map the three tracks in the line geostruct:

% On cylindrical projections like Mercator, great circle tracks
% are curved except those that follow the Equator or a meridian.

% Graphically differentiate the tracks by creating a symbolspec;
% key line color to track length, using the 'summer' colormap.
% Symbolspecs make it easy to vary color and linetype by
% attribute values. You can also specify default symbologies.

 Geographic Data Structures

2-27

colorRange = makesymbolspec('Line',...
 {'Length',[min([Tracks.Length]) ...
 max([Tracks.Length])],...
 'Color',winter(3)});
geoshow(Tracks,'SymbolSpec',colorRange);

You can save the geostructs you just created as shapefiles by calling shapewrite with a file
name of your choice, for example:

shapewrite(Cities,'citylocs');
shapewrite(Tracks,'citytracks');

Making Polygon Geostructs

Creating a geostruct or mapstruct for polygon data is similar to building one for point or line data.
However, if your polygons include multiple, NaN-separated parts, recall that they can have only one
value per attribute, not one value per part. Each attribute you place in a structure element for such a
polygon pertains to all its parts. This means that if you define a group of islands, for example with a
single NaN-separated list for each coordinate, all attributes for that element describe the islands as a
group, not particular islands. If you want to associate attributes with a particular island, you must
provide a distinct structure element for that island.

Be aware that the ordering of polygon vertices matters. When you map polygon data, the direction in
which polygons are traversed has significance for how they are rendered by functions such as
geoshow, mapshow, and mapview. Proper directionality is particularly important if polygons contain
holes. The Mapping Toolbox convention encodes the coordinates of outer rings (e.g., continent and
island outlines) in clockwise order; counterclockwise ordering is used for inner rings (e.g., lakes and
inland seas). Within the coordinate array, each ring is separated from the one preceding it by a NaN.

When plotted by mapshow or geoshow, clockwise rings are filled. Counterclockwise rings are
unfilled; any underlying symbology shows through such holes. To ensure that outer and inner rings
are correctly coded according to the above convention, you can invoke the following functions:

• ispolycw — True if vertices of polygonal contour are clockwise ordered

2 Understanding Map Data

2-28

• poly2cw — Convert polygonal contour to clockwise ordering
• poly2ccw — Convert polygonal contour to counterclockwise ordering
• poly2fv — Convert polygonal region to face-vertex form for use with patch in order to properly

render polygons containing holes

Three of these functions check or change the ordering of vertices that define a polygon, and the
fourth one converts polygons with holes to a completely different representation.

For an example of working with polygon geostructs, see “Converting Coastline Data (GSHHG) to
Shapefile Format” on page 2-116.

Mapping Toolbox Version 1 Display Structures
Prior to Version 2, when geostructs and mapstructs were introduced, a different data structure was
employed when importing geodata from certain external formats to encapsulate it for map display
functions. These display structures accommodated both raster and vector map data and other kinds
of objects, but lacked the generality of current geostructs and mapstructs for representing vector
features and are being phased out of the toolbox. However, you can convert display structures that
contain vector geodata to geostruct form using updategeostruct. For more information about
Version 1 display structures and their usage, see “Version 1 Display Structures” in the reference page
for displaym. Additional information is located in reference pages for updategeostruct,
extractm, and mlayers.

See Also
shapeinfo | shaperead

More About
• “Create and Display Polygons” on page 2-12

 Geographic Data Structures

2-29

Georeferenced Raster Data
Raster geodata consists of georeferenced data grids and images that are stored as matrices or
objects in the MATLAB workspace. While raster geodata looks like any other matrix of real numbers,
what sets it apart is that it is georeferenced, either to the globe or to a specified map projection, so
that each pixel of data occupies a known patch of territory on the planet.

All regular data grids require a reference object, matrix, or vector, that specify the placement and
resolution of the data set. Geolocated data grids do not require a separate reference object, as they
explicitly identify the geographic coordinates of all rows and columns. For details on geolocated
grids, see “Geolocated Data Grids” on page 2-35.

Reference Objects
A spatial reference object encapsulates the relationship between a geographic or planar coordinate
system and a system of intrinsic coordinates anchored to the columns and rows of a 2-D spatially
referenced raster grid or image. A reference object for raster data that is referenced to a geographic
latitude-longitude system can be a GeographicCellsReference or
GeographicPostingsReference object. A referencing object for raster data referenced to a planar
(projected) map coordinate system can be a MapCellsReference or MapPostingsReference
object. Unlike the older referencing matrix and vector representations (described below), a reference
object is self-documenting, providing a rich set of properties to describe both the intrinsic and
extrinsic geometry. The use of reference objects is preferred, but some referencing matrix and vector
functionality continues to be supported for the purpose of compatibility.

Referencing Matrices
A referencing matrix is a 3-by-2 matrix of doubles that describes the scaling, orientation, and
placement of the data grid on the globe. For a given referencing matrix, R, one of the following
relations holds between rows and columns and coordinates (depending on whether the grid is based
on map coordinates or geographic coordinates, respectively):

[x y] = [row col 1] * R, or
[long lat] = [row col 1] * R

Convert a referencing matrix to a raster reference object using the refmatToGeoRasterReference
or refmatToMapRasterReference functions.

Referencing Vectors
In many instances (when the data grid or image is based on latitude and longitude and is aligned with
the geographic graticule), a referencing matrix has more degrees of freedom than the data requires.
In such cases, you may encounter a more compact representation, a three-element referencing
vector. A referencing vector defines the pixel size and northwest origin for a regular, rectangular data
grid:

refvec = [cells-per-degree north-lat west-lon]

This variable is often called refvec (or maplegend). The first element, cells-per-degree, describes
the angular extent of each grid cell (e.g., if each cell covers five degrees of latitude and longitude,
cells-per-degree would be specified as 0.2). Note that if the latitude extent of cells differs from their
longitude extent you cannot use a referencing vector, and instead must specify a referencing object or

2 Understanding Map Data

2-30

matrix. The second element, north-lat, specifies the northern limit of the data grid (as a latitude), and
the third element, west-lon, specifies the western extent of the data grid (as a longitude). In other
words, north-lat, west-lon is the northwest corner of the data grid. Note, however, that cell (1,1) is
always in the southwest corner of the grid. This need not be the case for grids or images described by
referencing objects or matrices.

Convert a referencing vector to a geographic raster reference object using the
refvecToGeoRasterReference function.

 Georeferenced Raster Data

2-31

Construct a Global Data Grid
Imagine an extremely coarse map of the world in which each cell represents 60°. Such a map matrix
would be 3-by-6.

1 Create a 3-by-6 grid:

miniZ = [1 2 3 4 5 6; 7 8 9 10 11 12; 13 14 15 16 17 18];
2 Now make a referencing object:

miniR = georasterref('RasterSize', size(miniZ), ...
 'Latlim', [-90 90], 'Lonlim', [-180 180])

Your output appears like this:

miniR =

 GeographicCellsReference with properties:

 LatitudeLimits: [-90 90]
 LongitudeLimits: [-180 180]
 RasterSize: [3 6]
 RasterInterpretation: 'cells'
 ColumnsStartFrom: 'south'
 RowsStartFrom: 'west'
 CellExtentInLatitude: 60
 CellExtentInLongitude: 60
 RasterExtentInLatitude: 180
 RasterExtentInLongitude: 360
 XIntrinsicLimits: [0.5 6.5]
 YIntrinsicLimits: [0.5 3.5]
 CoordinateSystemType: 'geographic'
 AngleUnit: 'degree'

3 Set up an equidistant cylindrical map projection:

figure('Color','white')
ax = axesm('MapProjection', 'eqdcylin');
axis off
setm(ax,'GLineStyle','-', 'Grid','on','Frame','on')

4 Draw a graticule with parallel and meridian labels at 60° intervals:

setm(ax, 'MlabelLocation', 60, 'PlabelLocation',[-30 30],...
 'MLabelParallel','north', 'MeridianLabel','on',...
 'ParallelLabel','on','MlineLocation',60,...
 'PlineLocation',[-30 30])

5 Map the data using geoshow and display with a color ramp and legend:

geoshow(miniZ, miniR, 'DisplayType', 'texturemap');
colormap('autumn')
colorbar

2 Understanding Map Data

2-32

Note that the first row of the matrix is displayed at the bottom of the map, while the last row is
displayed at the top.

 Construct a Global Data Grid

2-33

Precompute the Size of a Data Grid
Before making a large, memory-taxing data grid, you should first determine what its size will be. If
you know the latitude and longitude limits of a region, you can calculate the size of the raster by
creating a referencing object, for any desired map resolution and scale.

Specify the latitude and longitude limits for the region. This example calculates the size of a map of
the continental U.S. at a scale of 10 cells per degree.

latlim = [25 50];
lonlim = [-130 -60];

Specify the extent of the data grid using cells per degree.

cellsPerDegree = 10;
extent = 1/cellsPerDegree;

Construct a referencing object and verify that the size of the raster is reasonable (in this case, 250 by
700 cells).

R = georefcells(latlim,lonlim,extent,extent);
R.RasterSize

ans = 1×2

 250 700

2 Understanding Map Data

2-34

Geolocated Data Grids
In addition to regular data grids, the toolbox provides another format for geodata: geolocated data
grids. These multivariate data sets can be displayed, and their values and coordinates can be queried,
but unfortunately much of the functionality supporting regular data grids is not available for
geolocated data grids.

Regular data grids cover simple, regular quadrangles, that is, geographically rectangular and aligned
with parallels and meridians. Geolocated data grids, in addition to these rectangular orientations, can
have other shapes as well.

Define Geolocated Data Grid
To define a geolocated data grid, you must define three variables: a matrix of indices or values
associated with the mapped region, a matrix giving cell-by-cell latitude coordinates, and a matrix
giving cell-by-cell longitude coordinates.

Load a MAT-file containing an irregularly shaped geolocated data grid called mapmtx.

load mapmtx

View the variables created from this MAT-file. Two geolocated data grids are in this data set, each
requiring three variables. The values contained in map1 correspond to the latitude and longitude
coordinates, respectively, in lt1 and lg1. Notice that all three matrices are the same size. Similarly,
map2, lt2, and lg2 together form a second geolocated data grid. These data sets were extracted
from the topo60c data grid. Neither of these maps is regular, because their columns do not run
north to south.

whos

 Name Size Bytes Class Attributes

 description 1x54 108 char
 lg1 50x50 20000 double
 lg2 50x50 20000 double
 lt1 50x50 20000 double
 lt2 50x50 20000 double
 map1 50x50 20000 double
 map2 50x50 20000 double
 source 1x43 86 char

Display the grids one after another to see their geography.

close all
axesm mercator
gridm on
framem on
h1 = surfm(lt1,lg1,map1);
h2 = surfm(lt2,lg2,map2);

 Geolocated Data Grids

2-35

Showing coastlines will help to orient you to these skewed grids. Notice that neither grid is a regular
rectangle. One looks like a diamond geographically, the other like a trapezoid. The trapezoid is
displayed in two pieces because it crosses the edge of the map. These shapes can be thought of as the
geographic organization of the data, just as rectangles are for regular data grids. But, just as for
regular data grids, this organizational logic does not mean that displays of these maps are necessarily
a specific shape.

load coastlines
plotm(coastlat,coastlon,'r')

2 Understanding Map Data

2-36

Now change the view to a polyconic projection with an origin at 0°N, 90°E. As the polyconic
projection is limited to a 150° range in longitude, those portions of the maps outside this region are
automatically trimmed.

setm(gca,'MapProjection','polycon','Origin',[0 90 0])

 Geolocated Data Grids

2-37

2 Understanding Map Data

2-38

Geographic Interpretations of Geolocated Grids
Mapping Toolbox software supports three different interpretations of geolocated data grids:

• First, a map matrix having the same number of rows and columns as the latitude and longitude
coordinate matrices represents the values of the map data at the corresponding geographic points
(centers of data cells).

• Next, a map matrix having one fewer row and one fewer column than the geographic coordinate
matrices represents the values of the map data within the area formed by the four adjacent
latitudes and longitudes.

• Finally, if the latitude and longitude matrices have smaller dimensions than the map matrix, you
can interpret them as describing a coarser graticule, or mesh of latitude and longitude cells, into
which the blocks of map data are warped.

This section discusses the first two interpretations of geolocated data grids. For more information on
the use of graticules, see “The Map Grid” on page 4-83.

Type 1: Values Associated with the Upper Left Grid Coordinate
As an example of the first interpretation, consider a 4-by-4 map matrix whose cell size is 30-by-30
degrees, along with its corresponding 4-by-4 latitude and longitude matrices:

Z = [...
 1 2 3 4; ...
 5 6 7 8; ...
 9 10 11 12; ...
13 14 15 16];

lat = [...
 30 30 30 30; ...
 0 0 0 0; ...
 -30 -30 -30 -30; ...
 -60 -60 -60 -60];

lon = [...
 0 30 60 90;...
 0 30 60 90;...
 0 30 60 90;...
 0 30 60 90];

Display the geolocated data grid with the values of map shown at the associated latitudes and
longitudes:

figure('Color','white','Colormap',autumn(64))
axesm('pcarree','Grid','on','Frame','on',...
 'PLineLocation',30,'PLabelLocation',30)
mlabel; plabel; axis off; tightmap

h = geoshow(lat,lon,Z,'DisplayType','surface');
set(h,'ZData',zeros(size(Z)))
ht = textm(lat(:),lon(:),num2str(Z(:)), ...
 'Color','blue','FontSize',14);

colorbar('southoutside')

 Geographic Interpretations of Geolocated Grids

2-39

Notice that only 9 of the 16 total cells are displayed. The value displayed for each cell is the value at
the upper left corner of that cell, whose coordinates are given by the corresponding lat and lon
elements. By convention, the last row and column of the map matrix are not displayed, although they
exist in the CData property of the surface object.

Type 2: Values Centered Within Four Adjacent Coordinates
For the second interpretation, consider a 3-by-3 map matrix with the same lat and lon variables:

delete(h)
delete(ht)

Z3by3 = [...
 1 2 3; ...
 4 5 6; ...
 7 8 9];

h = geoshow(lat,lon,Z3by3,'DisplayType','texturemap');

tlat = [...
 15 15 15; ...
 -15 -15 -15; ...
 -45 -45 -45];

tlon = [...
 15 45 75; ...
 15 45 75; ...
 15 45 74];

textm(tlat(:),tlon(:),num2str(Z3by3(:)), ...
 'Color','blue','FontSize',14)

Display a surface plot of the map matrix, with the values of map shown at the center of the associated
cells:

2 Understanding Map Data

2-40

All the map data is displayed for this geolocated data grid. The value of each cell is the value at the
center of the cell, and the latitudes and longitudes in the coordinate matrices are the boundaries for
the cells.

Ordering of Cells
You may have noticed that the first row of the matrix is displayed as the top of the map, whereas for a
regular data grid, the opposite was true: the first row corresponded to the bottom of the map. This
difference is entirely due to how the lat and lon matrices are ordered. In a geolocated data grid, the
order of values in the two coordinate matrices determines the arrangement of the displayed values.

Transform Regular to Geolocated Grids
When required, a regular data grid can be transformed into a geolocated data grid. This simply
requires that a pair of coordinate matrices be computed at the desired spatial resolution from the
regular grid. For example, load elevation raster data and a geographic cells reference object. Then,
create a latitude-longitude grid for the data by calling the geographicGrid function.

load topo60c
[lat,lon] = geographicGrid(topo60cR);

Transforming Geolocated to Regular Grids
Conversely, a regular data grid can also be constructed from a geolocated data grid. The coordinates
and values can be embedded in a new regular data grid. The function that performs this conversion is
geoloc2grid; it takes a geolocated data grid and a cell size as inputs.

 Geographic Interpretations of Geolocated Grids

2-41

Spatially Reference Imported Rasters
To associate the elements of a raster with geospatial locations, the raster must be accompanied by
spatial referencing information such as the geographic or world limits, the distance between
recorded samples, and the extent of individual cells. When a supported raster data file contains
spatial referencing information, you can use the readgeoraster function to import the data as an
array and the referencing information as a raster reference object. If the data file does not contain
referencing information, then you can import the data as an array and create a reference object using
the georefcells, georefpostings, maprefcells, or maprefpostings function. The creation
function you use depends on characteristics of the raster data.

• georefcells — The raster is a grid of quadrangular cells referenced to geographic latitude and
longitude coordinates.

• georefpostings — The raster is a grid of posting point samples referenced to geographic
coordinates.

• maprefcells — The raster is a grid of rectangular cells referenced to projected world x- and y-
coordinates.

• maprefpostings — The raster is a grid of posting point samples referenced to projected
coordinates.

Differentiate Between Cells and Postings
This image shows differences between a projected raster of cells and a projected raster of posting
points. Both rasters have elements that are spaced 1 meter apart, with the raster covering x-values in
the range [40,50] in meters and y-values in the range [20,28] in meters. The raster of cells is 8-by-10
and the raster of postings is 9-by-11. The boundary of the raster of cells is made up of the outermost
boundaries of the outermost cells and the boundary of the raster of postings is made up of sampling
points along the edges of the raster.

If you do not know whether your raster is a grid of cells or a grid of posting points, you can try the
following:

• Ask your data provider.
• Search the metadata for information about the spatial registration or interpretation of the data.

Metadata for rasters of cells can contain phrases such as "pixels" or "pixel is area." Metadata for
rasters of posting points can contain phrases such as "grid", "node", or "pixel is point."

• Consider what the data represents. Images are typically made of cells, while elevation grids are
typically made of posting points.

• Consider the size of the raster. If the dimensions of the raster are round numbers, such as a raster
of size [1000 1000], then the raster is probably made of cells. If the dimensions of the raster are

2 Understanding Map Data

2-42

round numbers plus one, such as a raster of size [1001 1001], then the raster is probably made
of posting points.

Spatially Reference an Image
This example shows how to import an image, spatially reference the image by creating a reference
object, then display the image on a map.

Import an image as an array by using the imread function. The array is of size 500-by-500-by-3 and
specifies the red, green, and blue components of the image.

A = imread('boston_common.jpg');

To spatially reference the image, you must determine the following:

• Whether the image is referenced to geographic or projected coordinates
• Whether the image is made up of cells or posting points

Information included in the file boston_common.txt indicates that the image is referenced to
projected coordinates and is made up of cells. Therefore, you can create a reference object by using
the maprefcells function. Specify the x- and y-limits, also included in the file
boston_common.txt, using world coordinates.

xlimits = [235150 236150];
ylimits = [900100 901100];
R = maprefcells(xlimits,ylimits,size(A));

Define the first row of A as the northernmost edge of the image by setting the ColumnsStartFrom
property of the reference object to 'north'. Otherwise, the ColumnsStartFrom property defaults
to 'south'.

R.ColumnsStartFrom = 'north';

Display the spatially referenced image on a map by using the mapshow function.

mapshow(A,R)

 Spatially Reference Imported Rasters

2-43

The data used in this example is derived from data provided by MassGIS (Bureau of Geographic
Information). See the file boston_common.txt for more details.

Spatially Reference an Elevation Grid
This example shows how to import elevation data, spatially reference the data by creating a reference
object, then display the data on a map.

Load elevation data as an array.

load elevation_n39_w106.mat

To spatially reference the data, you must determine the following:

• Whether the data is referenced to geographic or projected coordinates
• Whether the data is made of cells or posting points

Information in the file elevation_n39_w106.txt indicates that the data set is referenced to
geographic coordinates and is made up of posting points. Therefore, you can create a reference
object for the data by using the georefpostings function. Specify the latitude and longitude limits,
also included in the file boston_common.txt, using degrees.

latlim = [39 40];
lonlim = [-106 -105];
R = georefpostings(latlim,lonlim,size(elevation_n39_w106));

2 Understanding Map Data

2-44

Create map axes by specifying the latitude and longitude limits of the data. Then, display the data as
a surface by using the geoshow function. Apply a colormap appropriate for elevation data by using
the demcmap function.

usamap(R.LatitudeLimits,R.LongitudeLimits)
geoshow(elevation_n39_w106,R,'DisplayType','surface')
demcmap(elevation_n39_w106)

The data set used in this example is derived from data provided by the U.S. Geological Survey. See
the file elevation_n39_w106.txt for more details.

See Also
Functions
georefcells | georefpostings | maprefcells | maprefpostings | readgeoraster

Objects
GeographicCellsReference | GeographicPostingsReference | MapCellsReference |
MapPostingsReference

 Spatially Reference Imported Rasters

2-45

Mosaic Spatially Referenced Raster Tiles
Geospatial raster data providers commonly package data as adjacent tiles. For example, SRTM Void
Filled elevation data is packaged into 1-degree-by-1-degree tiles. To analyze data spread across
several tiles, such as when calculating line-of-sight visibility, you must mosaic the tiles into a single
raster.

The processes for combining rasters of cells and rasters of posting points are different. For
information on differentiating rasters made up of cells and posting points, see “Spatially Reference
Imported Rasters” on page 2-42.

Before mosaicking tiles, you must ensure that the tiles are adjacent and that the tile boundaries align.
Otherwise, elements of the mosaicked raster can be spatially referenced to the wrong locations.

Mosaic Rasters of Cells
This example shows how to import two adjacent raster data files made of cells, mosaic the data into a
single raster, and display the mosaicked raster on a map.

The files used in this example, concord_ortho_e.tif and concord_ortho_w.tif, contain east-
west adjacent images with concord_ortho_e.tif to the east of concord_ortho_w.tif. The cell
extents and world y-limits of the images are identical.

Import the images using the readgeoraster function. The outputs eastA and westA are arrays that
contain the image data, and the outputs westR and eastR are MapCellsReference objects that
contain spatial referencing information.

[eastA,eastR] = readgeoraster('concord_ortho_e.tif');
[westA,westR] = readgeoraster('concord_ortho_w.tif');

Create a mosaicked raster by combining the arrays. The images are adjacent and are made up of
cells, so the eastern boundary of westA aligns with the western boundary of eastA.

mosaicA = [westA eastA];

Spatially reference the mosaicked raster by creating a raster reference object. You can create a
reference object for a projected raster of cells by using the maprefcells function.

Specify the world x- and y-limits of the raster. The x-limits of the mosaicked raster are the minimum x-
limit of the western raster and the maximum x-limit of the eastern raster. The world y-limits of the
mosaicked raster are the same as the y-limits of the imported rasters. Create the reference object.

xlimits = [westR.XWorldLimits(1) eastR.XWorldLimits(2)];
ylimits = westR.YWorldLimits;
mosaicR = maprefcells(xlimits,ylimits,size(mosaicA));

The columns of arrays imported using the readgeoraster function start from the north. Therefore,
set the ColumnsStartFrom property of the reference object to 'north'.

mosaicR.ColumnsStartFrom = 'north';

Display the mosaicked image on a map by using the mapshow function.

mapshow(mosaicA,mosaicR,'DisplayType','image')

2 Understanding Map Data

2-46

Mosaic Rasters of Postings
This example shows how to import two adjacent raster data files made of posting points, mosaic the
data into a single raster, and display the mosaicked raster on a map.

The files used in this example, n39_w106_3arc_v2.dt1 and n40_w106_3arc_v2.dt1, contain
north-south adjacent elevation grids with n39_w106_3arc_v2.dt1 to the south of
n40_w106_3arc_v2.dt1. The northern latitude limit of the grid in n39_w106_3arc_v2.dt1 is the
same as the southern latitude limit of the grid in n40_w106_3arc_v2.dt1. The spacing of posting
points and the longitude limits of the grids are identical.

Import the grids using the readgeoraster function. The outputs southZ and northZ are arrays of
type double that contain the elevation data, and the outputs southR and northR are
GeographicPostingsReference objects that contain spatial referencing information.

[southZ,southR] = readgeoraster('n39_w106_3arc_v2.dt1','OutputType','double');
[northZ,northR] = readgeoraster('n40_w106_3arc_v2.dt1','OutputType','double');

Create a mosaicked raster by combining the arrays. The boundaries of posting point rasters are made
up of the outermost posting points, and the columns of arrays imported using the readgeoraster
function start from the north. Therefore, the southernmost row of northZ and the northernmost row
of southZ are the same. To avoid a duplicate row in the mosaicked raster, remove the southernmost
row of northZ before combining the arrays.

 Mosaic Spatially Referenced Raster Tiles

2-47

northZ(end,:) = [];
mosaicZ = [northZ; southZ];

Spatially reference the mosaicked raster by creating a raster reference object. You can create a
reference object for a geographic raster of posting points by using the georefpostings function.

Specify the latitude and longitude limits of the raster. The latitude limits are the minimum latitude of
the southern raster and the maximum latitude of the northern raster. The longitude limits of the
mosaicked raster are the same as the longitude limits of the imported rasters. Create the reference
object.

latlim = [southR.LatitudeLimits(1) northR.LatitudeLimits(2)];
lonlim = southR.LongitudeLimits;
mosaicR = georefpostings(latlim,lonlim,size(mosaicZ));

Set the ColumnsStartFrom and GeographicCRS properties of the reference object so that they
match the properties of the imported reference objects.

mosaicR.ColumnsStartFrom = southR.ColumnsStartFrom;
mosaicR.GeographicCRS = southR.GeographicCRS;

Display the mosaicked raster on a map. Create a map axes by specifying the latitude and longitude
limits of the data. Then, display the data as a surface by using the geoshow function. Apply a
colormap appropriate for elevation data by using the demcmap function.

usamap(mosaicR.LatitudeLimits,mosaicR.LongitudeLimits)
geoshow(mosaicZ,mosaicR,'DisplayType','surface')
demcmap(mosaicZ)

2 Understanding Map Data

2-48

The elevation data used in this example is from the U.S. Geological Survey.

See Also
Functions
georefcells | georefpostings | maprefcells | maprefpostings | readgeoraster

Objects
GeographicCellsReference | GeographicPostingsReference | MapCellsReference |
MapPostingsReference

Related Examples
• “Spatially Reference Imported Rasters” on page 2-42

 Mosaic Spatially Referenced Raster Tiles

2-49

Unprojecting a Digital Elevation Model (DEM)
This example shows how to convert a USGS DEM into a regular latitude-longitude grid having
comparable spatial resolution. U.S. Geological Survey (USGS) 30-meter Digital Elevation Models
(DEMs) are regular grids (raster data) that use the UTM coordinate system. Using such DEMs in
applications may require reprojecting and resampling them. You can readily apply the approach show
here to projected map coordinate systems other than UTM and to other DEMs and most types of
regular data grids.

First, set the output display format to longG so that the output displays more decimal places. Get the
current output format so that you can restore it at the end of the example.

currentFormat = get(0,'format');
format longG

Step 1: Import the DEM and its Metadata

This example uses a USGS DEM for a quadrangle 7.5-arc-minutes square located in the White
Mountains of New Hampshire, USA. Import the data and a map cells reference object using the
readgeoraster function. Get additional metadata using the georasterinfo function.

[Z,R] = readgeoraster('MtWashington-ft.grd','OutputType','double');
info = georasterinfo('MtWashington-ft.grd');

Replace missing data with NaN values.

m = info.MissingDataIndicator;
Z = standardizeMissing(Z,m);

Step 2: Get Projection Information

Get information about the projected coordinate reference system by querying the ProjectedCRS
property of the reference object. The result is a projcrs object. Then, get the ellipsoid for the
coordinate reference system.

p = R.ProjectedCRS;
ellipsoid = p.GeographicCRS.Spheroid

ellipsoid =

referenceEllipsoid with defining properties:

 Code: 7008
 Name: 'Clarke 1866'
 LengthUnit: 'meter'
 SemimajorAxis: 6378206.4
 SemiminorAxis: 6356583.8
 InverseFlattening: 294.978698213898
 Eccentricity: 0.0822718542230038

 and additional properties:

 Flattening
 ThirdFlattening
 MeanRadius
 SurfaceArea

2 Understanding Map Data

2-50

 Volume

Step 3: Determine which UTM Zone to Use and Construct a Map Axes

From the Name property of the projcrs object, you can tell that the DEM is gridded in a Universal
Transverse Mercator (UTM) coordinate system.

p.Name

ans =

 "UTM Zone 19, Northern Hemisphere"

To find the UTM zone, first locate the center of the DEM in UTM coordinates. Then, convert the
coordinates to latitude-longitude.

[M,N] = size(Z);
xCenterIntrinsic = (1 + N)/2;
yCenterIntrinsic = (1 + M)/2;
[xCenter,yCenter] = intrinsicToWorld(R,xCenterIntrinsic,yCenterIntrinsic);
[latCenter,lonCenter] = projinv(p,xCenter,yCenter)

latCenter =

 44.3124367104673

lonCenter =

 -71.3126432693478

Find the UTM zone for the DEM by using the utmzone function.

utmZone = utmzone(latCenter,lonCenter)

utmZone =

 '19T'

Use the zone and ellipsoid to create a map axes.

figure
axesm('utm','zone',utmZone,'geoid',ellipsoid)
axis off
gridm
mlabel on
plabel on
framem on

 Unprojecting a Digital Elevation Model (DEM)

2-51

Note: if you can visually place the approximate location of New Hampshire on a world map, then you
can confirm this result with the utmzoneui GUI.

 utmzoneui(actualZone)

Step 4: Display the Original DEM on the Map Axes

Use mapshow (rather than geoshow or meshm) to display the DEM on the map axes because the data
are gridded in map (x-y) coordinates.

mapshow(Z,R,'DisplayType','texturemap')
demcmap(Z)

2 Understanding Map Data

2-52

The DEM covers such a small part of this map that it may be hard to see (look between 44 and 44
degrees North and 72 and 71 degrees West), because the map limits are set to cover the entire UTM
zone. You can reset them (as well as the map grid and label parameters) to get a closer look.

setm(gca,'MapLatLimit',[44.2 44.4],'MapLonLimit',[-71.4 -71.2])
setm(gca,'MLabelLocation',0.05,'MLabelRound',-2)
setm(gca,'PLabelLocation',0.05,'PLabelRound',-2)
setm(gca,'PLineLocation',0.025,'MLineLocation',0.025)

 Unprojecting a Digital Elevation Model (DEM)

2-53

When it is viewed at this larger scale, narrow wedge-shaped areas of uniform color appear along the
edge of the grid. These are places where Z contains the value NaN, which indicates the absence of
actual data. By default they receive the first color in the color table, which in this case is dark green.
These null-data areas arise because although the DEM is gridded in UTM coordinates, its data limits
are defined by a latitude-longitude quadrangle. The narrow angle of each wedge corresponds to the
non-zero "grid declination" of the UTM coordinate system in this part of the zone. (Lines of constant x
run precisely north-south only along the central meridian of the zone. Elsewhere, they follow a slight
angle relative to the local meridians.)

Step 5: Define the Output Latitude-Longitude Grid

The next step is to define a regularly-spaced set of grid points in latitude-longitude that covers the
area within the DEM at about the same spatial resolution as the original data set.

First, you need to determine how the latitude changes between rows in the input DEM (i.e., by
moving northward by 30 meters).

rng = R.CellExtentInWorldY; % In meters, consistent with p.LengthUnit
latcrad = deg2rad(latCenter); % latCenter in radians

% Change in latitude, in degrees
dLat = rad2deg(meridianfwd(latcrad,rng,ellipsoid) - latcrad)

dLat =

2 Understanding Map Data

2-54

 0.000269984939366415

The actual spacing can be rounded slightly to define the grid spacing to be used for the output
(latitude-longitude) grid.

gridSpacing = 1/4000; % In other words, 4000 samples per degree

To set the extent of the output (latitude-longitude) grid, start by finding the corners of the DEM in
UTM map coordinates.

xCorners = R.XWorldLimits([1 1 2 2])'
yCorners = R.YWorldLimits([1 2 2 1])'

xCorners =

 310380
 310380
 320730
 320730

yCorners =

 4901880
 4916040
 4916040
 4901880

Then convert the corners to latitude-longitude. Display the latitude-longitude corners on the map (via
the UTM projection) to check that the results are reasonable.

[latCorners, lonCorners] = projinv(p,xCorners, yCorners)
hCorners = geoshow(latCorners,lonCorners,'DisplayType','polygon',...
 'FaceColor','none','EdgeColor','red');

latCorners =

 44.2474175605687
 44.3747915486804
 44.3774240601986
 44.2500384686392

lonCorners =

 -71.3749065609587
 -71.3800513603087
 -71.2502438233865
 -71.2453790282992

 Unprojecting a Digital Elevation Model (DEM)

2-55

Next, round outward to define an output latitude-longitude quadrangle that fully encloses the DEM
and aligns with multiples of the grid spacing.

latSouth = gridSpacing * floor(min(latCorners)/gridSpacing)
lonWest = gridSpacing * floor(min(lonCorners)/gridSpacing)
latNorth = gridSpacing * ceil(max(latCorners)/gridSpacing)
lonEast = gridSpacing * ceil(max(lonCorners)/gridSpacing)

qlatlim = [latSouth latNorth];
qlonlim = [lonWest lonEast];

dlat = 100*gridSpacing;
dlon = 100*gridSpacing;

[latquad, lonquad] = outlinegeoquad(qlatlim, qlonlim, dlat, dlon);

hquad = geoshow(latquad, lonquad, ...
 'DisplayType','polygon','FaceColor','none','EdgeColor','blue');

snapnow;

latSouth =

 44.24725

lonWest =

2 Understanding Map Data

2-56

 -71.38025

latNorth =

 44.3775

lonEast =

 -71.24525

Finally, construct a geographic raster referencing object for the output grid. It supports
transformations between latitude-longitude and the row and column subscripts. In this case, use of a
world file matrix, W, enables exact specification of the grid spacing.

W = [gridSpacing 0 lonWest + gridSpacing/2; ...
 0 gridSpacing latSouth + gridSpacing/2]

W =

 0.00025 0 -71.380125
 0 0.00025 44.247375

 Unprojecting a Digital Elevation Model (DEM)

2-57

nRows = round((latNorth - latSouth) / gridSpacing)
nCols = round(wrapTo360(lonEast - lonWest) / gridSpacing)

nRows =

 521

nCols =

 540

Rlatlon = georasterref(W,[nRows nCols],'cells');
Rlatlon.GeographicCRS = p.GeographicCRS

Rlatlon =

 GeographicCellsReference with properties:

 LatitudeLimits: [44.24725 44.3775]
 LongitudeLimits: [-71.38025 -71.24525]
 RasterSize: [521 540]
 RasterInterpretation: 'cells'
 ColumnsStartFrom: 'south'
 RowsStartFrom: 'west'
 CellExtentInLatitude: 1/4000
 CellExtentInLongitude: 1/4000
 RasterExtentInLatitude: 0.13025
 RasterExtentInLongitude: 0.135
 XIntrinsicLimits: [0.5 540.5]
 YIntrinsicLimits: [0.5 521.5]
 CoordinateSystemType: 'geographic'
 GeographicCRS: [1x1 geocrs]
 AngleUnit: 'degree'

Rlatlon fully defines the number and location of each cell in the output grid.

Step 6: Map Each Output Grid Point Location to UTM X-Y

Finally, you're ready to make use of the map projection, applying it to the location of each point in the
output grid. First compute the latitudes and longitudes of those points, stored in 2-D arrays.

[rows,cols] = ndgrid(1:nRows, 1:nCols);
[lat,lon] = intrinsicToGeographic(Rlatlon,cols,rows);

Then apply the projection to each latitude-longitude pair, arrays of UTM x-y locations having the same
shape and size as the latitude-longitude arrays.

[XI,YI] = projfwd(p,lat,lon);

At this point, XI(i,j) and YI(i,j) specify the UTM coordinate of the grid point corresponding to
the i-th row and j-th column of the output grid.

2 Understanding Map Data

2-58

Step 7: Resample the Original DEM

The final step is to use the MATLAB interp2 function to perform bilinear resampling.

At this stage, the value of projecting from the latitude-longitude grid into the UTM map coordinate
system becomes evident: it means that the resampling can take place in the regular X-Y grid, making
interp2 applicable. The reverse approach, unprojecting each (X,Y) point into latitude-longitude,
might seem more intuitive but it would result in an irregular array of points to be interpolated -- a
much harder task, requiring use of the far more costly griddata function or some rough equivalent.

[rows,cols] = ndgrid(1:M,1:N);
[X,Y] = intrinsicToWorld(R,cols,rows);
method = 'bilinear';
extrapval = NaN;
Zlatlon = interp2(X,Y,Z,XI,YI,method,extrapval);

View the result in the projected axes using geoshow, which will re-project it on the fly. Notice that it
fills the blue rectangle, which is aligned with lines of latitude and longitude. (In contrast, the red
rectangle, which outlines the original DEM, aligns with UTM x and y.) Also notice NaN-filled regions
along the edges of the grid. The boundaries of these regions appear slightly jagged, at the level of a
single grid spacing, due to round-off effects during interpolation. Move the red quadrilateral and blue
quadrangle to the top, to ensure that they are not hidden by the raster display.

geoshow(Zlatlon,Rlatlon,'DisplayType','texturemap')
uistack([hCorners hquad],'top')

Restore the original output display format.

 Unprojecting a Digital Elevation Model (DEM)

2-59

format(currentFormat)

Credits

MtWashington-ft.grd (and supporting files):

 United States Geological Survey (USGS) 7.5-minute Digital Elevation
 Model (DEM) for the Mt. Washington quadrangle, with elevation in
 meters. http://edc.usgs.gov/products/elevation/dem.html

 For more information, run:

 >> type MtWashington-ft.txt

See Also
demcmap | georasterref | intrinsicToGeographic | intrinsicToWorld |
refmatToMapRasterReference

2 Understanding Map Data

2-60

Georeferencing an Image to an Orthotile Base Layer
This example shows how to register an image to an earth coordinate system and create a new
"georeferenced" image. It requires Image Processing Toolbox™ in addition to Mapping Toolbox™.

In this example, all georeferenced data are in the same earth coordinate system, the Massachusetts
State Plane system (using the North American Datum of 1983 in units of meters). This defines our
"map coordinates." The georeferenced data include an orthoimage base layer and a vector road layer.

The data set to be georeferenced is a digital aerial photograph covering parts of the village of West
Concord, Massachusetts, collected in early spring, 1997.

Step 1: Render Orthoimage Base Tiles in Map Coordinates

The orthoimage base layer is structured into 4000-by-4000 pixel tiles, with each pixel covering
exactly one square meter in map coordinates. Each tile is stored as a TIFF image with a world file.
The aerial photograph of West Concord overlaps two tiles in the orthoimage base layer. (For
convenience, this example actually works with two 2000-by-2000 sub-tiles extracted from the larger
4000-by-4000 originals. They have the same pixel size, but cover only the area of interest.)

Read the two orthophoto base tiles required to cover the extent of the aerial image.

[baseImage1,cmap1] = imread('concord_ortho_w.tif');
[baseImage2,cmap2] = imread('concord_ortho_e.tif');

Read the world files for the two tiles

currentFormat = get(0,'format');
format short g
R1 = worldfileread('concord_ortho_w.tfw','planar',size(baseImage1))
R2 = worldfileread('concord_ortho_e.tfw','planar',size(baseImage2))

R1 =

 MapCellsReference with properties:

 XWorldLimits: [207000 209000]
 YWorldLimits: [911000 913000]
 RasterSize: [2000 2000]
 RasterInterpretation: 'cells'
 ColumnsStartFrom: 'north'
 RowsStartFrom: 'west'
 CellExtentInWorldX: 1
 CellExtentInWorldY: 1
 RasterExtentInWorldX: 2000
 RasterExtentInWorldY: 2000
 XIntrinsicLimits: [0.5 2000.5]
 YIntrinsicLimits: [0.5 2000.5]
 TransformationType: 'rectilinear'
 CoordinateSystemType: 'planar'
 ProjectedCRS: []

R2 =

 Georeferencing an Image to an Orthotile Base Layer

2-61

 MapCellsReference with properties:

 XWorldLimits: [209000 211000]
 YWorldLimits: [911000 913000]
 RasterSize: [2000 2000]
 RasterInterpretation: 'cells'
 ColumnsStartFrom: 'north'
 RowsStartFrom: 'west'
 CellExtentInWorldX: 1
 CellExtentInWorldY: 1
 RasterExtentInWorldX: 2000
 RasterExtentInWorldY: 2000
 XIntrinsicLimits: [0.5 2000.5]
 YIntrinsicLimits: [0.5 2000.5]
 TransformationType: 'rectilinear'
 CoordinateSystemType: 'planar'
 ProjectedCRS: []

Display the images in their correct spatial positions.

mapshow(baseImage1,cmap1,R1)
ax1 = gca;
mapshow(ax1,baseImage2,cmap2,R2)
title('Map View, Massachusetts State Plane Coordinates');
xlabel('Easting (meters)');
ylabel('Northing (meters)');

2 Understanding Map Data

2-62

Step 2: Register Aerial Photograph to Map Coordinates

This step uses functions cpselect, cpstruct2pairs, fitgeotrans, and imwarp, and method
projective2d/transformPointsForward, from the Image Processing Toolbox together with map
raster reference objects from Mapping Toolbox. Together, they enable georegistration based on
control point pairs that relate the aerial photograph to the orthoimage base layer.

Read the aerial photo.

inputImage = imread('concord_aerial_sw.jpg');
figure
imshow(inputImage)
title('Unregistered Aerial Photograph')

Both orthophoto images are indexed images but cpselect only takes grayscale images, so convert
them to grayscale.

baseGray1 = im2uint8(ind2gray(baseImage1,cmap1));
baseGray2 = im2uint8(ind2gray(baseImage2,cmap2));

Downsample the images by a factor of 2, then pick two separate sets of control point pairs: one for
points in the aerial image that appear in the first tile, and another for points that appear in the
second tile. Save the control point pairs to the base workspace as control point structures named
cpstruct1 and cpstruct2.

 Georeferencing an Image to an Orthotile Base Layer

2-63

n = 2; % downsample by a factor n
load mapexreg.mat % load some points that were already picked

Optionally, edit or add to the pre-picked points using cpselect. Note that you need to work
separately on the control points for each orthotile.

cpselect(inputImage(1:n:end,1:n:end,1),...
 baseGray1(1:n:end,1:n:end),cpstruct1);

cpselect(inputImage(1:n:end,1:n:end,1),...
 baseGray2(1:n:end,1:n:end),cpstruct2);

This tool helps you pick pairs of corresponding control points. Control points are landmarks that you
can find in both images, like a road intersection, or a natural feature. Three pairs of control points
have already been picked for each orthophoto tile. If you want to proceed with these points, go to
Step 3: Infer and apply geometric transformation. If you want to add some additional pairs of points,
do so by identifying landmarks and clicking on the images. Save control points by choosing the File
menu, then the Save Points to Workspace option. Save the points, overwriting variables
cpstruct1 and cpstruct2.

Step 3: Infer and Apply Geometric Transformation

Extract control point pairs from the control point structures.

[input1,base1] = cpstruct2pairs(cpstruct1);
[input2,base2] = cpstruct2pairs(cpstruct2);

Account for downsampling by factor n.

input1 = n*input1 - 1;
input2 = n*input2 - 1;
base1 = n*base1 - 1;
base2 = n*base2 - 1;

Transform base image coordinates into map (State Plane) coordinates.

[x1, y1] = intrinsicToWorld(R1, base1(:,1), base1(:,2));
[x2, y2] = intrinsicToWorld(R2, base2(:,1), base2(:,2));

Combine the two sets of control points and infer a projective transformation. (The projective
transformation should be a reasonable choice, since the aerial image is from a frame camera and the
terrain in this area is fairly gentle.)

input = [input1; input2];
spatial = [x1 y1; x2 y2];

tform = fitgeotrans(input,spatial,'projective')

tform =

 projective2d with properties:

 T: [3x3 double]
 Dimensionality: 2

Compute and plot (2D) residuals.

2 Understanding Map Data

2-64

residuals = transformPointsForward(tform, input) - spatial;
figure
plot(residuals(:,1),residuals(:,2),'+')
title('Control Point Residuals');
xlabel('Easting offset (meters)');
ylabel('Northing offset (meters)');
xlim([-4 4])
ylim([-4 4])
axis equal

Predict corner locations for the registered image, in map coordinates, and connect them to show the
image outline.

mInput = size(inputImage,1);
nInput = size(inputImage,2);

inputCorners = 0.5 ...
 + [0 0;
 0 mInput;
 nInput mInput;
 nInput 0;
 0 0];

outputCornersSpatial = transformPointsForward(tform, inputCorners);

outputCornersX = outputCornersSpatial(:,1);
outputCornersY = outputCornersSpatial(:,2);

 Georeferencing an Image to an Orthotile Base Layer

2-65

figure(ax1.Parent)
line(outputCornersX,outputCornersY,'Color','w')

Calculate the average pixel size of the input image (in map units).

pixelSize = [hypot(...
 outputCornersX(2) - outputCornersX(1), ...
 outputCornersY(2) - outputCornersY(1)) / mInput, ...
 hypot(...
 outputCornersX(4) - outputCornersX(5), ...
 outputCornersY(4) - outputCornersY(5)) / nInput]

pixelSize =

 0.90963 0.89054

Variable pixelSize gives a starting point from which to select a width and height for the pixels in
our georegistered output image. In principle we could select any size at all for our output pixels.
However, if we make them too small we waste memory and computation time, ending up with a big
(many rows and columns) blurry image. If we make them too big, we risk aliasing the image as well
as needlessly discarding information in the original image. In general we also want our pixels to be
square. A reasonable heuristic is to select a pixel size that is slightly larger than max(pixelSize)
and is a "reasonable" number (i.e., 0.95 or 1.0 rather than 0.9096). Here we chose 1, which means
that each pixel in our georegistered image will cover one square meter on the ground. It's "nice" to
have georegistered images that align along integer map coordinates for display and analysis.

2 Understanding Map Data

2-66

outputPixelSize = 1;

Choose world limits that are integer multiples of the output pixel size.

xWorldLimits = outputPixelSize ...
 * [floor(min(outputCornersX) / outputPixelSize), ...
 ceil(max(outputCornersX) / outputPixelSize)]

yWorldLimits = outputPixelSize ...
 * [floor(min(outputCornersY) / outputPixelSize), ...
 ceil(max(outputCornersY) / outputPixelSize)]

xWorldLimits =

 208154 209693

yWorldLimits =

 911435 912583

Display a bounding box for the registered image.

line(xWorldLimits([1 1 2 2 1]),yWorldLimits([2 1 1 2 2]),'Color','red')

The dimensions of the registered image will be as follows:

 Georeferencing an Image to an Orthotile Base Layer

2-67

mOutput = diff(yWorldLimits) / outputPixelSize
nOutput = diff(xWorldLimits) / outputPixelSize

mOutput =

 1148

nOutput =

 1539

Create an Image Processing Toolbox referencing object for the registered image.

R = imref2d([mOutput nOutput],xWorldLimits,yWorldLimits)

R =

 imref2d with properties:

 XWorldLimits: [208154 209693]
 YWorldLimits: [911435 912583]
 ImageSize: [1148 1539]
 PixelExtentInWorldX: 1
 PixelExtentInWorldY: 1
 ImageExtentInWorldX: 1539
 ImageExtentInWorldY: 1148
 XIntrinsicLimits: [0.5 1539.5]
 YIntrinsicLimits: [0.5 1148.5]

Create a map raster reference object, which is the Mapping Toolbox counterpart to an Image
Processing Toolbox referencing object.

Rmap = maprasterref('RasterSize',R.ImageSize, ...
 'XWorldLimits',R.XWorldLimits,'YWorldLimits',R.YWorldLimits, ...
 'ColumnsStartFrom','north')

Rmap =

 MapCellsReference with properties:

 XWorldLimits: [208154 209693]
 YWorldLimits: [911435 912583]
 RasterSize: [1148 1539]
 RasterInterpretation: 'cells'
 ColumnsStartFrom: 'north'
 RowsStartFrom: 'west'
 CellExtentInWorldX: 1
 CellExtentInWorldY: 1
 RasterExtentInWorldX: 1539
 RasterExtentInWorldY: 1148
 XIntrinsicLimits: [0.5 1539.5]
 YIntrinsicLimits: [0.5 1148.5]
 TransformationType: 'rectilinear'

2 Understanding Map Data

2-68

 CoordinateSystemType: 'planar'
 ProjectedCRS: []

Apply the geometric transformation using imwarp. Flip its output so that the columns run from north
to south.

registered = flipud(imwarp(inputImage, tform, 'OutputView', R));
figure
imshow(registered)

format(currentFormat)

You can write the registered image as a TIFF with a world file, thereby georeferencing it to our map
coordinates.

imwrite(registered,'concord_aerial_sw_reg.tif');
worldfilewrite(Rmap,getworldfilename('concord_aerial_sw_reg.tif'));

 Georeferencing an Image to an Orthotile Base Layer

2-69

Step 4: Display the Registered Image in Map Coordinates

Display the registered image on the same (map coordinate) axes as the orthoimage base tiles. The
registered image does not completely fill its bounding box, so it includes null-filled triangles. Create
an alpha data mask to make these fill areas render as transparent.

alphaData = registered(:,:,1);
alphaData(alphaData~=0) = 255;

figure
mapshow(baseImage1,cmap1,R1)
ax2 = gca;
mapshow(ax2,baseImage2,cmap2,R2)
title('Map View, Massachusetts State Plane Coordinates');
xlabel('Easting (meters)');
ylabel('Northing (meters)');

mInput = mapshow(ax2,registered,Rmap);
mInput.AlphaData = alphaData;

You can assess the registration by looking at features that span both the registered image and the
orthophoto images.

Step 5: Overlay Vector Road Layer (from Shapefile)

Use shapeinfo and shaperead to learn about the attributes of the vector road layer. Render the
roads on the same axes and the base tiles and registered image.

2 Understanding Map Data

2-70

roadsfile = 'concord_roads.shp';
roadinfo = shapeinfo(roadsfile);
roads = shaperead(roadsfile);

Create symbolization based on the CLASS attribute (the type of road). Note that very minor roads
have CLASS values equal to 6, so don't display them.

roadspec = makesymbolspec('Line',{'CLASS',6,'Visible','off'});

mapshow(ax2,roads,'SymbolSpec',roadspec,'Color','cyan')

Observe that the roads line up quite well with the roads in the images. Two obvious linear features
in the images are not roads but railroads. The linear feature that trends roughly east-west and
crosses both base tiles is the Fitchburg Commuter Rail Line of the Massachusetts Bay Transportation
Agency. The linear feature that trends roughly northwest-southeast is the former Framingham-Lowell
secondary line.

Credits

concord_orthow_w.tif, concord_ortho_e.tif, concord_roads.shp:

 Office of Geographic and Environmental Information (MassGIS),
 Commonwealth of Massachusetts Executive Office of Environmental Affairs
 http://www.state.ma.us/mgis

 For more information, run:

 Georeferencing an Image to an Orthotile Base Layer

2-71

 >> type concord_ortho.txt
 >> type concord_roads.txt

concord_aerial_sw.jpg

 Visible color aerial photograph courtesy of mPower3/Emerge.

 For more information, run:

 >> type concord_aerial_sw.txt

See Also
MapCellsReference | cpstruct2pairs | fitgeotrans | im2uint8 | imread | imref2d |
intrinsicToWorld | maprasterref | transformPointsForward | worldfileread

2 Understanding Map Data

2-72

Find Geospatial Data Online
Many vector and raster data formats have been developed for storing geospatial data. With Mapping
Toolbox you can read geodata files in general purpose formats (e.g., Esri® shapefile, GeoTIFF, and
SDTS DEM) that a variety of mapping and image processing applications also read and write. You can
also read files that are in a variety of special formats designed to exchange specific sets or kinds of
geodata (e.g., GSHHG, VMAP0, DEM, and DTED files). You can order, and in many cases, download
such data over the Internet.

Mapping Toolbox provides generalized sample data in the form of data files for the entire Earth and
its major regions, as well as some higher resolution files covering small areas. These data sets are
frequently used in the code examples provided in the Mapping Toolbox documentation. You can find
them in matlabroot/examples/map/data and matlabroot/toolbox/map/mapdata. You can list
them, along with their metadata, by typing the following at the command line:

ls(fullfile(matlabroot,'examples','map','data'))
ls(fullfile(matlabroot,'toolbox','map','mapdata'))

In addition, the worlddatamap function, available on MATLAB Central, allows you to use worldmap
to map a region using data from a shapefile or data grid. Examples of worlddatamap and world
vector data in shapefile format are available under the heading worlddatamap Examples.

For information about a small but useful subset of geodata resources on the Internet, see the
following topics:

Note MathWorks does not warrant the accuracy, timeliness, or fitness for use of any data set listed in
these topics, and makes no endorsement of any data vendor mentioned.

• “Find Vector Geodata” on page 2-74 — Lists URLs from which you can obtain vector (point, line,
or polygon) geospatial data sets and data products, such as Esri shape files.

• “Find Geospatial Raster Data” on page 2-76 — Lists URLs from which you can obtain raster
(gridded) geospatial data sets and data products, such as Digital Terrain Elevation Data (DTED).
This topic also covers raster maps from Web Map Service servers.

Note If you are viewing this documentation installed locally (controlled by your Documentation
location preference), you should also consult “Find Geospatial Data Online” on page 2-73 on the
MathWorks website for possible updates and corrections.

 Find Geospatial Data Online

2-73

https://www.mathworks.com/matlabcentral/fileexchange/7550-worlddatamap
https://www.mathworks.com/matlabcentral/fileexchange/7550-worlddatamap

Find Vector Geodata
This table contains some commonly used vector (point, line, or polygon) geospatial data sets that are
available over the Internet. The table includes the names of Mapping Toolbox functions that read
specific kinds of data. Click any numbered footnote in the right column to access data sets and
associated documentation on the Web. Note, however, that Web addresses (URLs) for data can
disappear or change, making some of the links unusable.

Note If you are using a Macintosh and the links in this table do not work, open the Mapping Toolbox
documentation in a separate Web browser and view this section there. When you open the
documentation, search for "Finding Vector Geodata" to find this topic.

Vector Data Set or Data
Product

Data Provider Import Functions Internet URLs for Documentation
and Data (HTTP or FTP)

Canadian provincial and
Mexican state boundaries
in zipped shapefile format

NOAA shapeinfo
shaperead

Documentation link: [1]
Canada data link: [2]
Mexico data link: [3]

Esri shapefiles Esri and many
other sources

shapeinfo
shaperead

Documentation link: [1]
For data links, see entries for TIGER,
U.S. National Atlas, and U.S.
coastlines.

Global Self-Consistent
Hierarchical High-
Resolution Geography
(GSHHG)

NOAA/
NGDC

gshhs Doc and data link: [1]
Data (older versions): [2]

TIGER/Line® files U.S. Census
Bureau

shapeinfo
shaperead

Documentation and data link: [1]
Data (for 2000, in shapefile format):
[2]

TIGER cartographic
boundary files

U.S. Census
Bureau

shapeinfo
shaperead

Doc and Data link: [1]
This site contains downloadable
boundary files for census
geographies in Esri Ungenerate,
E00, and shapefile formats. Use
shapefile format when importing to
Mapping Toolbox.

U.S. coastlines, historical
data

NOAA shapeinfo
shaperead

Documentation, metadata, and data
in shapefile format: [1]

World coastlines from
various sources

NGDC/
USGS

load Data link: [1]

Abbreviations for data providing organizations used in the preceding table:

• Esri (Environmental Sciences Research Institute)
• NGDC (National Geophysical Data Center)
• NIST (National Institute of Standards and Technology)
• NOAA (National Oceanic and Atmospheric Administration)

2 Understanding Map Data

2-74

https://www.weather.gov/gis/AWIPSShapefiles
https://www.nohrsc.noaa.gov/data/vector/master/prv_ca.tar.gz
https://www.nohrsc.noaa.gov/data/vector/master/st_mx.tar.gz
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
https://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html
https://www.ngdc.noaa.gov/mgg/shorelines/data/gshhs/oldversions/
https://www.census.gov/programs-surveys/geography/technical-documentation/complete-technical-documentation/tiger-geo-line.html
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html
https://shoreline.noaa.gov/
https://www.ngdc.noaa.gov/mgg/shorelines/shorelines.html

• USGS (U.S. Geological Survey)

See Also

More About
• “Find Geospatial Data Online” on page 2-73

 Find Vector Geodata

2-75

Find Geospatial Raster Data
In this section...
“Download Data” on page 2-76
“Use Web Map Service Data” on page 2-77

Get geospatial raster data over the Internet by downloading it or by accessing the Web Map Service
(WMS) database.

Download Data
Find and download geospatial raster data using resources such as the ones in these tables. For
information about supported file formats, see readgeoraster and worldfileread.

Note If you are using a Macintosh and the links on this page do not work, open the Mapping Toolbox
documentation in a separate browser and view this section there. You can find this topic by searching
for "Find Geospatial Raster Data".

Elevation

Resource Provider Examples of Products and
Data Sets

EarthExplorer US Geological Survey (USGS) DTED, GMTED2010, GTOPO30
The National Map Download
Application

USGS 3DEP

Data.gov US General Services
Administration

DTED, 3DEP, GMTED2010

ETOPO1 Global Relief Model National Oceanic and
Atmospheric Administration
(NOAA) and National Centers
for Environmental Information
(NCEI)

ETOPO1 (use GeoTIFF format)

GMTED2010 Viewer USGS GMTED2010
The Global Land One-km Base
Elevation Project

NOAA and NCEI GLOBE

Global Topography Scripps Institution of
Oceanography

Smith and Sandwell

Land Cover Classification

Resource Provider Examples of Products and
Data Sets

EarthExplorer USGS GLCC, AVHRR
Digital Coast Data Access
Viewer

NOAA Office for Coastal
Management

C-CAP Regional Land Cover and
Change

2 Understanding Map Data

2-76

https://earthexplorer.usgs.gov/
https://viewer.nationalmap.gov/basic/
https://viewer.nationalmap.gov/basic/
https://www.data.gov/
https://www.ngdc.noaa.gov/mgg/global/global.html
https://topotools.cr.usgs.gov/gmted_viewer/viewer.htm
https://www.ngdc.noaa.gov/mgg/topo/globe.html
https://www.ngdc.noaa.gov/mgg/topo/globe.html
https://topex.ucsd.edu/marine_topo/mar_topo.html
https://earthexplorer.usgs.gov/
https://coast.noaa.gov/dataviewer/#/
https://coast.noaa.gov/dataviewer/#/

Resource Provider Examples of Products and
Data Sets

Data.gov US General Services
Administration

GLCC, AVHRR

Imagery

Resource Provider Examples of Products and
Data Sets

EarthExplorer USGS Landsat
Digital Coast Data Access
Viewer

NOAA Office for Coastal
Management

High-Resolution Orthoimagery

Data.gov US General Services
Administration

Landsat

Use Web Map Service Data
Mapping Toolbox includes a built-in database of prequalified Web Map Service (WMS) servers and
layers. Search the WMS database for layers using the wmsfind function. Read layers from the
database using the wmsread function.

See Also
readgeoraster | worldfileread

 Find Geospatial Raster Data

2-77

https://www.data.gov/
https://earthexplorer.usgs.gov/
https://coast.noaa.gov/dataviewer/#/
https://coast.noaa.gov/dataviewer/#/
https://www.data.gov/

Functions that Read and Write Geospatial Data
The following table lists Mapping Toolbox functions that read geospatial data products and file
formats and write geospatial data files. Note that the geoshow and mapshow functions and the
mapview GUI can read and display both vector and raster geodata files in several formats. Click
function names to see their details in the Mapping Toolbox reference documentation. The Type of
Coordinates column describes whether the function returns or writes data in geographic ("geo") or
projected ("map") coordinates, or as geolocated data grids (which, for the functions listed, all contain
geographic coordinates). Some functions can return either geographic or map coordinates,
depending on what the file being read contains; these functions do not signify what type of
coordinates they return (in the case of shaperead, however, you can specify whether the structure it
returns should have X and Y or Lon and Lat fields).

Function Description Type of Data Type of
Coordinates

avhrrgoode Read data products derived from the
Advanced Very High Resolution Radiometer
(AVHRR) and stored in the Goode
Homosoline projection: Global Land Cover
Classification (GLCC) or Normalized
Difference Vegetation Index (NDVI)

raster geolocated

avhrrlambert Read AVHRR GLCC and NDVI data products
stored in the Lambert Conformal Conic
projection

raster geolocated

dcwdata Read selected data from the Digital Chart of
the World (DCW)

vector geo

dcwgaz Search for entries in the DCW gazette vector geo
dcwread Read a DCW file vector geo
dcwrhead Read a DCW file header properties geo
demdataui GUI for interactively selecting data from

various Digital Elevation Models (DEMs)
raster geo

dteds List DTED data grid file names for a
specified latitude-longitude quadrangle

file names geo

egm96geoid Read 15-minute gridded geoid heights from
the EGM96 geoid model

raster geo

fipsname Read Federal Image Processing Standards
(FIPS) names for Topographically
Integrated Geographic Encoding and
Referencing (TIGER) thinned boundary files

FIPS names and
identifiers

geo

georasterinfo Get information about data files in formats
such as Esri Binary Grid, Esri GridFloat,
DTED, GeoTIFF, and GPX

raster map

geo
geotiffinfo Get information about GeoTIFF files properties map

geo

2 Understanding Map Data

2-78

Function Description Type of Data Type of
Coordinates

geotiffwrite Write GeoTIFF file raster map

geo
getworldfilename Derive a world file name from an image file

name
file name geo

map
globedems List GLOBE data file names for a specified

latitude-longitude quadrangle
file names geo

gshhs Read Global Self-Consistent Hierarchical
High-Resolution Geography (GSHHG) data

vector geo

gtopo30s List GTOPO30 data file names for a
specified latitude-longitude quadrangle

file names geo

kmlwrite Write vector coordinates and attributes to a
file in KML format

vector points
and attributes

geo

readfk5 Read data from the Fifth Fundamental
Catalog of Stars

vector astro

readgeoraster Read data in formats such as Esri Binary
Grid, Esri GridFloat, DTED, GeoTIFF, and
GPX

raster geo

map
sdtsinfo Get information about SDTS data set properties geo
shapeinfo Get information about the geometry and

attributes of geographic features stored in a
shapefile (a set of ".shp", ".shx" and ".dbf"
files)

properties geo

map

shaperead Read geographic feature coordinates and
associated attributes from a shapefile

vector geo

map
shapewrite Write geospatial data and associated

attributes in shapefile format
vector geo

map
usgsdems List USGS digital elevation model (DEM)

file names covering a specified latitude-
longitude quadrangle

file names map

vmap0data Extract selected data from the Vector Map
Level 0 (VMAP0) CD-ROMs

vector geo

vmap0read Read a VMAP0 file vector geo
vmap0rhead Read VMAP0 file headers properties geo
vmap0ui Activate GUI for interactively selecting

VMAP0 data
vector geo

worldfileread Read a world file and return a referencing
matrix

georeferencing
information

geo

worldfilewrite Export a referencing matrix into an
equivalent world file

georeferencing
information

geo

 Functions that Read and Write Geospatial Data

2-79

The MATLAB environment provides many general file reading and writing functions (for example,
imread, imwrite, urlread, and urlwrite) which you can use to access geospatial data you want
to use with Mapping Toolbox software. For example, you can read a TIFF image with imread and its
accompanying world file with worldfileread to import the image and construct a referencing
matrix to georeference it. See the Mapping Toolbox example “Georeferencing an Image to an
Orthotile Base Layer” on page 2-61 for an example of how you can do this.

2 Understanding Map Data

2-80

Export Vector Geodata
When you want to share geodata you are working with, Mapping Toolbox functions can export it two
principal formats, shapefiles and KML files. Shapefiles are binary files that can contain point, line,
vector, and polygon data plus attributes. Shapefiles are widely used to exchange data between
different geographic information systems. KML files are text files that can contain the same type of
data, and are used mainly to upload geodata the Web. The toolbox functions shapewrite and
kmlwrite export to these formats.

To format attributes, shapewrite uses an auxiliary structure called a DBF spec, which you can
generate with the makedbfspec function. Similarly, you can provide attributes to kmlwrite to
format as a table by providing an attribute spec, a structure you can generate using the
makeattribspec function or create manually.

For examples of and additional information about reading and writing shapefiles and DBF specs, see
the documentation for shapeinfo, shaperead, shapewrite, and makedbfspec. The example
provided in “How to Construct Geographic Data Structures” on page 2-25 also demonstrates
exporting vector data using shapewrite. For information about creating KML files, see “Export KML
Files for Viewing in Earth Browsers” on page 2-93.

 Export Vector Geodata

2-81

Exporting Vector Data to KML
This example shows how to structure geographic point, line, and polygon vector data and export it to
a Keyhole Markup Language (KML) file. KML is an XML-based markup language designed for
visualizing geographic data on Web-based maps or "Earth browsers", such as Google Earth™, Google
Maps™, NASA WorldWind, and the ESRI® ArcGIS™ Explorer.

The following functions write geographic data to a KML file:

• kmlwritepoint Write geographic points to KML file
• kmlwriteline Write geographic line to KML file
• kmlwritepolygon Write geographic polygon to KML file
• kmlwrite Write geographic data to KML file

Define an Output Folder for the KML Files

This example creates several KML files and uses the variable kmlFolder to denote their location.
The value used here is determined by the output of the tempdir command, but you could easily
customize this.

kmlFolder = tempdir;

Create a cell array of the KML file names used in this example in order to optionally remove them
from your KML output folder when the example ends.

kmlFilenames = {};

Create a Function Handle to Open an Earth Browser

A KML file can be opened in a variety of "Earth browsers", Web maps, or an editor. You can customize
the following anonymous function handle to open a KML file. Executing this function handle launches
the Google Earth browser, which must be installed on your computer. You can use the application by
assigning the variable useApplication to true in your workspace or assign it to true here.

useApplication = exist('useApplication','var') && useApplication;

if useApplication
 if ispc
 % On Windows(R) platforms display the KML file with:
 openKML = @(filename) winopen(filename);
 elseif ismac
 % On Mac platforms display the KML file with:
 cmd = 'open -a Google\ Earth ';
 openKML = @(filename) system([cmd filename]);
 else
 % On Linux platforms display the KML file with:
 cmd = 'googleearth ';
 openKML = @(filename) system([cmd filename]);
 end
else
 % No "Earth browser" is installed on the system.
 openKML = @(filename) disp('');
end

2 Understanding Map Data

2-82

https://www.mathworks.com/help/map/ref/kmlwritepoint.html
https://www.mathworks.com/help/map/ref/kmlwriteline.html
https://www.mathworks.com/help/map/ref/kmlwritepolygon.html
https://www.mathworks.com/help/map/ref/kmlwrite.html

Example 1: Write Single Point to KML File

This example writes a single point to a KML file.

Assign latitude and longitude values for Paderborn, Germany.

lat = 51.715254;
lon = 8.75213;

Use kmlwritepoint to write the point to a KML file.

filename = fullfile(kmlFolder,'Paderborn.kml');
kmlwritepoint(filename,lat,lon);

Open the KML file.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 2: Write Single Point to KML File with Icon and Description

This example writes a single point to a KML file. The placemark includes an icon and a description
with HTML markup.

Assign latitude and longitude coordinates for a point that locates the headquarters of MathWorks® in
Natick, Massachusetts.

lat = 42.299827;
lon = -71.350273;

Create a description for the placemark. Include HTML tags in the description to add new lines for the
address.

description = sprintf('%s
%s</br>
%s</br>', ...
 '3 Apple Hill Drive', 'Natick, MA. 01760', ...
 'https://www.mathworks.com');

Assign iconFilename to a GIF file on the local system's network.

iconDir = fullfile(matlabroot,'toolbox','matlab','icons');
iconFilename = fullfile(iconDir,'matlabicon.gif');

Assign the name for the placemark.

name = 'The MathWorks, Inc.';

Use kmlwritepoint to write the point and associated data to the KML file.

filename = fullfile(kmlFolder,'MathWorks.kml');
kmlwritepoint(filename,lat,lon,'Description',description,'Name',name, ...
 'Icon',iconFilename);

Open the KML file.

openKML(filename)

 Exporting Vector Data to KML

2-83

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 3: Write Multiple Points to KML File

This example writes the locations of major European cities to a KML file, including the names of the
cities, and removes the default description table.

Assign the latitude, longitude bounding box.

latlim = [30; 75];
lonlim = [-25; 45];

Read the data from the worldcities shapefile into a geostruct array.

cities = shaperead('worldcities.shp','UseGeoCoords',true, ...
 'BoundingBox',[lonlim, latlim]);

Convert to a geopoint vector.

cities = geopoint(cities);

Use kmlwrite to write the geopoint vector to a KML file. Assign the name of the placemark to the
name of the city. Remove the default description since the data has only one attribute.

filename = fullfile(kmlFolder,'European_Cities.kml');
kmlwrite(filename,cities,'Name',cities.Name,'Description',{});

Open the KML file.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 4: Write Multiple Points to KML File with Modified Attribute Table

This example writes placemarks at the locations of tsunami (tidal wave) events, reported over several
decades and tagged geographically by source location, to a KML file.

Read the data from the tsunamis shapefile.

tsunamis = shaperead('tsunamis','UseGeoCoords',true);

Convert to a geopoint vector.

tsunamis = geopoint(tsunamis);

Sort the attributes.

tsunamis = tsunamis(:, sort(fieldnames(tsunamis)));

Construct an attribute specification.

attribspec = makeattribspec(tsunamis);

Modify the attribute specification to:

2 Understanding Map Data

2-84

• Display Max_Height, Cause, Year, Location, and Country attributes
• Rename the Max_Height field to Maximum Height
• Highlight each attribute label with a bold font
• Set to zero the number of decimal places used to display Year
• We have independent knowledge that the height units are meters, so we will add that to the

Height format specifier

desiredAttributes = {'Max_Height','Cause','Year','Location','Country'};
allAttributes = fieldnames(attribspec);
attributes = setdiff(allAttributes, desiredAttributes);
attribspec = rmfield(attribspec, attributes);
attribspec.Max_Height.AttributeLabel = 'Maximum Height';
attribspec.Max_Height.Format = '%.1f Meters';
attribspec.Cause.AttributeLabel = 'Cause';
attribspec.Year.AttributeLabel = 'Year';
attribspec.Year.Format = '%.0f';
attribspec.Location.AttributeLabel = 'Location';
attribspec.Country.AttributeLabel = 'Country';

Use kmlwrite to write the geopoint vector containing the selected attributes and source locations to
a KML file.

filename = fullfile(kmlFolder, 'Tsunami_Events.kml');
name = tsunamis.Location;
kmlwrite(filename,tsunamis,'Description',attribspec,'Name',name)

Open the KML file.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 5: Write Single Point with a LookAt Virtual Camera to KML File

This example writes a single point with a LookAt virtual camera near Machu Picchu, Peru

Use a geopoint vector to define a LookAt virtual camera.

lat = -13.163111;
lon = -72.544945;
lookAt = geopoint(lat,lon);
lookAt.Range = 1500;
lookAt.Heading = 260;
lookAt.Tilt = 67;

Use kmlwritepoint to write the point location and LookAt information.

filename = fullfile(kmlFolder, 'Machu_Picchu.kml');
alt = 2430;
name = 'Machu Picchu';
kmlwritepoint(filename,lat,lon,alt,'LookAt',lookAt,'Name',name);

Open the KML file.

openKML(filename)

 Exporting Vector Data to KML

2-85

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 6: Write Single Point with a Camera to KML File

This example writes a single point with a camera view of the Washington Monument in Washington
D.C to a KML file. The marker is placed at the ground location of the camera.

Construct the camera.

camlat = 38.889301;
camlon = -77.039731;
camera = geopoint(camlat,camlon);
camera.Altitude = 500;
camera.Heading = 90;
camera.Tilt = 45;
camera.Roll = 0;

Use kmlwritepoint to write the point location and Camera information.

name = 'Camera ground location';
lat = camera.Latitude;
lon = camera.Longitude;
filename = fullfile(kmlFolder,'WashingtonMonument.kml');
kmlwritepoint(filename,lat,lon,'Camera',camera,'Name',name)

Open the KML file.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 7: Write Address Data to KML File

This example writes unstructured address data to a KML file.

Create a cell array containing names of several places of interest in the Boston area.

names = {'Boston', ...
 'Massachusetts Institute of Technology', ...
 'Harvard University', ...
 'Fenway Park', ...
 'North End'};

Create a cell array containing addresses for the places of interest in the Boston area.

addresses = { ...
 'Boston, MA', ...
 '77 Massachusetts Ave, Cambridge, MA 02139', ...
 'Massachusetts Hall, Cambridge MA 02138', ...
 '4 Yawkey Way, Boston, MA', ...
 '134 Salem St, Boston, MA'};

Use a Google Maps icon for each of the placemarks.

icon = 'http://maps.google.com/mapfiles/kml/paddle/red-circle.png';

2 Understanding Map Data

2-86

Use kmlwrite to write the cell array of addresses to the KML file.

filename = fullfile(kmlFolder, 'Places_of_Interest.kml');
kmlwrite(filename,addresses,'Name',names,'Icon',icon,'IconScale',1.5);

Open the KML file.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 8: Write Single Line to KML File

This example writes a single line connecting the top of Mount Washington to the Mount Washington
Hotel in Carroll, New Hampshire, to a KML file.

Assign coordinate values for the region of interest.

lat_Mount_Washington = 44.270489039;
lon_Mount_Washington = -71.303246453;

lat_Mount_Washington_Hotel = 44.258056;
lon_Mount_Washington_Hotel = -71.440278;

lat = [lat_Mount_Washington lat_Mount_Washington_Hotel];
lon = [lon_Mount_Washington lon_Mount_Washington_Hotel];

Set the altitude to 6 feet, for the approximate height of a person.

alt = 6 * unitsratio('meters', 'feet');

Add a camera viewpoint from the Mount Washington Hotel.

clat = lat(2);
clon = lon(2);
camera = geopoint(clat,clon,'Altitude',2,'Tilt',90,'Roll',0,'Heading',90);

Use kmlwriteline to write the arrays to a KML file.

filename = fullfile(kmlFolder, 'Mount_Washington.kml');
name = 'Mount Washington';
kmlwriteline(filename,lat,lon,alt,'Name',name,'Color','k','Width',3, ...
 'Camera',camera,'AltitudeMode','relativeToGround');

Open the KML file.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 9: Write GPS Track Log to KML File

This example writes a GPS track log to a KML file.

 Exporting Vector Data to KML

2-87

Read the track log from the GPX file. The data in the track log was obtained from a GPS wristwatch
held while gliding over Mount Mansfield in Vermont, USA, on August 28, 2010.

track = gpxread('sample_mixed','FeatureType','track');

Use kmlwriteline to write the track log to a KML file. The elevation values obtained by the GPS are
relative to sea level.

filename = fullfile(kmlFolder, 'GPS_Track_Log.kml');
lat = track.Latitude;
lon = track.Longitude;
alt = track.Elevation;
name = 'GPS Track Log';
kmlwriteline(filename,lat,lon,alt,'Name',name,'Color','k','Width',2, ...
 'AltitudeMode','relativeToSeaLevel');

Open the KML file.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 10: Write Circles to KML File

This example writes circles as lines around London City Airport to a KML file. The example includes a
LookAt virtual camera.

Assign latitude and longitude values for the center of the feature.

lat0 = 51.50487;
lon0 = .05235;

Assign azimuth to [] to compute a complete small circle. Use the WGS84 ellipsoid.

azimuth = [];
spheroid = wgs84Ellipsoid;

Compute small circles of 3000, 2000, and 1000 meter radius. Assign a color value of 'blue',
'green', and 'red' for each circle. Assign an elevation value of 100 meters (above ground) for each
circle. Use a line geoshape vector to contain the data.

radius = 3000:-1000:1000;
colors = {'blue','green','red'};
elevation = 100;
circles = geoshape(0,0,'Name','','Color','','Elevation',elevation);
for k = 1:length(radius)
 [lat, lon] = scircle1(lat0,lon0,radius(k),azimuth,spheroid);
 circles(k).Latitude = lat;
 circles(k).Longitude = lon;
 circles(k).Name = [num2str(radius(k)) ' Meters'];
 circles(k).Color = colors{k};
 circles(k).Elevation = elevation;
end

Use a geopoint vector to define a LookAt virtual camera with a viewpoint from the east of the airport
and aligned with the runway.

2 Understanding Map Data

2-88

lat = 51.503169;
lon = 0.105478;
range = 3500;
heading = 270;
tilt = 60;
lookAt = geopoint(lat,lon,'Range',range,'Heading',heading,'Tilt',tilt);

Use kmlwrite to write the geoshape vector containing the circles and associated data to a KML file.

filename = fullfile(kmlFolder,'Small_Circles.kml');
kmlwrite(filename,circles,'AltitudeMode','relativeToGround','Width',2, ...
 'Name',circles.Name,'Color',circles.Color,'LookAt',lookAt);

Open the KML file. Using Google Earth, the LookAt view point is set when clicking on either one of
the 1000 Meters, 2000 Meters, or 3000 Meters strings in the Places list.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 11: Write Circular Polygons to KML File

This example writes circular polygons around London City Airport to a KML file. It includes a LookAt
virtual camera and uses the same data calculated in step 9.

Change the Geometry property value of the geoshape vector to 'polygon'. The polygons are drawn
in the same order as the geoshape vector and are indexed from largest to smallest radii, thus each
polygon will be visible in the browser.

circles.Geometry = 'polygon';

Change the elevation of each polygon.

circles.Elevation = 1000:1000:3000;

Use a geopoint vector to define a LookAt virtual camera with a viewpoint from the east of the airport,
aligned with the runway, and with a view of all three polygons.

lat = 51.501587;
lon = 0.066147;
range = 13110;
heading = 270;
tilt = 60;
lookAt = geopoint(lat,lon,'Range',range,'Heading',heading,'Tilt',tilt);

Use kmlwrite to write the polygon geoshape vector containing the circular polygons and associated
data to a KML file. Extrude the polygons to the ground. Set the polygon edge color to black and
assign a face alpha value to provide visibility inside the polygon.

filename = fullfile(kmlFolder,'Small_Circle_Polygons.kml');
name = circles.Name;
color = circles.Color;
kmlwrite(filename,circles,'AltitudeMode','relativeToGround','Extrude',true, ...
 'Name',name,'FaceColor',color,'EdgeColor','k','FaceAlpha',.6,'LookAt',lookAt);

Open the KML file. Using Google Earth, the LookAt view point is set when clicking on either one of
the 1000 Meters, 2000 Meters, or 3000 Meters strings in the Places list.

 Exporting Vector Data to KML

2-89

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 12: Write Polygon Data from Shapefile to KML file

This example writes polygon data from the usastatelo shapefile to a KML file. The polygon faces
are set with a color appropriate for political regions. The polygon faces are set with an alpha value to
provide visibility inside the polygon.

states = shaperead('usastatelo','UseGeoCoords',true);
states = geoshape(states);
colors = polcmap(length(states));
name = states.Name;
filename = fullfile(kmlFolder,'usastatelo.kml');
kmlwrite(filename,states,'Name',name,'FaceColor',colors,'FaceAlpha',.6, ...
 'EdgeColor','k')

Open the KML file.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 13: Write Polygon Contours to KML File

This example contours a grid in a local coordinate system, returns the contours in a geographic
system, and writes the polygon contours to a KML file.

Create a grid in a local system.

X = -150000:10000:150000;
Y = 0:10000:300000;
[xmesh, ymesh] = meshgrid(X/50000, (Y - 150000)/50000);
Z = 8 + peaks(xmesh, ymesh);

Define a local geodetic origin near Frankfurt, Germany and an ellipsoidal height.

lat0 = 50.108;
lon0 = 8.6732;
h0 = 100;

Define contour levels.

levels = 0:2:18;

Contour the grid and return the output in a polygon geoshape vector.

[~, contourPolygons] = geocontourxy(X,Y,Z,lat0,lon0,h0,'LevelList',levels);

Output the contours to a KML file. Set the faces with an alpha value. Set CutPolygons to false
since the altitude values are not uniform. Clamp the polygons to the ground.

colors = parula(length(contourPolygons));
filename = fullfile(kmlFolder,'Contour_Polygons.kml');

2 Understanding Map Data

2-90

kmlwrite(filename,contourPolygons,'FaceColor',colors,'FaceAlpha',.6, ...
 'EdgeColor','k','CutPolygons',false,'AltitudeMode','clampToGround')

Open the KML file.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Example 14: Write Polygon with Inner Ring to KML File

This example constructs a polygon with an inner ring around the Eiffel Tower and writes the polygon
to a KML file. The polygon's altitude is set to 500 meters above ground.

lat0 = 48.858288;
lon0 = 2.294548;
outerRadius = .02;
innerRadius = .01;
[lat1,lon1] = scircle1(lat0,lon0,outerRadius);
[lat2,lon2] = scircle1(lat0,lon0,innerRadius);
[lon2,lat2] = poly2ccw(lon2,lat2);
lat = [lat1; NaN; lat2];
lon = [lon1; NaN; lon2];
alt = 500;
filename = fullfile(kmlFolder,'EiffelTower.kml');

Export the polygon to a KML file. Set the edge color to black, the face color to cyan, and the face
alpha value.

kmlwritepolygon(filename,lat,lon,alt,'EdgeColor','k','FaceColor','c', ...
 'FaceAlpha',.5)

Open the KML file.

openKML(filename)

Add filename to kmlFilenames.

kmlFilenames{end+1} = filename;

Delete Generated KML Files

Optionally, delete the new KML files from your KML output folder.

if ~useApplication
 for k = 1:length(kmlFilenames)
 delete(kmlFilenames{k})
 end
end

Data Set Information

The data in worldcities.shp is from the Digital Chart of the World (DCW) browser layer, published
by the U.S. National Geospatial-Intelligence Agency (NGA), formerly the National Imagery and
Mapping Agency (NIMA). For more information about the data set, use the command type
worldcities.txt.

 Exporting Vector Data to KML

2-91

The data in tsunamis.shp is from the Global Tsunami Database, U.S. National Geospatial Data
Center (NGDC), National Oceanic and Atmospheric Administration (NOAA). For more information
about the data set, use the command type tsunamis.txt.

The data in usastatelo.shp is based on data from the CIA World DataBank II and the U.S. Census
Bureau site "State and County QuickFacts". For more information about the data set, use the
command type usastatelo.txt. For an updated link to the U.S. Census Bureau site "State and
County QuickFacts", see https://www.census.gov/quickfacts/fact/table/US/PST045219.

See Also
kmlwrite | kmlwriteline | kmlwritepoint | kmlwritepolygon

2 Understanding Map Data

2-92

https://www.census.gov/quickfacts/fact/table/US/PST045219

Export KML Files for Viewing in Earth Browsers
Keyhole Markup Language (KML) is an XML dialect for formatting 2-D and 3-D geodata for display in
"Earth browsers," such as Google Earth™ mapping service, Google Maps™ mapping service, Google
Mobile™ wireless service, and NASA WorldWind. Other Web browser applications, such as Yahoo!®

Pipes, also support KML either by rendering or generating files. A KML file specifies a set of features
(placemarks, images, polygons, 3-D models, textual descriptions, etc.) and how they are to be
displayed in browsers and applications.

Each place must at least have an address or a longitude and a latitude. Places can also have textual
descriptions, including hyperlinks. KML files can also specify display styles for markers, lines and
polygons, and "camera view" parameters such as tilt, heading, and altitude. You can generate
placemarks in KML files for individual points and sets of points that include attributes in table form.
You can include HTML markups in these tables, with or without hyperlinks, but you cannot currently
control the camera view of a placemark. (However, the users of an Earth browser can generally
control their views of it).

Generate a Single Placemark Using kmlwritepoint
This example shows how to generate a placemark using kmlwritepoint by specifying the latitude
and longitude that identifies a location. This example also specifies the icon used for the placemark
and the text that appears in the balloon associated with the placemark.
lat = 42.299827;
lon = -71.350273;
description = sprintf('%s
%s
%s', ...
 '3 Apple Hill Drive', 'Natick, MA. 01760', ...
 'https://www.mathworks.com');
name = 'The MathWorks, Inc.';
iconFilename = ...
 'https://www.mathworks.com/products/product_listing/images/ml_icon.gif';
iconScale = 1.0;
filename = 'MathWorks.kml';
kmlwritepoint(filename, lat, lon, ...
 'Description', description, 'Name', name, ...
 'Icon', iconFilename, 'IconScale', iconScale);

This code produces the following KML file.
<?xml version="1.0" encoding="utf-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
 <Document>
 <name>MathWorks</name>
 <Placemark>
 <Snippet maxLines="0"> </Snippet>
 <description>3 Apple Hill Drive
Natick, MA. 01760;

https://www.mathworks.com;
 </description>
 <name>The MathWorks, Inc.</name>
 <Style>
 <IconStyle>
 <Icon>
 <href>
 https://www.mathworks.com/products/product_listing/images/ml_icon.gif
 </href>
 </Icon>
 <scale>1</scale>
 </IconStyle>
 </Style>
 <Point>
 <coordinates>-71.350273,42.299827,0.0</coordinates>
 </Point>
 </Placemark>
 </Document>
</kml>

 Export KML Files for Viewing in Earth Browsers

2-93

If you view this in an Earth Browser, notice that the text inside the placemark, "https://
www.mathworks.com," was automatically rendered as a hyperlink. The Google Earth service also
adds a link called "Directions". kmlwritepoint does not include location coordinates in placemarks.
This is because it is easy for users to read out where a placemark is by mousing over it or by viewing
its Properties dialog box.

Generate Placemarks from Addresses
This example shows how to generate a placemark using street addresses or more general addresses
such as postal codes, city, state, or country names, instead of latitude and longitude information. If
the viewing application is capable of looking up addresses, such placemarks can be displayed in
appropriate, although possibly imprecise, locations. (Note that the Google Maps service does not
support address-based placemarks.)

When you use addresses, kmlwrite creates an <address> element for each placemark rather than
<point> elements containing <coordinates> elements. For example, here is code for kmlwrite
that generates address-based placemarks for three cities in Australia from a cell array:

 address = {'Perth, Australia', ...
 'Melbourne, Australia', ...
 'Sydney, Australia'};
 filename = 'Australian_Cities.kml';
 kmlwrite(filename, address, 'Name', address);

The generated KML file has the following structure and content:

<?xml version="1.0" encoding="utf-8"?>
<kml xmlns="http://www.opengis.net/kml/2.2">
 <Document>
 <name>Australian_Cities</name>
 <Placemark>
 <Snippet maxLines="0"> </Snippet>
 <description> </description>
 <name>Perth, Australia</name>
 <address>Perth, Australia</address>
 </Placemark>
 <Placemark>
 <Snippet maxLines="0"> </Snippet>
 <description> </description>
 <name>Melbourne, Australia</name>
 <address>Melbourne, Australia</address>
 </Placemark>
 <Placemark>
 <Snippet maxLines="0"> </Snippet>
 <description> </description>
 <name>Sydney, Australia</name>
 <address>Sydney, Australia</address>
 </Placemark>
 </Document>
</kml>

Export Point Geostructs to Placemarks
This example shows how to read data from shapefiles and generate a KML file that identifies all or
selected attributes, which you can then view in an earth browser such as Google Earth. It also shows
how to customize placemark icons and vary them according to attribute values.

2 Understanding Map Data

2-94

The Mapping Toolbox tsunamis shapefiles contain a database of 162 tsunami (tidal wave) events
reported between 1950 and 2006, described as point locations with 21 variables (including 18
attributes). You can type out the metadata file tsunamis.txt to see the definitions of all the data
fields. The steps below select some of these from the shapefiles and display them as tables in
exported KML placemarks.

1 Read the tsunami shapefiles, selecting certain attributes.

There are several ways to select attributes from shapefiles. One is to pass shaperead a cell
array of attribute names in the Attributes parameter. For example, you might just want to map
the maximum wave height, the suspected cause, and also show the year, location and country for
each event. Set up a cell array with the corresponding attribute field names as follows,
remembering that field names are case-sensitive.

attrs = {'Max_Height','Cause','Year','Location','Country'};

Since the data file uses latitude and longitude coordinates, you need to specify
'UseGeoCoords',true to ensure that shaperead returns a geostruct (having Lat and Lon
fields).

tsunamis = shaperead('tsunamis.shp','useGeoCoords',true,...
 'Attributes',attrs);

Look at the first record in the tsunamis geostruct returned by shaperead.

tsunamis(1)

 Geometry: 'Point'
 Lon: 128.3000
 Lat: -3.8000
 Max_Height: 2.8000
 Cause: 'Earthquake'
 Year: 1950
 Location: 'JAVA TRENCH, INDONESIA'
 Country: 'INDONESIA'

2 Export the tsunami data to a KML file with kmlwrite

By default, kmlwrite outputs all attribute data in a geostruct to a KML formatted file as an
HTML table containing unstyled text. When you view it, the Google Earth program supplies a
default marker.

kmlfilename = 'tsunami1.kml';
kmlwritepoint(kmlfilename,tsunamis(1).Lat,tsunamis(1).Lon);

3 View the placemarks in an earth browser. For example, you can view KML files with the Google
Earth browser, which must be installed on your computer.

For Windows, use the winopen function:

winopen(filename)

For Linux, if the file name is a partial path, use the following commands:

cmd = 'googleearth ';
fullfilename = fullfile(pwd, filename);
system([cmd fullfilename])

For Mac, if the file name is a partial path, use the following commands:

 Export KML Files for Viewing in Earth Browsers

2-95

cmd = 'open -a Google\ Earth '
fullfilename = fullfile(pwd, filename);
system([cmd fullfilename])

4 Customize the placemark contents

To customize the HTML table in the placemark, use the makeattribspec function. Create an
attribute spec for the tsunamis geostruct and inspect it.

attribspec = makeattribspec(tsunamis)

attribspec =
 Max_Height: [1x1 struct]
 Cause: [1x1 struct]
 Year: [1x1 struct]
 Location: [1x1 struct]
 Country: [1x1 struct]

Format the label for Max_Height as bold text, give units information about Max_Height, and
also set the other attribute labels in bold.

attribspec.Max_Height.AttributeLabel = 'Maximum Height';
attribspec.Max_Height.Format = '%.1f Meters';
attribspec.Cause.AttributeLabel = 'Cause';
attribspec.Year.AttributeLabel = 'Year';
attribspec.Year.Format = '%.0f';
attribspec.Location.AttributeLabel = 'Location';
attribspec.Country.AttributeLabel = 'Country';

When you use the attribute spec, all the attributes it lists are included in the placemarks
generated by kmlwrite unless you remove them from the spec manually (e.g., with rmfield).

5 Customize the placemark icon

You can specify your own icon using kmlwrite to use instead of the default pushpin symbol. The
black-and-white bullseye icon used here is specified as URL for an icon in the Google KML
library.

iconname = ...
 'http://maps.google.com/mapfiles/kml/shapes/placemark_circle.png';
kmlwritepoint(kmlfilename,tsunamis(1).Lat,tsunamis(1).Lon, ...
 'Description',attribspec,'Name',{tsunamis(1).Location}, ...
 'Icon',iconname,'IconScale',2);

6 Vary placemark size by tsunami height

To vary the size of placemark icons, specify an icon file and a scaling factor for every observation
as vectors of names (all the same) and scale factors (all computed individually) when writing a
KML file. Scale the width and height of the markers to the log of Max_Height. Scaling factors
for point icons are data-dependent and can take some experimenting with to get right.

% Create vector with log2 exponents of |Max_Height| values
[loghgtx loghgte] = log2([tsunamis.Max_Height]);
% Create a vector replicating the icon URL
iconnames = cellstr(repmat(iconname,numel(tsunamis),1));
kmlwritepoint(kmlfilename,tsunamis(1).Lat,tsunamis(1).Lon,
 'Description',attribspec,...
 'Name',{tsunamis(1).Location},'Icon',iconname,...
 'IconScale',loghgte);

2 Understanding Map Data

2-96

Select Shapefile Data to Read
The shaperead function provides you with a powerful method, called a selector, to select only the
data fields and items you want to import from shapefiles.

A selector is a cell array with two or more elements. The first element is a handle to a predicate
function (a function with a single output argument of type logical). Each remaining element is a
character vector indicating the name of an attribute.

For a given feature, shaperead supplies the values of the attributes listed to the predicate function
to help determine whether to include the feature in its output. The feature is excluded if the predicate
returns false. The converse is not necessarily true: a feature for which the predicate returns true
may be excluded for other reasons when the selector is used in combination with the bounding box or
record number options.

The following examples are arranged in order of increasing sophistication. Although they use
MATLAB function handles, anonymous functions, and nested functions, you need not be familiar with
these features in order to master the use of selectors for shaperead.

Example 1: Predicate Function in Separate File
1 Define the predicate function in a separate file. (Prior to Release 14, this was the only option

available.) Create a file named roadfilter.m, with the following contents:

 function result = roadfilter(roadclass,roadlength)
 mininumClass = 4;
 minimumLength = 200;
 result = (roadclass >= mininumClass) && ...
 (roadlength >= minimumLength);
 end

2 You can then call shaperead like this:

roadselector = {@roadfilter, 'CLASS', 'LENGTH'}

roadselector =
 @roadfilter 'CLASS' 'LENGTH'

s = shaperead('concord_roads', 'Selector', roadselector)

s =
115x1 struct array with fields:
 Geometry
 BoundingBox
 X
 Y
 STREETNAME
 RT_NUMBER
 CLASS
 ADMIN_TYPE
 LENGTH

or, in a slightly more compact fashion, like this:

s = shaperead('concord_roads',...
 'Selector', {@roadfilter, 'CLASS', 'LENGTH'})

 Select Shapefile Data to Read

2-97

s =
115x1 struct array with fields:
 Geometry
 BoundingBox
 X
 Y
 STREETNAME
 RT_NUMBER
 CLASS
 ADMIN_TYPE
 LENGTH

Prior to Version 7 of the Mapping Toolbox software, putting the selector in a file or local function
of its own was the only way to work with a selector.

Note that if the call to shaperead took place within a function, then roadfilter could be
defined in a local function thereof rather than in a file of its own.

Example 2: Predicate as Function Handle
As a simple variation on the previous example, you could assign a function handle, roadfilterfcn,
and use it in the selector:

roadfilterfcn = @roadfilter
s = shaperead('concord_roads',...
 'Selector', {roadfilterfcn, 'CLASS', 'LENGTH'})
roadfilterfcn =
@roadfilter
s =
115x1 struct array with fields:
 Geometry
 BoundingBox
 X
 Y
 STREETNAME
 RT_NUMBER
 CLASS
 ADMIN_TYPE
 LENGTH

Example 3: Predicate as Anonymous Function
Having to define predicate functions in files of their own, or even as local functions, may sometimes
be awkward. Anonymous functions allow the predicate function to be defined right where it is
needed. For example:

roadfilterfcn = ...
 @(roadclass, roadlength) (roadclass >= 4) && ...
 (roadlength >= 200)

roadfilterfcn =
 @(roadclass, roadlength) (roadclass >= 4) ...
 && (roadlength >= 200)

s = shaperead('concord_roads','Selector', ...

2 Understanding Map Data

2-98

 {roadfilterfcn, 'CLASS', 'LENGTH'})

s =
115x1 struct array with fields:
 Geometry
 BoundingBox
 X
 Y
 STREETNAME
 RT_NUMBER
 CLASS
 ADMIN_TYPE
 LENGTH

Example 4: Predicate (Anonymous Function) Defined Within Cell Array
There is actually no need to introduce a function handle variable when defining the predicate as an
anonymous function. Instead, you can place the whole expression within the selector cell array itself,
resulting in somewhat more compact code. This pattern is used in many examples throughout the
Mapping Toolbox documentation and function help.

s = shaperead('concord_roads', 'Selector', ...
 {@(roadclass, roadlength)...
 (roadclass >= 4) && (roadlength >= 200),...
 'CLASS', 'LENGTH'})

s =
115x1 struct array with fields:
 Geometry
 BoundingBox
 X
 Y
 STREETNAME
 RT_NUMBER
 CLASS
 ADMIN_TYPE
 LENGTH

Example 5: Parametrizing the Selector; Predicate as Nested Function
In the previous patterns, the predicate involves two hard-coded parameters (called minimumClass
and minimumLength in roadfilter.m), as well as the roadclass and roadlength input
variables. If you use any of these patterns in a program, you need to decide on minimum cut-off
values for roadclass and roadlength at the time you write the program. But suppose that you
wanted to wait and decide on parameters like minimumClass and minimumLength at run time?

Fortunately, nested functions provide the additional power that you need to do this; they allow you to
utilize workspace variables in as parameters, rather than requiring that the parameters be hard-
coded as constants within the predicate function. In the following example, the workspace variables
minimumClass and minimumLength could have been assigned through a variety of computations
whose results were unknown until run-time, yet their values can be made available within the
predicate as long as it is defined as a nested function. In this example the nested function is wrapped
in a file called constructroadselector.m, which returns a complete selector: a handle to the
predicate (named nestedroadfilter) and the two attribute names:

 Select Shapefile Data to Read

2-99

 function roadselector = ...
 constructroadselector(minimumClass, minimumLength)
 roadselector = {@nestedroadfilter, 'CLASS', 'LENGTH'};
 function result = nestedroadfilter(roadclass, roadlength)
 result = (roadclass >= minimumClass) && ...
 (roadlength >= minimumLength);
 end
 end

The following four lines show how to use constructroadselector:

minimumClass = 4; % Could be run-time dependent
minimumLength = 200; % Could be run-time dependent

roadselector = constructroadselector(...
 minimumClass, minimumLength);

s = shaperead('concord_roads', 'Selector', roadselector)

s =
115x1 struct array with fields:
 Geometry
 BoundingBox
 X
 Y
 STREETNAME
 RT_NUMBER
 CLASS
 ADMIN_TYPE
 LENGTH

2 Understanding Map Data

2-100

Exporting Images and Raster Grids to GeoTIFF
This example shows how to write data referenced to standard geographic and projected coordinate
systems to GeoTIFF files, using geotiffwrite. The Tagged-Image File Format (TIFF) has emerged
as a popular format to store raster data. The GeoTIFF specification defines a set of TIFF tags that
describe "Cartographic" information associated with the TIFF raster data. Using these tags,
geolocated imagery or raster grids with coordinates referenced to a Geographic Coordinate System
(latitude and longitude) or a (planar) Projected Coordinate System can be stored in a GeoTIFF file.

Setup: Define a Data Folder and File Name Utility Function

This example creates several temporary GeoTIFF files and uses the variable datadir to denote their
location. The value used here is determined by the output of the tempdir command, but you could
easily customize this. The contents of datadir are deleted at the end of the example.

datadir = fullfile(tempdir, 'datadir');
if ~exist(datadir, 'dir')
 mkdir(datadir)
end

Define an anonymous function to prepend datadir to the input file name:

datafile = @(filename)fullfile(datadir, filename);

Example 1: Write an Image Referenced to Geographic Coordinates

Write an image referenced to WGS84 geographic coordinates to a GeoTIFF file. The original image
(boston_ovr.jpg) is stored in JPEG format, with referencing information external to the image file, in
the "world file" (boston_ovr.jgw). The image provides a low resolution "overview" of Boston,
Massachusetts, and the surrounding area.

Read the image from the JPEG file.

basename = 'boston_ovr';
imagefile = [basename '.jpg'];
A1 = imread(imagefile);

Obtain a referencing object from the world file.

worldfile = getworldfilename(imagefile);
R1 = worldfileread(worldfile,'geographic',size(A1));

Write the image to a GeoTIFF file.

filename1 = datafile([basename '.tif']);
geotiffwrite(filename1,A1,R1)

Return information about the file as a RasterInfo object. Note that the value of
CoordinateReferenceSystem is a geographic coordinate reference system object.

info1 = georasterinfo(filename1);
info1.CoordinateReferenceSystem

ans =

 geocrs with properties:

 Exporting Images and Raster Grids to GeoTIFF

2-101

 Name: "WGS 84"
 Datum: "World Geodetic System 1984"
 Spheroid: [1×1 referenceEllipsoid]
 PrimeMeridian: 0
 AngleUnit: "degree"

Re-import the new GeoTIFF file and display the Boston overview image, correctly located, in a map
axes.

figure
usamap(R1.LatitudeLimits,R1.LongitudeLimits)
setm(gca,'PLabelLocation',0.05,'PlabelRound',-2,'PlineLocation',0.05)
geoshow(filename1)
title('Boston Overview')

Example 2: Write a Data Grid Referenced to Geographic Coordinates

Load elevation raster data and a geographic cells reference object. Write the data grid to a GeoTIFF
file.

load topo60c
Z2 = topo60c;
R2 = topo60cR;
filename2 = datafile('topo60c.tif');
geotiffwrite(filename2,Z2,R2)

2 Understanding Map Data

2-102

The values in the data grid range from -7473 to 5731. Display the grid as a texture-mapped surface
rather than as an intensity image.

figure
worldmap world
gridm off
setm(gca,'MLabelParallel',-90,'MLabelLocation',90)
tmap = geoshow(filename2,'DisplayType','texturemap');
demcmap(tmap.CData)
title('Elevation Data Grid')

Example 3: Change Data Organization of GeoTIFF Files

When you write data using geotiffwrite or read data using readgeoraster, the columns of the
data grid start from north and the rows start from west. For example, the input data from
topo60c.mat starts from south, but the output data from topo60c.tif starts from north.

R2.ColumnsStartFrom
[Z3,R3] = readgeoraster(filename2);
R3.ColumnsStartFrom

ans =

 'south'

ans =

 Exporting Images and Raster Grids to GeoTIFF

2-103

 'north'

Therefore, the input data and data in the GeoTIFF file is flipped.

isequal(Z2,flipud(Z3))

ans =

 logical

 1

If you need the data in your workspace to match again, then flip the Z values and set the referencing
object such that the columns start from the south:

R3.ColumnsStartFrom = 'south';
Z3 = flipud(Z3);
isequal(Z2,Z3)

ans =

 logical

 1

The data in the GeoTIFF file is encoded with positive scale values. Therefore, when you view the file
with ordinary TIFF-viewing software, the northern edge of the data set is at the top. To make the data
layout in the output file match the data layout of the input, you can construct a Tiff object and use it
to reset some of the tags and the image data.

t = Tiff(filename2,'r+');

pixelScale = getTag(t,'ModelPixelScaleTag');
pixelScale(2) = -pixelScale(2);
setTag(t,'ModelPixelScaleTag',pixelScale);

tiepoint = getTag(t,'ModelTiepointTag');
tiepoint(5) = intrinsicToGeographic(R2,0.5,0.5);
setTag(t,'ModelTiepointTag',tiepoint);

setTag(t,'Compression', Tiff.Compression.None)

write(t,Z2);

rewriteDirectory(t)
close(t)

Verify the referencing object and data grid from the input data match the output data file. To do this,
read the Tiff image and create a reference object. Then, compare the grids.

t = Tiff(filename2);
Atiff = read(t);

2 Understanding Map Data

2-104

close(t)
Rtiff = georefcells(R2.LatitudeLimits,R2.LongitudeLimits,size(Atiff));

isequal(Z2,Atiff)
isequal(R2,Rtiff)

ans =

 logical

 1

ans =

 logical

 1

Example 4: Write an Image Referenced to a Projected Coordinate System

Write the Concord orthophotos to a single GeoTIFF file. The two adjacent (west-to-east)
georeferenced grayscale (panchromatic) orthophotos cover part of Concord, Massachusetts, USA.
The concord_ortho.txt file indicates that the data are referenced to the Massachusetts Mainland
(NAD83) State Plane Projected Coordinate System. Units are meters. This corresponds to the
GeoTIFF code number 26986 as noted in the GeoTIFF specification at http://geotiff.maptools.org/
spec/geotiff6.html#6.3.3.1 under PCS_NAD83_Massachusetts.

Read the two orthophotos.

[X_west,R_west] = readgeoraster('concord_ortho_w.tif');
[X_east,R_east] = readgeoraster('concord_ortho_e.tif');

Combine the images and reference objects.

X4 = [X_west X_east];
R4 = R_west;
R4.XWorldLimits = [R_west.XWorldLimits(1) R_east.XWorldLimits(2)];
R4.RasterSize = size(X4);

Write the data to a GeoTIFF file. Use the code number, 26986, indicating the
PCS_NAD83_Massachusetts Projected Coordinate System.

coordRefSysCode = 26986;
filename4 = datafile('concord_ortho.tif');
geotiffwrite(filename4,X4,R4,'CoordRefSysCode',coordRefSysCode)

Return information about the file as a RasterInfo object. Note that the value of
CoordinateReferenceSystem is a projected coordinate reference system object.

info4 = georasterinfo(filename4);
info4.CoordinateReferenceSystem

ans =

 Exporting Images and Raster Grids to GeoTIFF

2-105

http://geotiff.maptools.org/spec/geotiff6.html#6.3.3.1
http://geotiff.maptools.org/spec/geotiff6.html#6.3.3.1

 projcrs with properties:

 Name: "NAD83 / Massachusetts Mainland"
 GeographicCRS: [1×1 geocrs]
 ProjectionMethod: "Lambert Conic Conformal (2SP)"
 LengthUnit: "meter"
 ProjectionParameters: [1×1 map.crs.ProjectionParameters]

Display the combined Concord orthophotos.

figure
mapshow(filename4)
title('Combined Orthophotos')
xlabel('MA Mainland State Plane easting, meters')
ylabel('MA Mainland State Plane northing, meters')

Example 5: Write a Cropped Image from a GeoTIFF File

Write a subset of a GeoTIFF file to a new GeoTIFF file.

Read the RGB image and referencing information from the boston.tif GeoTIFF file.

[A5,R5] = readgeoraster('boston.tif');

Crop the image.

2 Understanding Map Data

2-106

xlimits = [764318 767677];
ylimits = [2951122 2954482];
[A5crop,R5crop] = mapcrop(A5,R5,xlimits,ylimits);

Write the cropped image to a GeoTIFF file. Use the GeoKeyDirectoryTag from the original GeoTIFF
file.

info5 = geotiffinfo('boston.tif');
filename5 = datafile('boston_subimage.tif');
geotiffwrite(filename5,A5crop,R5crop, ...
 'GeoKeyDirectoryTag',info5.GeoTIFFTags.GeoKeyDirectoryTag)

Display the GeoTIFF file containing the cropped image.

figure
mapshow(filename5)
title('Fenway Park - Cropped Image from GeoTIFF File')
xlabel('MA Mainland State Plane easting, survey feet')
ylabel('MA Mainland State Plane northing, survey feet')

Example 6: Write Elevation Data to GeoTIFF File

Write elevation data for an area around South Boulder Peak in Colorado to a GeoTIFF file.

elevFilename = 'n39_w106_3arc_v2.dt1';

Read the DEM from the file. To plot the data using geoshow, the data must be of type single or
double. Specify the data type for the raster using the 'OutputType' name-value pair.

 Exporting Images and Raster Grids to GeoTIFF

2-107

[Z6,R6] = readgeoraster(elevFilename,'OutputType','double');

Create a structure to hold the GeoKeyDirectoryTag information.

key = struct(...
 'GTModelTypeGeoKey',[], ...
 'GTRasterTypeGeoKey',[], ...
 'GeographicTypeGeoKey',[]);

Indicate the data is in a geographic coordinate system by specifying the GTModelTypeGeoKey field
as 2. Indicate that the reference object uses postings (rather than cells) by specifying the
GTRasterTypeGeoKey field as 2. Indicate the data is referenced to a geographic coordinate
reference system by specifying the GeographicTypeGeoKey field as 4326.

key.GTModelTypeGeoKey = 2;
key.GTRasterTypeGeoKey = 2;
key.GeographicTypeGeoKey = 4326;

Write the elevation data to a GeoTIFF file.

filename6 = datafile('southboulder.tif');
geotiffwrite(filename6,Z6,R6,'GeoKeyDirectoryTag',key)

Verify the data has been written to a file by displaying it. First, import vector data that represents the
state boundary of Colorado using shaperead. Then, display the boundary and GeoTIFF file.

S = shaperead('usastatelo','UseGeoCoords',true,'Selector',...
 {@(name) any(strcmp(name,{'Colorado'})),'Name'});
figure
usamap 'Colorado'
hold on
geoshow(S,'FaceColor','none')
g = geoshow(filename6,'DisplayType','mesh');
demcmap(g.ZData)
title('South Boulder Peak Elevation')

2 Understanding Map Data

2-108

Example 7: Write Non-Image Data to a TIFF File

If you are working with a data grid that is class double with values that range outside the limits
required of a floating point intensity image (0 <= data <= 1), and if you store the data in a TIFF file
using imwrite, then your data will be truncated to the interval [0,1], scaled, and converted to uint8.
Obviously it is possible for some or even all of the information in the original data to be lost. To avoid
these problems, and preserve the numeric class and range of your data grid, use geotiffwrite to
write the data.

Create sample Z data.

n = 512;
Z7 = peaks(n);

Create a referencing object to reference the rows and columns to X and Y.

R7 = maprasterref('RasterSize',[n n],'ColumnsStartFrom','north');
R7.XWorldLimits = R7.XIntrinsicLimits;
R7.YWorldLimits = R7.YIntrinsicLimits;

Create a structure to hold the GeoKeyDirectoryTag information. Set the model type to 1 indicating
Projected Coordinate System (PCS).

key.GTModelTypeGeoKey = 1;

Set the raster type to 1 indicating PixelIsArea (cells).

key.GTRasterTypeGeoKey = 1;

 Exporting Images and Raster Grids to GeoTIFF

2-109

Indicate a user-defined Projected Coordinate System by using a value of 32767.

key.ProjectedCSTypeGeoKey = 32767;

Write the data to a GeoTIFF file with geotiffwrite. For comparison, write a second file using
imwrite.

filename_geotiff = datafile('zdata_geotiff.tif');
filename_tiff = datafile('zdata_tiff.tif');
geotiffwrite(filename_geotiff,Z7,R7,'GeoKeyDirectoryTag',key)
imwrite(Z7, filename_tiff);

When you read the file using imread the data values and class type are preserved. You can see that
the data values in the TIFF file are not preserved.

geoZ = imread(filename_geotiff);
tiffZ = imread(filename_tiff);
fprintf('Class type of Z: %s\n', class(Z7))
fprintf('Class type of data in GeoTIFF file: %s\n', class(geoZ))
fprintf('Class type of data in TIFF file: %s\n', class(tiffZ))
fprintf('Does data in GeoTIFF file equal Z: %d\n', isequal(geoZ, Z7))
fprintf('Does data in TIFF file equal Z: %d\n', isequal(tiffZ, Z7))

Class type of Z: double
Class type of data in GeoTIFF file: double
Class type of data in TIFF file: uint8
Does data in GeoTIFF file equal Z: 1
Does data in TIFF file equal Z: 0

You can view the data grid using mapshow.

figure
mapshow(filename_geotiff,'DisplayType','texturemap')
title('Peaks - Stored in GeoTIFF File')

2 Understanding Map Data

2-110

Example 8: Modify an Existing File While Preserving Meta Information

You may want to modify an existing file, but preserve most, if not all, of the meta information in the
TIFF tags. This example converts the RGB image from the boston.tif file into an indexed image
and writes the new data to an indexed GeoTIFF file. The TIFF meta-information, with the exception of
the values of the BitDepth, BitsPerSample, and PhotometricInterpretation tags, is preserved.

Read the image from the boston.tif GeoTIFF file.

[A8,R8] = readgeoraster('boston.tif');

Use the MATLAB function, rgb2ind, to convert the RGB image to an indexed image X using
minimum variance quantization.

[X8,cmap] = rgb2ind(A8,65536);

Obtain the TIFF tag information using imfinfo.

info8 = imfinfo('boston.tif');

Create a TIFF tags structure to preserve selected information from the info structure.

tags = struct(...
 'Compression', info8.Compression, ...
 'RowsPerStrip', info8.RowsPerStrip, ...
 'XResolution', info8.XResolution, ...
 'YResolution', info8.YResolution, ...
 'ImageDescription', info8.ImageDescription, ...

 Exporting Images and Raster Grids to GeoTIFF

2-111

 'DateTime', info8.DateTime, ...
 'Copyright', info8.Copyright, ...
 'Orientation', info8.Orientation);

The values for the PlanarConfiguration and ResolutionUnit tags must be numeric rather than string
valued, as returned by imfinfo. You can set these tags by using the constant properties from the Tiff
class. For example, here are the possible values for the PlanarConfiguration constant property:

Tiff.PlanarConfiguration

ans =

 struct with fields:

 Chunky: 1
 Separate: 2

Use the string value from the info structure to obtain the desired value.

tags.PlanarConfiguration = ...
 Tiff.PlanarConfiguration.(info8.PlanarConfiguration);

Set the ResolutionUnit value in the same manner.

tags.ResolutionUnit = Tiff.ResolutionUnit.(info8.ResolutionUnit);

The Software tag is not set in the boston.tif file. However, geotiffwrite will set the Software
tag by default. To preserve the information, set the value to the empty string which prevents the tag
from being written to the file.

tags.Software = '';

Copy the GeoTIFF information from boston.tif.

geoinfo = geotiffinfo('boston.tif');
key = geoinfo.GeoTIFFTags.GeoKeyDirectoryTag;

Write to the GeoTIFF file.

filename8 = datafile('boston_indexed.tif');
geotiffwrite(filename8,X8,cmap,R8,'GeoKeyDirectoryTag',key,'TiffTags',tags)

View the indexed image.

figure
mapshow(filename8)
title('Boston - Indexed Image')
xlabel('MA Mainland State Plane easting, survey feet')
ylabel('MA Mainland State Plane northing, survey feet')

2 Understanding Map Data

2-112

Compare the information in the structures that should be equal by printing a table of the values.

info_rgb = imfinfo('boston.tif');
info_indexed = imfinfo(filename8);
tagNames = fieldnames(tags);
tagNames(strcmpi('Software', tagNames)) = [];
names = [{'Height' 'Width'}, tagNames'];

spacing = 2;
fieldnameLength = max(cellfun(@length, names)) + spacing;
formatSpec = ['%-' int2str(fieldnameLength) 's'];

fprintf([formatSpec formatSpec formatSpec '\n'], ...
 'Fieldname', 'RGB Information', 'Indexed Information')
fprintf([formatSpec formatSpec formatSpec '\n'], ...
 '---------', '---------------', '-------------------')

for k = 1:length(names)
 fprintf([formatSpec formatSpec formatSpec '\n'], ...
 names{k}, ...
 num2str(info_rgb.(names{k})), ...
 num2str(info_indexed.(names{k})))
end

Fieldname RGB Information Indexed Information
--------- --------------- -------------------
Height 2881 2881
Width 4481 4481

 Exporting Images and Raster Grids to GeoTIFF

2-113

Compression Uncompressed Uncompressed
RowsPerStrip 256 256
XResolution 300 300
YResolution 300 300
ImageDescription "GeoEye" "GeoEye"
DateTime 2007:02:23 21:46:13 2007:02:23 21:46:13
Copyright "(c) GeoEye" "(c) GeoEye"
Orientation 1 1
PlanarConfiguration Chunky Chunky
ResolutionUnit Inch Inch

Compare the information that should be different, since you converted an RGB image to an indexed
image, by printing a table of values.

names = {'FileSize', 'ColorType', 'BitDepth', ...
 'BitsPerSample', 'PhotometricInterpretation'};

fieldnameLength = max(cellfun(@length, names)) + spacing;
formatSpec = ['%-' int2str(fieldnameLength) 's'];
formatSpec2 = '%-17s';

fprintf(['\n' formatSpec formatSpec2 formatSpec2 '\n'], ...
 'Fieldname', 'RGB Information', 'Indexed Information')
fprintf([formatSpec formatSpec2 formatSpec2 '\n'], ...
 '---------', '---------------', '-------------------')
for k = 1:length(names)
 fprintf([formatSpec formatSpec2 formatSpec2 '\n'], ...
 names{k}, ...
 num2str(info_rgb.(names{k})), ...
 num2str(info_indexed.(names{k})))
end

Fieldname RGB Information Indexed Information
--------- --------------- -------------------
FileSize 38729900 27925078
ColorType truecolor indexed
BitDepth 24 16
BitsPerSample 8 8 8 16
PhotometricInterpretation RGB RGB Palette

Cleanup: Remove Data Folder

Remove the temporary folder and data files.

rmdir(datadir, 's')

Data Set Information

The files boston.tif and boston_ovr.jpg include materials copyrighted by GeoEye, all rights
reserved. GeoEye was merged into the DigitalGlobe corporation on January 29th, 2013. For more
information about the data sets, use the commands type boston.txt and type boston_ovr.txt.

The files concord_orthow_w.tif and concord_ortho_e.tif are derived using orthophoto tiles
from the Bureau of Geographic Information (MassGIS), Commonwealth of Massachusetts, Executive
Office of Technology and Security Services. For more information about the data sets, use the
command type concord_ortho.txt. For an updated link to the data provided by MassGIS, see
https://www.mass.gov/service-details/massgis-data-layers.

2 Understanding Map Data

2-114

https://www.mass.gov/service-details/massgis-data-layers

The DTED file n39_w106_3arc_v2.dt1 is courtesy of the US Geological Survey.

See Also
geotiffinfo | geotiffwrite | getworldfilename | worldfileread

 Exporting Images and Raster Grids to GeoTIFF

2-115

Converting Coastline Data (GSHHG) to Shapefile Format
This example shows how to:

• Extract a subset of coastline data from the Global Self-consistent Hierarchical High-resolution
Geography (GSHHG) data set

• Manipulate polygon features to add lakes and other interior water bodies as inner polygon rings
("holes")

• Save the modified data set to a shapefile for future use in MATLAB®, or for export to a geographic
information system

The Global Self-consistent Hierarchical High-resolution Geography (GSHHG; formerly Global Self-
consistent Hierarchical High-resolution Shorelines, or GSHHS) data set, by Paul Wessel and Walter H.
F. Smith, provides a consistent set of hierarchically arranged closed polygons. They can be used to
construct base maps, or in applications or analyses that involve operations like geographic searches
or the statistical properties of coastlines.

Step 1: Define a Working Folder

This example creates several temporary files and uses the variable workingFolder to denote their
location. The value used here is determined by the output of the tempdir command, but you could
easily customize this.

workingFolder = tempdir;

Step 2: GNU® Unzip and Index the Coarse-Resolution GSHHG Layer

GSHHG is available in wide range of spatial resolutions. This example uses the lowest-resolution
data, from the binary file gshhs_c.b. A GNU zipped copy of this file is included in the Mapping
Toolbox™ data folder, on the MATLAB path.

Use the MATLAB gunzip function to decompress gshhs_c.b.gz and create the file gshhs_c.b in
the location indicated by workingFolder. Then create an index file, gshhs_c.i, in the same folder.
In general, having an index file helps to accelerate later calls to the gshhs function. Note that when
you use the 'createindex' option, gshhs does not extract data.

files = gunzip('gshhs_c.b.gz', workingFolder);
filename = files{1};
indexfile = gshhs(filename, 'createindex');

Step 3: Import the GSHHG Data for South America

Select data for a specific latitude-longitude quadrangle and import it as a Mapping Toolbox
"geostruct" array:

latlim = [-60 15];
lonlim = [-90 -30];
S = gshhs(filename, latlim, lonlim);

If you have finished extracting data, you can remove the decompressed GSHHS file and the index file.

delete(filename)
delete(indexfile)

2 Understanding Map Data

2-116

Step 4: Examine the Data Set

Examine the first element of the geostruct array S. In addition to the Lat and Lon coordinate arrays,
note the various attribute fields that are present.

S(1)

ans = struct with fields:
 Geometry: 'Polygon'
 BoundingBox: [2x2 double]
 Lat: [1x972 double]
 Lon: [1x972 double]
 South: -53.9004
 North: 71.9942
 West: 191.8947
 East: 325.2054
 Area: 3.7652e+07
 Level: 1
 LevelString: 'land'
 NumPoints: 971
 FormatVersion: 3
 Source: 'WVS'
 CrossesGreenwich: 0
 GSHHS_ID: 1

GSHHS comprises four levels of shorelines:

• Level 1 - "Land"
• Level 2 - "Lake"
• Level 3 - "Island in lake"
• Level 4 - "Pond in island in lake"

Check to see which levels the data you've imported includes. The Level field contains numerical
level numbers.

levels = [S.Level];
unique(levels)

ans = 1×3

 1 2 3

The LevelString field provides their interpretation. For example,

S(104).LevelString

ans =
'lake'

shows that feature 104 is a lake (a Level 2 feature).

In this example, due either to the low resolution or to spatial subsetting, no Level 4 features are
present.

 Converting Coastline Data (GSHHG) to Shapefile Format

2-117

Step 5: Extract the Top Two Levels into Separate Geostruct Arrays

This example manipulates the top two levels of the GSHHS hierarchy, inserting each "lake" into the
surrounding land mass.

Extract GSHHS Level 1 (exterior coastlines of continents and oceanic islands):

L1 = S(levels == 1);

Extract Level 2 (coastlines of lakes and seas within Level 1 polygons):

L2 = S(levels == 2);

To see their spatial relationships, you can map Level 1 edges as blue lines and Level 2 edges as red
lines:

figure
axesm('mercator', 'MapLatLimit', latlim, 'MapLonLimit', lonlim)
gridm; mlabel; plabel
geoshow([L1.Lat], [L1.Lon], 'Color', 'blue')
geoshow([L2.Lat], [L2.Lon], 'Color', 'red')
tightmap

Step 6: Merge Level 2 Polygons into Level 1

Define an anonymous predicate function to detect bounding-box intersections (returning true if a pair
of bounding boxes intersect and false otherwise). Inputs A and B are 2-by-2 bounding-box matrices of
the form

2 Understanding Map Data

2-118

 [min(lon) min(lat)
 max(lon) max(lat)].

boxesIntersect = ...
 @(A,B) (~(any(A(2,:) < B(1,:)) || any(B(2,:) < A(1,:))));

For convenience in looping over them, copy the Level 1 bounding boxes to a 3-D array:

L1boxes = reshape([L1.BoundingBox],[2 2 numel(L1)]);

Check each Level 1 - Level 2 pair of features for possible intersection. See if polybool returns any
output or not, but avoid calling polybool unless a bounding box intersection is detected first:

for k = 1:numel(L2)
 for j = 1:numel(L1)
 % See if bounding boxes intersect
 if boxesIntersect(L2(k).BoundingBox, L1boxes(:,:,j))
 % See if actual features intersect
 if ~isempty(polybool('intersection', ...
 L2(k).Lon, L2(k).Lat, L1(j).Lon, L1(j).Lat))
 % Reverse level 2 vertex order before merge to
 % correctly orient inner rings
 L1(j).Lon = [L1(j).Lon fliplr(L2(k).Lon) NaN];
 L1(j).Lat = [L1(j).Lat fliplr(L2(k).Lat) NaN];
 end
 end
 end
end

Step 7: Save Results in a Shapefile

With a single call to shapewrite, you can create a trio of files,

gshhs_c_SouthAmerica.shp
gshhs_c_SouthAmerica.shx
gshhs_c_SouthAmerica.dbf

in your working folder.

shapepath = fullfile(workingFolder,'gshhs_c_SouthAmerica');
shapewrite(L1, shapepath)

Step 8: Validate the Shapefile

To validate the results of shapewrite, read the new shapefile into the geostruct array
southAmerica:

southAmerica = shaperead(shapepath, 'UseGeoCoords', true)

southAmerica=79×1 struct array with fields:
 Geometry
 BoundingBox
 Lon
 Lat
 South
 North
 West
 East
 Area

 Converting Coastline Data (GSHHG) to Shapefile Format

2-119

 Level
 LevelString
 NumPoints
 FormatVersi
 Source
 CrossesGree
 GSHHS_ID

Note that the two longest fieldnames, 'FormatVersion' and 'CrossesGreenwich', have been
truncated to 11 characters. This happened during the call to shapewrite and is unavoidable
because of a rigid 11-character limit in the xBASE tables (.DBF format) used to store attributes in
shapefiles. (In general, when writing shapefiles you may want to re-define fieldnames longer than 11
characters in order to avoid or control the effects of automatic truncation.)

Optionally, remove the new shapefiles from your working folder. (This example needs to clean up after
itself; in a real application you would probably want to omit this step.)

delete([shapepath '.*'])

Display the geostruct imported from the new shapefile. Note the various "holes" in the South America
polygon indicating lakes and shorelines of other extended bodies of water in the interior of the
continent.

figure
ax = axesm('mercator', 'MapLatLimit', latlim, 'MapLonLimit', lonlim);
ax.Color = 'cyan';
gridm; mlabel; plabel
geoshow(southAmerica, 'FaceColor', [0.15 0.8 0.15])
tightmap

2 Understanding Map Data

2-120

Reference

Wessel, P., and W. H. F. Smith, 1996, A global self-consistent, hierarchical, high-resolution shoreline
database, Journal of Geophysical Research, Vol. 101, pp. 8741-8743.

Additional Data

The complete GSHHG data set may be downloaded from the U.S. National Oceanic and Atmospheric
Administration (NOAA) web site. Follow the links from

https://www.mathworks.com/help/map/finding-geospatial-data.html

Credits

The GSHHG data file is provided in the Mapping Toolbox courtesy of Dr. Paul Wessel of the University
of Hawaii and Dr. Walter H. F. Smith of NOAA.

For more information, run:

 >> type gshhs_c.txt

See Also
gshhs | shaperead | shapewrite

 Converting Coastline Data (GSHHG) to Shapefile Format

2-121

Understanding Geospatial Geometry

• “The Shape of the Earth” on page 3-2
• “Reference Spheroids” on page 3-4
• “Work with Reference Spheroids” on page 3-11
• “Latitude and Longitude” on page 3-13
• “Relationship Between Points on Sphere” on page 3-15
• “Length and Distance Units” on page 3-16
• “Compute Conversion Ratio Between Units of Length” on page 3-17
• “Angle Representations and Angular Units” on page 3-18
• “Angles as Binary and Formatted Numbers” on page 3-22
• “Convert from Linear Measurements to Spherical Measurements” on page 3-23
• “Distances on the Sphere” on page 3-24
• “Great Circles” on page 3-27
• “Rhumb Lines” on page 3-28
• “Azimuth” on page 3-29
• “Elevation” on page 3-31
• “Generate Vector Data for Points Along Great Circle or Rhumb Line Tracks” on page 3-32
• “Reckoning” on page 3-34
• “Calculate Distance Between Two Points in Geographic Space” on page 3-35
• “Small Circles” on page 3-36
• “Calculate Vector Data for Points Along a Small Circle” on page 3-37
• “Generate Small Circles” on page 3-38
• “Measure Area of Spherical Quadrangles” on page 3-40
• “Plotting a 3-D Dome as a Mesh Over a Globe” on page 3-41
• “Choose a 3-D Coordinate System” on page 3-47
• “Vectors in 3-D Coordinate Systems” on page 3-52
• “Find Ellipsoidal Height from Orthometric Height” on page 3-55

3

The Shape of the Earth
Although the Earth is very round, it is an oblate spheroid rather than a perfect sphere. This difference
is so small (only one part in 300) that modeling the Earth as spherical is sufficient for making small-
scale (world or continental) maps. However, making accurate maps at larger scale demands that a
spheroidal model be used. Such models are essential, for example, when you are mapping high-
resolution satellite or aerial imagery, or when you are working with coordinates from the Global
Positioning System (GPS). This section addresses how Mapping Toolbox software accurately models
the shape, or figure, of the Earth.

Ellipsoid Shape
You can define ellipsoids in several ways. They are usually specified by a semimajor and a semiminor
axis, but are often expressed in terms of a semimajor axis and either inverse flattening (which for the
Earth, as mentioned above, is one part in 300) or eccentricity. Whichever parameters are used, as
long as an axis length is included, the ellipsoid is fully constrained and the other parameters are
derivable. The components of an ellipsoid are shown in the following diagram.

The toolbox includes ellipsoid models that represent the figures of the Sun, Moon, and planets, as
well as a set of the most common ellipsoid models of the Earth. For more information, see “Reference
Spheroids” on page 3-4.

Geoid Shape
Literally, geoid means Earth-shaped. The geoid is an empirical approximation of the figure of the
Earth (minus topographic relief), its "lumpiness." Specifically, it is an equipotential surface with
respect to gravity, more or less corresponding to mean sea level. It is approximately an ellipsoid, but
not exactly so because local variations in gravity create minor hills and dales (which range from -100
m to +60 m across the Earth). This variation in height is on the order of 1 percent of the differences
between the semimajor and semiminor ellipsoid axes used to approximate the Earth's shape.

The shape of the geoid is important for some purposes, such as calculating satellite orbits, but need
not be taken into account for every mapping application. However, knowledge of the geoid is

3 Understanding Geospatial Geometry

3-2

sometimes necessary, for example, when you compare elevations given as height above mean sea
level to elevations derived from GPS measurements. Geoid representations are also inherent in datum
definitions.

Map the Geoid

Get geoid heights and a geographic postings reference object from the EGM96 geoid model. Load
coastline latitude and longitude data.

[N,R] = egm96geoid;
load coastlines

Display the geoid heights as a surface using a Robinson projection. Ensure the coastline data appears
over the surface by setting the 'CData' name-value pair to the geoid heights data and the 'ZData'
name-value pair to a matrix of zeros. Then, display the coastline data.

axesm robinson
Z = zeros(R.RasterSize);
geoshow(N,R,'DisplayType','surface','CData',N,'ZData',Z)
geoshow(coastlat,coastlon,'color','k')

Display a colorbar below the map.

colorbar('southoutside')

 The Shape of the Earth

3-3

Reference Spheroids
When the Earth (or another roughly spherical body such as the Moon) is modeled as a sphere having
a standard radius, it is called a reference sphere. Likewise, when the model is a flattened (oblate)
ellipsoid of revolution, with a standard semimajor axis and standard inverse flattening, semiminor
axis, or eccentricity, it is called a reference ellipsoid. Both models are spheroidal in shape, so each
can be considered to be a type of reference spheroid. Mapping Toolbox supports several
representations for reference spheroids: referenceSphere, referenceEllipsoid, and
oblateSpheroid objects, and an older representation, ellipsoid vector.

In this section...
“referenceSphere Objects” on page 3-4
“referenceEllipsoid Objects” on page 3-6
“World Geodetic System 1984” on page 3-8
“Ellipsoid Vectors” on page 3-9
“oblateSpheroid Objects” on page 3-10

referenceSphere Objects
When using a strictly spherical model, you should generally use a referenceSphere object
(although both referenceEllipsoid and oblateSpheroid can represent a perfect sphere).

By default, referenceSphere returns a dimensionless unit sphere:

referenceSphere

ans =

referenceSphere with defining properties:

 Name: 'Unit Sphere'
 LengthUnit: ''
 Radius: 1

 and additional properties:

 SemimajorAxis
 SemiminorAxis
 InverseFlattening
 Eccentricity
 Flattening
 ThirdFlattening
 MeanRadius
 SurfaceArea
 Volume

You can request a specific body by name, and the radius will be in meters by default:

earth = referenceSphere('Earth')

earth =

referenceSphere with defining properties:

3 Understanding Geospatial Geometry

3-4

 Name: 'Earth'
 LengthUnit: 'meter'
 Radius: 6371000

 and additional properties:

 SemimajorAxis
 SemiminorAxis
 InverseFlattening
 Eccentricity
 Flattening
 ThirdFlattening
 MeanRadius
 SurfaceArea
 Volume

You can reset the length unit if desired (and the radius is rescaled appropriately) :

earth.LengthUnit = 'kilometer'

earth =

referenceSphere with defining properties:

 Name: 'Earth'
 LengthUnit: 'kilometer'
 Radius: 6371

 and additional properties:

 SemimajorAxis
 SemiminorAxis
 InverseFlattening
 Eccentricity
 Flattening
 ThirdFlattening
 MeanRadius
 SurfaceArea
 Volume

or specify the length unit at the time of construction:

referenceSphere('Earth','km')

ans =

referenceSphere with defining properties:

 Name: 'Earth'
 LengthUnit: 'kilometer'
 Radius: 6371

 and additional properties:

 SemimajorAxis
 SemiminorAxis
 InverseFlattening
 Eccentricity

 Reference Spheroids

3-5

 Flattening
 ThirdFlattening
 MeanRadius
 SurfaceArea
 Volume

Any length unit supported by validateLengthUnit can be used. A variety of abbreviations are
supported for most length units, see validateLengthUnit for a complete list.

One thing to note about referenceSphere is that only the defining properties are displayed, in
order to reduce clutter at the command line. (This approach saves a small amount of computation as
well.) In particular, don't overlook the dependent SurfaceArea and Volume properties, even though
they are not displayed. The surface area of the spherical earth model, for example, is easily obtained
through the SurfaceArea property:

earth.SurfaceArea

ans =
 5.1006e+08

This result is in square kilometers, because the LengthUnit property of the object earth has value
'kilometer'.

When programming with Mapping Toolbox it may help to be aware that referenceSphere actually
includes all the geometric properties of referenceEllipsoidand oblateSpheroid
(SemimajorAxis, SemiminorAxis, InverseFlattening, Eccentricity, Flattening,
ThirdFlattening, and MeanRadius, as well as SurfaceArea, and Volume). None of these
properties can be set on a referenceSphere, and some have values that are fixed for all spheres.
Eccentricity is always 0, for example. But they provide a flexible environment for programming
because any geometric computation that accepts a referenceEllipsoid will also run properly
given a referenceSphere. This is a type of polymorphism in which different classes support
common, or strongly overlapping interfaces.

referenceEllipsoid Objects
When using an oblate spheroid to represent the Earth (or another roughly spherical body), you should
generally use a referenceEllipsoid object. An important exception occurs with certain small-
scale map projections, many of which are defined only on the sphere. However, all important
projections used for large-scale work, including Transverse Mercator and Lambert Conformal Conic,
are defined on the ellipsoid as well as the sphere.

Like referenceSphere, referenceEllipsoid returns a dimensionless unit sphere by default:

referenceEllipsoid

ans =

referenceEllipsoid with defining properties:

 Code: []
 Name: 'Unit Sphere'
 LengthUnit: ''
 SemimajorAxis: 1
 SemiminorAxis: 1
 InverseFlattening: Inf
 Eccentricity: 0

3 Understanding Geospatial Geometry

3-6

 and additional properties:

 Flattening
 ThirdFlattening
 MeanRadius
 SurfaceArea
 Volume

More typically, you would request a specific ellipsoid by name, resulting in an object with semimajor
and semiminor axes properties in meters. For example, the following returns a
referenceEllipsoid with SemimajorAxis and InverseFlattening property settings that
match the defining parameters of Geodetic Reference System 1980 (GRS 80).

grs80 = referenceEllipsoid('Geodetic Reference System 1980')

grs80 =

referenceEllipsoid with defining properties:

 Code: 7019
 Name: 'Geodetic Reference System 1980'
 LengthUnit: 'meter'
 SemimajorAxis: 6378137
 SemiminorAxis: 6356752.31414036
 InverseFlattening: 298.257222101
 Eccentricity: 0.0818191910428158

 and additional properties:

 Flattening
 ThirdFlattening
 MeanRadius
 SurfaceArea
 Volume

In general, you should use the reference ellipsoid corresponding to the geodetic datum to which the
coordinates of your data are referenced. For instance, the GRS 80 ellipsoid is specified for use with
coordinates referenced to the North American Datum of 1983 (NAD 83).

As in the case of referenceSphere, you can reset the length unit if desired:

grs80.LengthUnit = 'kilometer'

grs80 =

referenceEllipsoid with defining properties:

 Code: 7019
 Name: 'Geodetic Reference System 1980'
 LengthUnit: 'kilometer'
 SemimajorAxis: 6378.137
 SemiminorAxis: 6356.75231414036
 InverseFlattening: 298.257222101
 Eccentricity: 0.0818191910428158

 and additional properties:

 Reference Spheroids

3-7

 Flattening
 ThirdFlattening
 MeanRadius
 SurfaceArea
 Volume

or specify the length unit at the time of construction:

referenceEllipsoid('Geodetic Reference System 1980','km')

ans =

referenceEllipsoid with defining properties:

 Code: 7019
 Name: 'Geodetic Reference System 1980'
 LengthUnit: 'kilometer'
 SemimajorAxis: 6378.137
 SemiminorAxis: 6356.75231414036
 InverseFlattening: 298.257222101
 Eccentricity: 0.0818191910428158

 and additional properties:

 Flattening
 ThirdFlattening
 MeanRadius
 SurfaceArea
 Volume

Any length unit supported by validateLengthUnit can be used.

The command-line display includes four geometric properties: SemimajorAxis, SemiminorAxis,
InverseFlattening, and Eccentricity. Any pair of these properties, as long as at least one is an
axis length, is sufficient to fully define a oblate spheroid; the four properties constitute a mutually
dependent set. Parameters InverseFlattening and Eccentricity as a set are not sufficient to
define an ellipsoid because both are dimensionless shape properties. Neither of those parameters
provides a length scale, and, furthermore, are mutually dependent: ecc = sqrt((2 - f) * f).

In addition, there are five dependent properties that are not displayed, in order to reduce clutter on
the command line: Flattening, ThirdFlattening, MeanRadius, SurfaceArea, and Volume.
SurfaceArea and Volume work the same way as their referenceSphere counterparts. To continue
the preceding example, the surface area of the GRS 80 ellipsoid in square kilometers (because
LengthUnit is 'kilometer'), is easily obtained as follows:

grs80.SurfaceArea

ans =
 5.1007e+08

See the referenceEllipsoid reference page for definitions of the shape properties, permissible
values for the Name property, and information on the Code property.

World Geodetic System 1984
Due in part to widespread use of the U.S. NAVSTAR Global Positioning System (GPS), which is tied to
World Geodetic System 1984 (WGS 84), the WGS 84 reference ellipsoid is often the appropriate

3 Understanding Geospatial Geometry

3-8

choice. For both convenience and speed (obtained by bypassing a table look-up step), it's a good idea
in this case to use the wgs84Ellipsoid function, for example,

wgs84 = wgs84Ellipsoid;

The preceding line is equivalent to:

wgs84 = referenceEllipsoid('wgs84');

but it is easier to type and faster to run. You can also specify a length unit.
wgs84Ellipsoid(lengthUnit), is equivalent to referenceEllipsoid('wgs84',lengthUnit),
where lengthUnit is any unit value accepted by the validateLengthUnit function.

For example, the follow two commands show that the surface area of the WGS 84 ellipsoid is a little
over 5 x 10^14 square meters:

s = wgs84Ellipsoid

s =

referenceEllipsoid with defining properties:

 Code: 7030
 Name: 'World Geodetic System 1984'
 LengthUnit: 'meter'
 SemimajorAxis: 6378137
 SemiminorAxis: 6356752.31424518
 InverseFlattening: 298.257223563
 Eccentricity: 0.0818191908426215

 and additional properties:

 Flattening
 ThirdFlattening
 MeanRadius
 SurfaceArea
 Volume

s.SurfaceArea

ans =

 5.1007e+14

Ellipsoid Vectors
An ellipsoid vector is simply a 2-by-1 double of the form: [semimajor_axis eccentricity].
Unlike a spheroid object (any instance of referenceSphere, referenceEllipsoid, or
oblateSpheroid), an ellipsoid vector is not self-documenting. Ellipsoid vectors are not even self-
identifying. You have to know that a given 2-by-1 vector is indeed an ellipsoid vector to make any use
of it. This representation does not validate that semimajor_axis is real and positive, for example,
you have to do such validations for yourself.

Many toolbox functions accept ellipsoid vectors as input, but such functions accept spheroid objects
as well and, for the reasons just stated, spheroid objects are recommended over ellipsoid vectors. In
case you have written a function of your own that requires an ellipsoid vector as input, or have

 Reference Spheroids

3-9

received such a function from someone else, note that you can easily convert any spheroid object s
into an ellipsoid vector as follows:

[s.SemimajorAxis s.Eccentricity]

This means that you can construct a spheroid object using any of the three class constructors, or the
wgs84Ellipsoid function, and hand off the result in the form of an ellipsoid vector if necessary.

oblateSpheroid Objects
oblateSpheroid is the superclass of referenceEllipsoid. An oblateSpheroid object is just
like a referenceEllipsoid object minus its Code, Name, and LengthUnit properties. In fact, the
primary role of the oblateSpheroid class is to provide the purely geometric properties and
behaviors needed by the referenceEllipsoid class.

For most purposes, you can simply ignore this distinction, and the oblateSpheroid class itself, as a
matter of internal software composition. No harm will come about, because a referenceEllipsoid
object can do anything and be used anywhere that an oblateSpheroid can.

However, you can use oblateSpheroid directly when dealing with an ellipsoid vector that lacks a
specified name or length unit. For example, compute the volume of a ellipsoid with a semimajor axis
of 2000 and eccentricity of 0.1, as shown in the following.

e = [2000 0.1];
s = oblateSpheroid;
s.SemimajorAxis = e(1);
s.Eccentricity = e(2)
s.Volume

s =

oblateSpheroid with defining properties:

 SemimajorAxis: 2000
 SemiminorAxis: 1989.97487421324
 InverseFlattening: 199.498743710662
 Eccentricity: 0.1

 and additional properties:

 Flattening
 ThirdFlattening
 MeanRadius
 SurfaceArea
 Volume

ans =

 3.3342e+10

Of course, since the length unit of e is unspecified, the unit of s.Volume is likewise unspecified.

3 Understanding Geospatial Geometry

3-10

Work with Reference Spheroids
Reference spheroids are needed in three main contexts: map projections, curves and areas on the
surface of a spheroid, and 3-D computations involving geodetic coordinates.

Map Projections
You can set the value of the Geoid property of a new map axes (which is actually a Spheroid
property) using any type of reference spheroid representation when constructing the map axes with
axesm. Except in the case of UTM and UPS, the default value is an ellipsoid vector representing the
unit sphere: [1 0]. It is also the default value when using the worldmap and usamap functions.

You can reset the Geoid property of an existing map axes to any type of reference spheroid
representation by using setm. For example, worldmap always sets up a projection based on the unit
sphere but you can subsequently use setm to switch to the spheroid of your choice. To set up a map
of North America for use with Geodetic Reference System 1980, for instance, follow worldmap with a
call to setm, like this:

ax = worldmap('North America');
setm(ax,'geoid',referenceEllipsoid('grs80'))

When projecting or unprojecting data without a map axes, you can set the geoid field of a map
projection structure (mstruct) to any type of reference spheroid representation. Remember to follow
all mstruct updates with a second call to defaultm to ensure that all properties are set to
legitimate values. For example, to use the Miller projection with WGS 84 in kilometers, start with:

mstruct = defaultm('miller');
mstruct.geoid = wgs84Ellipsoid('km');
mstruct = defaultm(mstruct);

You can inspect the mstruct to ensure that you are indeed using the WGS 84 ellipsoid:

mstruct.geoid

ans =

referenceEllipsoid with defining properties:

 Code: 7030
 Name: 'World Geodetic System 1984'
 LengthUnit: 'kilometer'
 SemimajorAxis: 6378.137
 SemiminorAxis: 6356.75231424518
 InverseFlattening: 298.257223563
 Eccentricity: 0.0818191908426215

 and additional properties:

 Flattening
 ThirdFlattening
 MeanRadius
 SurfaceArea
 Volume

See Map Axes Properties for definitions of the fields found in mstructs.

 Work with Reference Spheroids

3-11

Curves and Areas
Another important context in which reference spheroids appear is the computation of curves and
areas on the surface of a sphere or oblate spheroid. The distance function, for example, assumes a
sphere by default, but accepts a reference spheroid as an optional input. distance is used to
compute the length of the geodesic or rhumb line arc between a pair of points with given latitudes
and longitudes. If a reference spheroid is provided through the ellipsoid argument, then the unit
used for the arc length output matches the LengthUnit property of the spheroid.

Other functions for working with curves and areas that accept reference spheroids include reckon,
scircle1, scircle2, ellipse1, track1, track2, and areaquad, to name just a few. When using
such functions without their ellipsoid argument, be sure to check the individual function help if
you are unsure about which reference spheroid is assumed by default.

3-D Coordinate Transformations
The third context in which reference spheroids frequently appear is the transformation of geodetic
coordinates (latitude, longitude, and height above the ellipsoid) to other coordinate systems. For
example, the geodetic2ecef function, which converts point locations from a geodetic system to a
geocentric (Earth-Centered Earth-Fixed) Cartesian system, requires a reference spheroid object (or
an ellipsoid vector) as input. And the elevation function, which converts from geodetic to a local
spherical system (azimuth, elevation, and slant range) also accepts a reference spheroid object or
ellipsoid vector, but uses the GRS 80 ellipsoid by default if none is provided.

3 Understanding Geospatial Geometry

3-12

Latitude and Longitude
Two angles, latitude and longitude, specify the position of a point on the surface of a planet. These
angles can be in degrees or radians; however, degrees are far more common in geographic notation.

Latitude is the angle between the plane of the equator and a line connecting the point in question to
the planet's rotational axis. There are different ways to construct such lines, corresponding to
different types of and resulting values for latitudes. Latitude is positive in the northern hemisphere,
reaching a limit of +90° at the north pole, and negative in the southern hemisphere, reaching a limit
of -90° at the south pole. Lines of constant latitude are called parallels.

Longitude is the angle at the center of the planet between two planes that align with and intersect
along the axis of rotation, perpendicular to the plane of the equator. One plane passes through the
surface point in question, and the other plane is the prime meridian (0° longitude), which is defined
by the location of the Royal Observatory in Greenwich, England. Lines of constant longitude are
called meridians. All meridians converge at the north and south poles (90°N and -90°S), and
consequently longitude is under-specified in those two places.

Longitudes typically range from -180° to +180°, but other ranges can be used, such as 0° to +360°.
Longitudes can also be specified as east of Greenwich (positive) and west of Greenwich (negative).
Adding or subtracting 360° from its longitude does not alter the position of a point. The toolbox
includes a set of functions (wrapTo180, wrapTo360, wrapToPi, and wrapTo2Pi) that convert
longitudes from one range to another. It also provides unwrapMultipart, which "unwraps" vectors
of longitudes in radians by removing the artificial discontinuities that result from forcing all values to
lie within some 360°-wide interval.

Plot Latitude and Longitude
This example shows how to plot latitude and longitude.

load coastlines
axesm('ortho','origin',[45 45]);
axis off;
gridm on;
framem on;
mlabel('equator')
plabel(0);
plabel('fontweight','bold')
plotm(coastlat,coastlon)

 Latitude and Longitude

3-13

3 Understanding Geospatial Geometry

3-14

Relationship Between Points on Sphere
When using spherical coordinates, distances are expressed as angles, not lengths. As there is an
infinity of arcs that can connect two points on a sphere or spheroid, by convention the shortest one
(the great circle distance) is used to measure how close two points are. As is explained in “Distances
on the Sphere” on page 3-24, you can convert angular distance on a sphere to linear distance. This
is different from working on an ellipsoid, where one can only speak of linear distances between
points, and to compute them one must specify which reference ellipsoid to use.

In spherical or geodetic coordinates, a position is a latitude taken together with a longitude, e.g.,
(lat,lon), which defines the horizontal coordinates of a point on the surface of a planet. When we
consider two points, e.g.,(lat1,lon1) and (lat2,lon2), there are several ways in which their 2–D
spatial relationships are typically quantified:

• The azimuth (also called heading) to take to get from (lat1,lon1) to (lat2,lon2)
• The back azimuth (also called heading) from (lat2,lon2) to (lat1,lon1)
• The spherical distance separating (lat1,lon1) from (lat2,lon2)
• The linear distance (range) separating (lat1,lon1) from (lat2,lon2)

The first three are angular quantities, while the last is a length. Mapping Toolbox functions exist for
computing these quantities. For additional examples, see “Navigation” on page 10-9.

There is no single default unit of distance measurement in the toolbox. Navigation functions use
nautical miles as a default and the distance function uses degrees of arc length. For many
functions, the default unit for distances and positions is degrees, but you need to verify the default
assumptions before using any of these functions.

Note When distances are given in terms of angular units (degrees or radians), be careful to
remember that these are specified in terms of arc length. While a degree of latitude always subtends
one degree of arc length, this is only true for degrees of longitude along the equator.

 Relationship Between Points on Sphere

3-15

Length and Distance Units
Linear measurements of lengths and distances on spheres and spheroids can use the same units they
do on the plane, such as feet, meters, miles, and kilometers. They can be used for

• Absolute positions, such as map coordinates or terrain elevations
• Dimensions, such as a planet’s radius or its semimajor and semiminor axes
• Distances between points or along routes, in 2-D or 3-D space or across terrain

Length units are needed to describe

• The dimensions of a reference sphere or ellipsoid
• The line-of-sight distance between points
• Distances along great circle or rhumb line curves on an ellipsoid or sphere
• X-Y locations in a projected coordinate system or map grid
• Offsets from a map origin (false eastings and northings)
• X-Y-Z locations in Earth-centered Earth-fixed (ECEF) or local vertical systems
• Heights of various types (terrain elevations above a geoid, an ellipsoid, or other reference surface)

Choosing Units of Length
Using the toolbox effectively depends on being consistent about units of length. Depending on the
specific function and the way you are calling it, when you specify lengths, you could be

• Explicitly specifying a radius, reference spheroid object, or ellipsoid vector
• Relying on the function itself to specify a default radius or ellipsoid
• Relying on the reference ellipsoid associated with a map projection structure (mstruct)

Whenever you are doing a computation that involves a reference sphere or ellipsoid, make sure that
the units of length you are using are the same units used to define the radius of the sphere or
semimajor axis of the ellipsoid. These considerations are discussed below.

Converting Units of Length
The following Mapping Toolbox functions convert between different units of length:

• unitsratio computes multiplicative factors for converting between 12 different units of length
as well as between degrees and radians. You can use unitsratio to perform conversions when
neither the input units of length nor the output units of length are known until run time. See
“Converting Angle Units that Vary at Run Time” on page 3-20 for more information.

• km2nm, km2sm, nm2km, nm2sm, sm2km, and sm2nm perform simple and convenient conversions
between kilometers, nautical miles, and statute miles.

These utility functions accept scalars, vectors, and matrices, or any shape. For an overview of these
functions and angle conversion functions, see “Summary: Available Distance and Angle Conversion
Functions” on page 3-25.

3 Understanding Geospatial Geometry

3-16

Compute Conversion Ratio Between Units of Length
This example shows how to use the unitsratio function to create a conversion factor for many
different units of length, such as microns, millimeters, inches, international feet, and U.S. survey feet.
The unitsratio function also lets you convert angles between degrees and radians. For more
information, see unitsratio.

Create a conversion factor for inches to centimeters and convert 4 inches into centimeters.

cmPerInch = unitsratio('cm','inch')

cmPerInch = 2.5400

cm = cmPerInch * 4

cm = 10.1600

Create the inverse conversion factor and multiply it by the cmPerInch conversion factor.

inch = unitsratio('in','centimeter') * cmPerInch

inch = 1

 Compute Conversion Ratio Between Units of Length

3-17

Angle Representations and Angular Units
In this section...
“Radians and Degrees” on page 3-18
“Default and Variable Angle Units” on page 3-19
“Degrees, Minutes, and Seconds” on page 3-19
“Converting Angle Units that Vary at Run Time” on page 3-20

Angular measurements have many distinct roles in geospatial data handling. For example, they are
used to specify

• Absolute positions — latitudes and longitudes
• Relative positions — azimuths, bearings, and elevation angles
• Spherical distances between point locations

Absolute positions are expressed in geodetic coordinates, which are actually angles between lines or
planes on a reference sphere or ellipsoid. Relative positions use units of angle to express the
direction between one place on the reference body from another one. Spherical distances quantify
how far two places are from one another in terms of the angle subtended along a great-circle arc. On
nonspherical reference bodies, distances are usually given in linear units such as kilometers (because
on them, arc lengths are no longer proportional to subtended angle).

Radians and Degrees
The basic unit for angles in MATLAB is the radian. For example, if the variable theta represents an
angle and you want to take its sine, you can use sin(theta) if and only if the value of theta is
expressed in radians. If a variable represents the value of an angle in degrees, then you must convert
the value to radians before taking the sine. For example,

thetaInDegrees = 30;
thetaInRadians = thetaInDegrees * (pi/180)
sinTheta = sin(thetaInRadians)

As shown above, you can scale degrees to radians by multiplying by pi/180. However, you should
consider using deg2rad for this purpose:

thetaInRadians = deg2rad(thetaInDegrees)

Likewise, you can perform the opposite conversion by applying the inverse factor,

thetaInDegrees = thetaInRadians * (180/pi)

or by using rad2deg,

thetaInDegrees = rad2deg(thetaInRadians)

The practice of using these functions has two significant advantages:

• It reduces the likelihood of human error (e.g., you might type "pi/108" by mistake)
• It signals clearly your intent—important to do should others ever read, modify, or debug your code

The functions rad2deg and deg2rad are very simple and efficient, and operate on vector and higher-
dimensioned input as well as scalars.

3 Understanding Geospatial Geometry

3-18

Default and Variable Angle Units
Unlike MATLAB trigonometric functions, Mapping Toolbox functions do not always assume that
angular arguments are in units of radians.

The low-level utility functions intended as building blocks of more complex features or applications
work only in units of radians. Examples include the functions unwrapMultipart and meridianarc.

Many high-level functions, including distance, can work in either degrees or radians. Their
interpretation of angles is controlled by the 'angleunits' input argument. (angleunits can be
either 'degrees' or 'radians', and can generally be abbreviated.) This flexibility balances
convenience and efficiency, although it means that you must take care to check what assumptions
each function is making about its inputs.

Degrees, Minutes, and Seconds
In all Mapping Toolbox computations that involve angles in degrees, floating-point numbers
(generally MATLAB class double) are used, which allows for integer and fractional values and rational
approximations to irrational numbers. However, several traditional notations, which are still in wide
use, represent angles as pairs or triplets of numbers, using minutes of arc (1/60 of degree) and
seconds of arc (1/60 of a minute):

• Degrees-minutes notation (DM), e.g., 35° 15’, equal to 35.25°
• Degrees-minutes-seconds notation (DMS) , e.g., 35° 15’ 45’’, equal to 35.2625°

In degrees-minutes representation, an angle is split into three separate parts:

1 A sign
2 A nonnegative, integer-valued degrees component
3 A nonnegative minutes component, real-valued and in the half-open interval [0 60)

For example, -1 radians is represented by a minus sign (-) and the numbers [57, 17.7468...]. (The
fraction in the minutes part approximates an irrational number and is rounded here for display
purposes. This subtle point is revisited in the following section.)

The toolbox includes the function degrees2dm to perform conversions of this sort. You can use this
function to export data in DM form, either for display purposes or for use by another application. For
example,

degrees2dm(rad2deg(-1))

ans =

 -57.0000 17.7468

More generally, degrees2dm converts a single-columned input to a pair of columns. Rather than
storing the sign in a separate element, degrees2dm applies to the first nonzero element in each row.
Function dm2degrees converts in the opposite direction, producing a real-valued column vector of
degrees from a two-column array having an integer degrees and real-valued minutes column. Thus,

dm2degrees(degrees2dm(pi)) == pi

ans =

 1

 Angle Representations and Angular Units

3-19

Similarly, in degrees-minutes-seconds representation, an angle is split into four separate parts:

1 A sign
2 A nonnegative integer-valued degrees component
3 A minutes component which can be any integer from 0 through 59
4 A nonnegative minutes component, real-valued and in the half-open interval [0 60)

For example, -1 radians is represented by a minus sign (-) and the numbers [57, 17, 44.8062...], which
can be seen using Mapping Toolbox function degrees2dms,

degrees2dms(rad2deg(-1))

ans =

 -57.0000 17.0000 44.8062

degrees2dms works like degrees2dm; it converts single-columned input to three-column form,
applying the sign to the first nonzero element in each row.

A fourth function, dms2degrees, is similar to dm2degrees and supports data import by producing a
real-valued column vector of degrees from an array with an integer-valued degrees column, an
integer-value minutes column, and a real-valued seconds column. As noted, the four functions,
degrees2dm, degrees2dms, dm2degrees, and dms2degrees, are particular about the shape of
their inputs; in this regard they are distinct from the other angle-conversion functions in the toolbox.

The toolbox makes no internal use of DM or DMS representation. The conversion functions
dm2degrees and dms2degrees are provided only as tools for data import. Likewise, degrees2dm
and degrees2dms are only useful for displaying geographic coordinates on maps, publishing
coordinate values, and for formatting data to be exported to other applications. Methods for
accomplishing this are discussed below, in “Formatting Latitudes and Longitudes” on page 3-22.

Converting Angle Units that Vary at Run Time
Functions deg2rad and rad2deg are simple to use and efficient, but how do you write code to
convert angles if you do not know ahead of time what units the data will use? The toolbox provides a
set of utility functions that help you deal with such situations at run time.

In almost all cases—even at the time you are coding—you know either the input or destination angle
units. When you do, you can use one of these functions:

• fromDegrees
• toDegrees
• fromRadians
• toRadians

For example, you might wish to implement a very simple sinusoidal projection on the unit sphere, but
allow the input latitudes and longitudes to be in either degrees or radians. You can accomplish this as
follows:

function [x, y] = sinusoidal(lat, lon, angleunits)
 [lat, lon] = toRadians(angleunits, lat, lon);
 x = lon .* cos(lat);
 y = lat;

3 Understanding Geospatial Geometry

3-20

Whenever angleunits turns out to be 'radians' at run time, the toRadians function has no real
work to do; all the functions in this group handle such "no-op" situations efficiently.

In the very rare instances when you must code an application or MATLAB function in which the units
of both input angles and output angles remain unknown until run time, you can still accomplish the
conversion by using the unitsratio function. For example,

fromUnits = 'radians';
toUnits = 'degrees';
piInDegrees = unitsratio(toUnits, fromUnits) * pi

piInDegrees =

 180

 Angle Representations and Angular Units

3-21

Angles as Binary and Formatted Numbers
The terms decimal degrees and decimal minutes are often used in geospatial data handling and
navigation. The preceding section avoided using them because its focus was on the representation of
angles within MATLAB, where they can be arbitrary binary floating-point numbers.

However, once an angle in degrees is converted to a character vector, it is often helpful to describe
that value as representing the angle in decimal degrees. Thus,

num2str(rad2deg(1))

ans =
57.2958

gives a value in decimal degrees. In casual communication it is common to refer to a quantity such as
rad2deg(1) as being in decimal degrees, but strictly speaking, that is not true until it is somehow
converted to a character vector in base 10. That is, a binary floating-point number is not a decimal
number, whether it represents an angle in degrees or not. If it does represent an angle and that
number is then formatted and displayed as having a fractional part, only then is it appropriate to
speak of "decimal degrees." Likewise, the term "decimal minutes" applies when you convert a
degrees-minutes representation to a character vector, as in

num2str(degrees2dm(rad2deg(1)))

ans =
57 17.7468

Formatting Latitudes and Longitudes
When a DM or DMS representation of an angle is expressed as a character vector, it is traditional to
tag the different components with the special characters d, m, and s, or °, ', and ".

When the angle is a latitude or longitude, a letter often designates the sign of the angle:

• N for positive latitudes
• S for negative latitudes
• E for positive longitudes
• W for negative longitudes

For example, 123 degrees, 30 minutes, 12.7 seconds west of Greenwich can be written as
123d30m12.7sW, 123° 30° 12.7" W, or -123° 30° 12.7".

Use the function str2angle to import latitude and longitude data formatted as such character
vectors. Conversely, you can format numeric degree data for display or export with angl2str, or
combine degrees2dms or degrees2dm with sprintf to customize formatting.

See “Degrees, Minutes, and Seconds” on page 3-19 for more details about DM and DMS
representation.

3 Understanding Geospatial Geometry

3-22

Convert from Linear Measurements to Spherical Measurements
This example shows how to convert distances along the surface of the Earth (or another planet) from
units of kilometers (km), nautical miles (nm), or statute miles (sm) to spherical distances in degrees
or radians.

Convert a degree of arc length at the Earth's equator to nautical miles.

nauticalmiles = deg2nm(1)

nauticalmiles = 60.0405

Specify the radius to use in the conversion calculation. The default value assumes the Earth's radius.

nauticalmiles = deg2nm(1,almanac('moon','radius'))

nauticalmiles = 30.3338

Return the distance in statute miles rather than nautical miles.

deg2sm(1)

ans = 69.0932

 Convert from Linear Measurements to Spherical Measurements

3-23

Distances on the Sphere
In this section...
“Arc Length as an Angle in the distance and reckon Functions” on page 3-25
“Summary: Available Distance and Angle Conversion Functions” on page 3-25

Many geospatial domains (seismology, for example) describe distances between points on the surface
of the earth as angles. This is simply the result of dividing the length of the shortest great-circle arc
connecting a pair points by the radius of the Earth (or whatever planet one is measuring). This gives
the angle (in radians) subtended by rays from each point that join at the center of the Earth (or other
planet). This is sometimes called a "spherical distance." You can thus call the resulting number a
"distance in radians." You could also call the same number a "distance in earth radii." When you work
with transformations of geodata, keep this in mind.

You can easily convert that angle from radians to degrees. For example, you can call distance to
compute the distance in meters from London to Kuala Lumpur:

latL = 51.5188;
lonL = -0.1300;
latK = 2.9519;
lonK = 101.8200;
earthRadiusInMeters = 6371000;
distInMeters = distance(latL, lonL,...
 latK, lonK, earthRadiusInMeters)

distInMeters =
 1.0571e+007

Then convert the result to an angle in radians:

distInRadians = distInMeters / earthRadiusInMeters

distInRadians =
 1.6593

Finally, convert to an angle in degrees:

distInDegrees = rad2deg(distInRadians)

distInDegrees =
 95.0692

This really only makes sense and produces accurate results when we approximate the Earth (or
planet) as a sphere. On an ellipsoid, one can only describe the distance along a geodesic curve using
a unit of length.

Mapping Toolbox software includes a set of six functions to conveniently convert distances along the
surface of the Earth (or another planet) from units of kilometers (km), nautical miles (nm), or statute
miles (sm) to spherical distances in degrees (deg) or radians (rad):

• km2deg, nm2deg, and sm2deg go from length to angle in degrees
• km2rad, nm2rad, and sm2rad go from length to angle in radians

You could replace the final two steps in the preceding example with

3 Understanding Geospatial Geometry

3-24

distInKilometers = distInMeters/1000;
earthRadiusInKm = 6371;
km2deg(distInKilometers, earthRadiusInKm)

ans =
 95.0692

Because these conversion can be reversed, the toolbox includes another six convenience functions
that convert an angle subtended at the center of a sphere, in degrees or radians, to a great-circle
distance along the surface of that sphere:

• deg2km, deg2nm, and deg2sm go from angle in degrees to length
• rad2km, rad2nm, and rad2sm go from angle in radians to length

When given a single input argument, all 12 functions assume a radius of 6,371,000 meters (6371 km,
3440.065 nm, or 3958.748 sm), which is widely-used as an estimate of the average radius of the
Earth. An optional second parameter can be used to specify a planetary radius (in output length
units) or the name of an object in the Solar System.

Arc Length as an Angle in the distance and reckon Functions
Certain syntaxes of the distance and reckon functions use angles to denote distances in the way
described above. In the following statements, the range argument, arclen, is in degrees (along with
all the other inputs and outputs):

[arclen, az] = distance(lat1, lon1, lat2, lon2)
[latout, lonout] = reckon(lat, lon, arclen, az)

By adding the optional units argument, you can use radians instead:

[arclen, az] = distance(lat1, lon1, lat2, lon2, 'radians')
[latout, lonout] = reckon(lat, lon, arclen, az, 'radians')

If an ellipsoid argument is provided, however, then arclen has units of length, and they match
the units of the semimajor axis length of the reference ellipsoid. If you specify ellipsoid = [1 0]
(the unit sphere), arclen can be considered to be either an angle in radians or a length defined in
units of earth radii. It has the same value either way. Thus, in the following computation, lat1, lon1,
lat2, lon2, and az are in degrees, but arclen will appear to be in radians:

[arclen, az] = distance(lat1, lon1, lat2, lon2, [1 0])

Summary: Available Distance and Angle Conversion Functions
The following table shows the Mapping Toolbox unit-to-unit distance and arc conversion functions.
They all accept scalar, vector, and higher-dimension inputs. The first two columns and rows involve
angle units, the last three involve distance units:

 Distances on the Sphere

3-25

Functions that Directly Convert Angles, Lengths, and Spherical Distances

Convert To Degrees To Radians To Kilometers To Nautical
Miles

To Statute Miles

Degrees toDegrees
fromDegrees

deg2rad
toRadians
fromDegrees

deg2km deg2nm deg2sm

Radians rad2deg
toDegrees
fromRadians

toRadians
fromRadians

rad2km rad2nm rad2sm

Kilometers km2deg km2rad km2nm km2sm
Nautical Miles nm2deg nm2rad nm2km nm2sm
Statute Miles sm2deg sm2rad sm2km sm2nm

The angle conversion functions along the major diagonal, toDegrees, toRadians, fromDegrees,
and fromRadians, can have no-op results. They are intended for use in applications that have no
prior knowledge of what angle units might be input or desired as output.

3 Understanding Geospatial Geometry

3-26

Great Circles
In plane geometry, lines have two important characteristics. A line represents the shortest path
between two points, and the slope of such a line is constant. When describing lines on the surface of a
spheroid, however, only one of these characteristics can be guaranteed at a time.

A great circle is the shortest path between two points along the surface of a sphere. The precise
definition of a great circle is the intersection of the surface with a plane passing through the center of
the planet. Thus, great circles always bisect the sphere. The equator and all meridians are great
circles. All great circles other than these do not have a constant azimuth, the spherical analog of
slope; they cross successive meridians at different angles. That great circles are the shortest path
between points is not always apparent from maps, because very few map projections (the Gnomonic
is one of them) represent arbitrary great circles as straight lines.

Because they define paths that minimize distance between two (or three) points, great circles are
examples of geodesics. In general, a geodesic is the straightest possible path constrained to lie on a
curved surface, independent of the choice of a coordinate system. The term comes from the Greek
geo-, earth, plus daiesthai, to divide, which is also the root word of geodesy, the science of describing
the size and shape of the Earth mathematically.

For more information, see “Generate Vector Data for Points Along Great Circle or Rhumb Line
Tracks” on page 3-32.

 Great Circles

3-27

Rhumb Lines
A rhumb line is a curve that crosses each meridian at the same angle. This curve is also referred to as
a loxodrome (from the Greek loxos, slanted, and drome, path). Although a great circle is a shortest
path, it is difficult to navigate because your bearing (or azimuth) continuously changes as you
proceed. Following a rhumb line covers more distance than following a geodesic, but it is easier to
navigate.

All parallels, including the equator, are rhumb lines, since they cross all meridians at 90°.
Additionally, all meridians are rhumb lines, in addition to being great circles. A rhumb line always
spirals toward one of the poles, unless its azimuth is true east, west, north, or south, in which case
the rhumb line closes on itself to form a parallel of latitude (small circle) or a pair of antipodal
meridians.

The following figure depicts a great circle and one possible rhumb line connecting two distant
locations. For information about how to calculate points along great circles and rhumb lines, see
“Generate Vector Data for Points Along Great Circle or Rhumb Line Tracks” on page 3-32.

3 Understanding Geospatial Geometry

3-28

Azimuth
Azimuth is the angle a line makes with a meridian, measured clockwise from north. Thus the azimuth
of due north is 0°, due east is 90°, due south is 180°, and due west is 270°. You can instruct several
Mapping Toolbox functions to compute azimuths for any pair of point locations, either along rhumb
lines or along great circles. These will have different results except along cardinal directions. For
great circles, the result is the azimuth at the initial point of the pair defining a great circle path. This
is because great circle azimuths other than 0°, 90°, 180°, and 270° do not remain constant. Azimuths
for rhumb lines are constant along their entire path (by definition).

For rhumb lines, computing an azimuth backward (from the second point to the first) yields the
complement of the forward azimuth ((Az + 180°) mod 360°). For great circles, the back azimuth is
generally not the complement, and the difference depends on the distance between the two points.

In addition to forward and back azimuths, Mapping Toolbox functions can compute locations of points
a given distance and azimuth from a reference point, and can calculate tracks to connect waypoints,
along either great circles or rhumb lines on a sphere or ellipsoid.

For more an example that uses azimuths, see “Reckoning” on page 3-34

Calculate Azimuth
When the azimuth is calculated from one point to another using the toolbox, the result depends upon
whether you want a great circle or a rhumb line azimuth. For great circles, the result is the azimuth
at the starting point of the connecting great circle path. In general, the azimuth along a great circle is
not constant. For rhumb lines, the resulting azimuth is constant along the entire path.

Azimuths, or bearings, are returned in the same angular units as the input latitudes and longitudes.
The default path type is the shorter great circle, and the default angular units are degrees. In the
example, the great circle azimuth from the first point to the second is

azgc = azimuth(-15,0,60,150)

azgc =
 19.0391

For the rhumb line, the constant azimuth is

azrh = azimuth('rh',-15,0,60,150)

azrh =
 58.8595

One feature of rhumb lines is that the inverse azimuth, from the second point to the first, is the
complement of the forward azimuth and can be calculated by simply adding 180° to the forward
value:

inverserh = azimuth('rh',60,150,-15,0)

inverserh =
 238.8595

difference = inverserh-azrh

 Azimuth

3-29

difference =
 180

This is not true, in general, of great circles:

inversegc = azimuth('gc',60,150,-15,0)

inversegc =
 320.9353

difference = inversegc-azgc

difference =
 301.8962

The azimuths associated with cardinal and intercardinal compass directions are the following:

North 0° or 360°
Northeast 45°
East 90°
Southeast 135°
South 180°
Southwest 225°
West 270°
Northwest 315°

3 Understanding Geospatial Geometry

3-30

Elevation
Elevation is the angle above the local horizontal of one point relative to the other. To compute the
elevation angle of a second point as viewed from the first, provide the position and altitude of the
points. The default units are degrees for latitudes and longitudes and meters for altitudes, but you
can specify other units for each.

What are the elevation, slant range, and azimuth of a point 10 kilometers east and 10 kilometers
above a surface point?

[azim, elevang, slantrange] = geodetic2aer(...
 0, km2deg(10), 10000, 0, 0, 0, referenceEllipsoid('grs 80'))

azim =

 90

elevang =

 44.9005

slantrange =

 1.4156e+04

On an ellipsoid, azimuths returned from geodetic2aer generally will differ from those returned by
azimuth and distance.

See Also
geodetic2aer

 Elevation

3-31

Generate Vector Data for Points Along Great Circle or Rhumb
Line Tracks

You can generate vector data corresponding to points along great circle or rhumb line tracks using
the track1 and track2 functions. If you have a point on the track and an azimuth at that point, use
track1. If you have two points on the track, use track2. For example, to get the great circle path
starting at (31°S, 90°E) with an azimuth of 45° with a length of 12°, use track1:

[latgc,longc] = track1('gc',-31,90,45,12);

For the great circle from (31°S, 90°E) to (23°S, 110°E), use track2:

[latgc,longc] = track2('gc',-31,90,-23,110);

The track1 function also allows you to specify range endpoints. For example, if you want points
along a rhumb line starting 5° away from the initial point and ending 13° away, at an azimuth of 55°,
simply specify the range limits:

[latrh,lonrh] = track1('rh',-31,90,55,[5 13]);

When no range is provided for track1, the returned points represent a complete track. For great
circles, a complete track is 360°, encircling the planet and returning to the initial point. For rhumb
lines, the complete track terminates at the poles, unless the azimuth is 90° or 270°, in which case the
complete track is a parallel that returns to the initial point.

For calculated tracks, 100 points are returned unless otherwise specified. You can calculate several
tracks at one time by providing vector inputs. For more information, see the track1 and track2

3 Understanding Geospatial Geometry

3-32

reference pages. For more information about rhumb lines, see “Rhumb Lines” on page 3-28. For more
information about great circles, see “Great Circles” on page 3-27. More vector path calculations are
described in “Navigation” on page 10-9.

 Generate Vector Data for Points Along Great Circle or Rhumb Line Tracks

3-33

Reckoning
A common problem in geographic applications is the determination of a destination given a starting
point, an initial azimuth, and a distance. In the toolbox, this process is called reckoning. A new
position can be reckoned in a great circle or a rhumb line sense (great circle or rhumb line track).

As an example, an airplane takes off from La Guardia Airport in New York (40.75°N, 73.9°W) and
follows a northwestern rhumb line flight path at 200 knots (nautical miles per hour). Where would it
be after 1 hour?

[rhlat,rhlong] = reckon('rh',40.75,-73.9,nm2deg(200),315)

rhlat =
 43.1054
rhlong =
 -77.0665

Notice that the distance, 200 nautical miles, must be converted to degrees of arc length with the
nm2deg conversion function to match the latitude and longitude inputs. If the airplane had a flight
computer that allowed it to follow an exact great circle path, what would the aircraft's new location
be?

[gclat,gclong] = reckon('gc',40.75,-73.9,nm2deg(200),315)

gclat =
 43.0615
gclong =
 -77.1238

Notice also that for short distances at these latitudes, the result hardly differs between great circle
and rhumb line. The two destination points are less than 4 nautical miles apart. Incidentally, after 1
hour, the airplane would be just north of New York's Finger Lakes.

See Also

More About
• “Rhumb Lines” on page 3-28
• “Great Circles” on page 3-27

3 Understanding Geospatial Geometry

3-34

Calculate Distance Between Two Points in Geographic Space
When Mapping Toolbox functions calculate the distance between two points in geographic space, the
result depends upon whether you specify great circle or rhumb line distance. The distance function
returns the appropriate distance between two points as an angular arc length, employing the same
angular units as the input latitudes and longitudes. The default path type is the shorter great circle,
and the default angular units are degrees. The previous figure shows two points at (15°S, 0°) and
(60°N, 150°E). The great circle distance between them, in degrees of arc, is as follows:

distgc = distance(-15,0,60,150)

distgc =
 129.9712

The rhumb line distance is greater:

distrh = distance('rh',-15,0,60,150)

distrh =
 145.0288

To determine how much longer the rhumb line path is in, say, kilometers, you can use a distance
conversion function on the difference:

kmdifference = deg2km(distrh-distgc)

kmdifference =
 1.6744e+03

Several distance conversion functions are available in the toolbox, supporting degrees, radians,
kilometers, meters, statute miles, nautical miles, and feet. Converting distances between angular arc
length units and surface length units requires the radius of a planet or spheroid. By default, the
radius of the Earth is used.

 Calculate Distance Between Two Points in Geographic Space

3-35

Small Circles
In addition to rhumb lines and great circles, one other smooth curve is significant in geography, the
small circle. Parallels of latitude are all small circles (which also happen to be rhumb lines). The
general definition of a small circle is the intersection of a plane with the surface of a sphere. On
ellipsoids, this only yields true small circles when the defining plane is parallel to the equator.
Mapping Toolbox software extends this definition to include planes passing through the center of the
planet, so the set of all small circles includes all great circles as limiting cases. This usage is not
universal.

Small circles are most easily defined by distance from a point. All points 45 nm (nautical miles)
distant from (45°N,60°E) would be the description of one small circle. If degrees of arc length are
used as a distance measurement, then (on a sphere) a great circle is the set of all points 90° distant
from a particular center point.

For true small circles, the distance must be defined in a great circle sense, the shortest distance
between two points on the surface of a sphere. However, Mapping Toolbox functions also can
calculate loxodromic small circles, for which distances are measured in a rhumb line sense (along
lines of constant azimuth). Do not confuse such figures with true small circles.

To learn how to compute small circles, see “Calculate Vector Data for Points Along a Small Circle” on
page 3-37.

3 Understanding Geospatial Geometry

3-36

Calculate Vector Data for Points Along a Small Circle
You can calculate vector data for points along a small circle in two ways. If you have a center point
and a known radius, use scircle1; if you have a center point and a single point along the
circumference of the small circle, use scircle2. For example, to get data points describing the small
circle at 10° distance from (67°N, 135°W), use the following:

[latc,lonc] = scircle1(67,-135,10);

To get the small circle centered at the same point that passes through the point (55°N,135°W), use
scircle2:

[latc,lonc] = scircle2(67,-135,55,-135);

The scircle1 function also allows you to calculate points along a specific arc of the small circle. For
example, if you want to know the points 10° in distance and between 30° and 120° in azimuth from
(67°N,135°W), simply provide arc limits:

[latc,lonc] = scircle1(67,-154,10,[30 120]);

When an entire small circle is calculated, the data is in polygon format. For all calculated small
circles, 100 points are returned unless otherwise specified. You can calculate several small circles at
once by providing vector inputs. For more information, see the scircle1 and scircle2 function
reference pages. For more information about small circles, see “Small Circles” on page 3-36.

 Calculate Vector Data for Points Along a Small Circle

3-37

Generate Small Circles
Generate a true small circle, a loxodromic small circle, and the limiting case of a great circle.

Display the map axes with an orthographic projection.

figure;
axesm ortho; gridm on; framem on
setm(gca,'Origin', [45 30 30], 'MLineLimit', [75 -75],...
'MLineException',[0 90 180 270])

Define three center points on the sphere.

A = [45 90];
B = [0 60];
C = [0 30];

Create the three small circles around the three center points. The first, sca, is a true small circle.
The second, scb, is a loxodromic small circle. The third, scc, is a great circle as the limiting case of a
small circle.

sca = scircle1(A(1), A(2), 20);
scb = scircle2(B(1), B(2), 0, 150);
scc = scircle1('rh',C(1), C(2), 20);

Display the points and their corresponding small circles with different colors. Label the small circles.

plotm(A(1), A(2),'ro','MarkerFaceColor','r')
plotm(B(1), B(2),'bo','MarkerFaceColor','b')
plotm(C(1), C(2),'mo','MarkerFaceColor','m')

plotm(sca(:,1), sca(:,2),'r')
plotm(scb(:,1), scb(:,2),'b--')
plotm(scc(:,1), scc(:,2),'m')

textm(50,0,'Normal Small Circle')
textm(46,6,'(20\circ from point A)')
textm(4.5,-10,'Loxodromic Small Circle')
textm(4,-6,'(20\circ from point C')
textm(-2,-4,'in rhumb line sense)')
textm(40,-60,'Great Circle as Small Circle')
textm(45,-50,'(90\circ from point B)')

3 Understanding Geospatial Geometry

3-38

See Also
scircle1 | scircle2

More About
• “Small Circles” on page 3-36

 Generate Small Circles

3-39

Measure Area of Spherical Quadrangles
In solid geometry, the area of a spherical quadrangle can be exactly calculated. A spherical
quadrangle is the intersection of a lune and a zone. In geographic terms, a quadrangle is defined as a
region bounded by parallels north and south, and meridians east and west.

In the pictured example, a quadrangle is formed by the intersection of a zone, which is the region
bounded by 15°N and 45°N latitudes, and a lune, which is the region bounded by 0° and 30°E
longitude. Under the spherical planet assumption, the fraction of the entire spherical surface area
inscribed in the quadrangle can be calculated:

area = areaquad(15,0,45,30)

area =
 0.0187

That is, less than 2% of the planet's surface area is in this quadrangle. To get an absolute figure in,
for example, square miles, you must provide the appropriate spherical radius. The radius of the Earth
is about 3958.9 miles:

area = areaquad(15,0,45,30,3958.9)

area =
 3.6788e+06

The surface area within this quadrangle is over 3.6 million square miles for a spherical Earth.

3 Understanding Geospatial Geometry

3-40

Plotting a 3-D Dome as a Mesh Over a Globe
This example shows how to start with a 3-D feature in a system of local east-north-up (ENU)
coordinates, then transform and combine it with a globe display in Earth-Centered, Earth-Fixed
(ECEF) coordinates.

Step 1: Set Defining Parameters

Use Geodetic Reference System 1980 (GRS80) and work in units of kilometers. Place the origin of the
local system near Washington, DC, USA.

grs80 = referenceEllipsoid('grs80','km');
domeRadius = 3000; % km
domeLat = 39; % degrees
domeLon = -77; % degrees
domeAlt = 0; % km

Step 2: Construct the Dome in Local East-North-Up Coordinates

The local ENU system is defined with respect to a geodetic reference point, specified in this case by
(domeLat, domeLon, and domeAlt). It is a 3-D Cartesian system in which the positive x-axis is
directed to the east, the positive y-axis is directed to the north, and the z-axis is normal to the
reference ellipsoid and directed upward.

In this example, the 3-D feature is a hemisphere in the z >= 0 half-space with a radius of 3000
kilometers. This hemisphere could enclose, hypothetically, the volume of space within range of a
idealized radar system having uniform coverage from the horizon to the zenith, in all azimuths.
Volumes of space such as this, when representing zones of effective surveillance coverage, are
sometimes known informally as "radar domes."

A quick way to construct coordinate arrays outlining a closed hemispheric dome is to start with a unit
sphere, scale up the radius, and collapse the lower hemisphere. It's easier to visualize if you make it
semitransparent -- setting the FaceAlpha to 0.5 in this case.

[x,y,z] = sphere(20);
xEast = domeRadius * x;
yNorth = domeRadius * y;
zUp = domeRadius * z;
zUp(zUp < 0) = 0;
figure('Renderer','opengl')
surf(xEast, yNorth, zUp,'FaceColor','yellow','FaceAlpha',0.5)
axis equal

 Plotting a 3-D Dome as a Mesh Over a Globe

3-41

Step 3: Convert Dome to the Earth-Centered Earth-Fixed (ECEF) System

Use the enu2ecef function to convert the dome from local ENU to an ECEF system, based on the
GRS 80 reference ellipsoid. It applies a 3-D translation and rotation. Notice how the hemisphere
becomes tilted and how its center moves thousands of kilometers from the origin.

[xECEF, yECEF, zECEF] ...
 = enu2ecef(xEast, yNorth, zUp, domeLat, domeLon, domeAlt, grs80);
surf(xECEF, yECEF, zECEF,'FaceColor','yellow','FaceAlpha',0.5)
axis equal

3 Understanding Geospatial Geometry

3-42

Step 4: Construct a Globe Display

Construct a basic globe display using axesm and globe.

figure('Renderer','opengl')
ax = axesm('globe','Geoid',grs80,'Grid','on', ...
 'GLineWidth',1,'GLineStyle','-',...
 'Gcolor',[0.9 0.9 0.1],'Galtitude',100);
ax.Position = [0 0 1 1];
axis equal off
view(3)

 Plotting a 3-D Dome as a Mesh Over a Globe

3-43

Step 5: Add Various Global Map Data

Add low-resolution global topography, coastlines, and rivers to the globe.

load topo60c
geoshow(topo60c,topo60cR,'DisplayType','texturemap')
demcmap(topo60c)
land = shaperead('landareas','UseGeoCoords',true);
plotm([land.Lat],[land.Lon],'Color','black')
rivers = shaperead('worldrivers','UseGeoCoords',true);
plotm([rivers.Lat],[rivers.Lon],'Color','blue')

3 Understanding Geospatial Geometry

3-44

Step 6: Add the Dome to the Globe Display

Add the ECEF version of dome to the globe axes as a semitransparent mesh.

surf(xECEF, yECEF, zECEF,'FaceColor','yellow','FaceAlpha',0.5)

 Plotting a 3-D Dome as a Mesh Over a Globe

3-45

You can view the dome and globe from different angles by interactively rotating the axes in the
MATLAB® figure.

Credit

Thanks to Edward J. Mayhew, Jr. for providing technical background on "radar domes" and for
bringing to our attention the problem of visualizing them with the Mapping Toolbox™.

3 Understanding Geospatial Geometry

3-46

Choose a 3-D Coordinate System
Coordinate systems represent position on the Earth using coordinates. Mapping Toolbox functions
transform coordinates between Earth-centered Earth-fixed (ECEF), geodetic, east-north-up (ENU),
north-east-down (NED), and azimuth-elevation-range (AER) systems.

Global systems such as ECEF and geodetic systems describe the position of an object using a triplet
of coordinates. Local systems such as ENU, NED, and AER systems require two triplets of
coordinates: one triplet describes the location of the origin, and the other triplet describes the
location of the object with respect to the origin.

When you work with 3-D coordinate systems, you must specify an ellipsoid model that approximates
the shape of the Earth. For more information about ellipsoid models, see “Reference Spheroids” on
page 3-4. All of the sample coordinates on this page use the World Geodetic System of 1984 (WGS84).

Earth-Centered Earth-Fixed Coordinates
An Earth-centered Earth-fixed (ECEF) system uses the Cartesian coordinates (X,Y,Z) to represent
position relative to the center of the reference ellipsoid. The distance between the center of the
ellipsoid and the center of the Earth depends on the reference ellipsoid.

• The positive X-axis intersects the surface of the ellipsoid at 0° latitude and 0° longitude, where the
equator meets the prime meridian.

• The positive Y-axis intersects the surface of the ellipsoid at 0° latitude and 90° longitude.
• The positive Z-axis intersects the surface of the ellipsoid at 90° latitude and 0° longitude, the

North Pole.

For example, the ECEF coordinates of Parc des Buttes-Chaumont are (4198945 m, 174747 m,
4781887 m).

 Choose a 3-D Coordinate System

3-47

Geodetic Coordinates
A geodetic system uses the coordinates (lat,lon,h) to represent position relative to a reference
ellipsoid.

• lat, the latitude, originates at the equator. More specifically, the latitude of a point is the angle a
normal to the ellipsoid at that point makes with the equatorial plane, which contains the center
and equator of the ellipsoid. An angle of latitude is within the range [–90°, 90°]. Positive latitudes
correspond to north and negative latitudes correspond to south.

• lon, the longitude, originates at the prime meridian. More specifically, the longitude of a point is
the angle that a plane containing the ellipsoid center and the meridian containing that point
makes with the plane containing the ellipsoid center and prime meridian. Positive longitudes are
measured in a counterclockwise direction from a vantage point above the North Pole. Typically,
longitude is within the range [–180°, 180°] or [0°, 360°].

• h, the ellipsoidal height, is measured along a normal of the reference spheroid. Coordinate
transformation functions such as geodetic2ecef require you to specify h in the same units as
the reference ellipsoid. You can change the units of the reference ellipsoid using the LengthUnit
property. Terrain models typically supply data using orthometric height rather than ellipsoidal
height. For information about calculating ellipsoidal height from orthometric height, see “Find
Ellipsoidal Height from Orthometric and Geoid Height” on page 3-57.

3 Understanding Geospatial Geometry

3-48

For example, the geodetic coordinates of Parc des Buttes-Chaumont are (48.8800°, 2.3831°, 124.5089
m).

East-North-Up Coordinates
An east-north-up (ENU) system uses the Cartesian coordinates (xEast,yNorth,zUp) to represent
position relative to a local origin. The local origin is described by the geodetic coordinates
(lat0,lon0,h0). Note that the origin does not necessarily lie on the surface of the ellipsoid.

• The positive xEast-axis points east along the parallel of latitude containing lat0.
• The positive yNorth-axis points north along the meridian of longitude containing lon0.
• The positive zUp-axis points upward along the ellipsoid normal.

For example, Montmartre has geodetic coordinates (48.8862°, 2.3343°, 174.5217 m). The ENU
coordinates of Parc des Buttes-Chaumont with respect to Montmartre are (3579.4232 m, –688.3514
m, –51.0524 m).

North-East-Down Coordinates
A north-east-down (NED) system uses the Cartesian coordinates (xNorth,yEast,zDown) to represent
position relative to a local origin. The local origin is described by the geodetic coordinates
(lat0,lon0,h0). Typically, the local origin of an NED system is above the surface of the Earth.

 Choose a 3-D Coordinate System

3-49

• The positive xNorth-axis points north along the meridian of longitude containing lon0.
• The positive yEast-axis points east along the parallel of latitude containing lat0.
• The positive zDown-axis points downward along the ellipsoid normal.

An NED coordinate system is commonly used to specify location relative to a moving aircraft. In this
application, the origin and axes of an NED system change continuously. Note that the coordinates are
not fixed to the frame of the aircraft.

For example, an aircraft flying into Charles de Gaulle airport has geodetic coordinates (48.9978°,
2.7594°, 699.8683 m). The NED coordinates of the airport with respect to the plane are (1645.8313
m, –15677.1868 m, 555.8221 m).

Azimuth-Elevation-Range Coordinates
An azimuth-elevation-range (AER) system uses the spherical coordinates (az,elev,range) to represent
position relative to a local origin. The local origin is described by the geodetic coordinates
(lat0,lon0,h0). Azimuth, elevation, and slant range are dependent on a local Cartesian system, for
example, an ENU system.

• az, the azimuth, is the clockwise angle in the xEast-yNorth plane from the positive yNorth-axis to
the projection of the object into the plane.

• elev, the elevation, is the angle from the xEast-yNorth plane to the object.
• range, the slant range, is the Euclidean distance between the object and the local origin.

3 Understanding Geospatial Geometry

3-50

For example, a lidar sensor at the Charles de Gaulle airport has geodetic coordinates (48.0124°,
2.5451°, 163.4885 m). The AER coordinates of an airplane with respect to the sensor are (95.8314°,
1.8781°, 15773.1381 m).

Tips
If you are transforming coordinates between ENU, NED, and AER systems with the same origin, then
you do not need to specify a reference ellipsoid or the coordinates of the origin.

See Also
aer2ned | ecef2enu | enu2aer | geodetic2aer | geodetic2ecef | ned2geodetic

More About
• “Reference Spheroids” on page 3-4

References
[1] Guowei, C., B.M. Cheh, and T. H. Lee. Unmanned Rotorcraft Systems. London: Springer-Verlag

London Limited: 2011.

[2] Van Sickle, J. Basic GIS Coordinates. Boca Raton, FL: CRC Press LLC, 2004.

 Choose a 3-D Coordinate System

3-51

Vectors in 3-D Coordinate Systems
Vectors represent quantities such as velocity and acceleration. Mapping Toolbox functions transform
vector components between Earth-centered Earth-fixed (ECEF) and east-north-up (ENU) or north-
east-down (NED) systems. For more information about ECEF, ENU, and NED coordinate systems, see
“Choose a 3-D Coordinate System” on page 3-47.

Unlike coordinates that measure position, vector components in a Cartesian system do not depend on
a position in space. Therefore, when you transform a vector from one system to another, only the
components of the vector change. The magnitude of the vector remains the same.

For example, this image shows a 2-D vector transformation from an x-y system to a u-v system. The
vector has components x = 2 and y = 1 in the x-y system, and components u = 1.30 and v = 1.82 in
the u-v system. The components of the vector are different, but in each system the magnitude of the
vector is 2.24 units.

This image shows a coordinate transformation from a global ECEF system to a local ENU system
using ecef2enu. The position vectors start at the origin of each system and end at point P.
Therefore, the transformation changes the magnitude of the position vector.

3 Understanding Geospatial Geometry

3-52

This image shows a vector transformation from a global ECEF system to a local ENU system using
ecef2enuv. The vector r does not depend on a position. Therefore, the transformation changes the
components of the vector, but the magnitude of the vector is the same.

Tips
Unlike coordinate transformation functions such as ecef2enu, vector transformation functions such
as ecef2enuv do not require you to specify a reference spheroid or the ellipsoidal height of the local
origin. The geodetic latitude and longitude of the local origin is sufficient to define the orientation of
the uEast, vNorth, and wUp axes.

See Also
ecef2enuv | ecef2nedv | enu2ecefv | ned2ecefv

 Vectors in 3-D Coordinate Systems

3-53

More About
• “Choose a 3-D Coordinate System” on page 3-47

3 Understanding Geospatial Geometry

3-54

Find Ellipsoidal Height from Orthometric Height
The height of an object may refer to its ellipsoidal height or its orthometric height. Mapping Toolbox
functions such as geodetic2enu require the input argument ellipsoidal height, but data often
quantifies orthometric height instead. You can convert orthometric height to ellipsoidal height by
using a geoid model.

Ellipsoidal height, called h, is height measured along a normal of a reference ellipsoid. For more
information about reference ellipsoids, see “Reference Spheroids” on page 3-4. This image shows a
positive ellipsoidal height, hp, and a negative ellipsoidal height, hn.

Most terrain models provide data using orthometric height instead of ellipsoidal height. Orthometric
height, called H, is height above the geoid.

The geoid models the average sea level of the Earth without effects such as weather, tides, and land.
A geoid model is created by measuring variations in the Earth's gravitational field, so it has a
smoothly undulating shape. Orthometric height is measured relative to the geoid.

Geoid height, called N, is the height of the geoid measured along a normal of a reference ellipsoid.
For example, geoid height values from the Earth Gravitational Model of 1996 (EGM96) are referenced
to the ellipsoid defined by the World Geodetic System of 1984 (WGS84). Below is an illustration of the
geoid from EGM96, with geoid heights in meters.

 Find Ellipsoidal Height from Orthometric Height

3-55

To find ellipsoidal height at a specified latitude and longitude, add the orthometric height and geoid
height: h = H + N. You can find the height of the geoid from EGM96 at specified latitudes and
longitudes using the egm96geoid function.

The equation h = H + N is an approximation because the direction along which a geoid height is
measured is not necessarily the same as the direction along which an orthometric height is measured.
However, the approximation is suitable for most practical purposes.

The following image illustrates the relationship between ellipsoidal height, orthometric height, and
the geoid. The values h1, H1, and N1 demonstrate the relationship for an airborne object, while h2, H2,
and N2 demonstrate the relationship for an object on land.

3 Understanding Geospatial Geometry

3-56

Find Ellipsoidal Height from Orthometric and Geoid Height
Find the ellipsoidal height of the summit of Mount Everest, using its orthometric height and a geoid
model.

Specify the latitude and longitude of the summit in degrees. Specify the orthometric height in meters.

lat = 27.988056;
lon = 86.925278;
H = 8848;

Find the height of the geoid at the location specified by lat and lon using egm96geoid.

N = egm96geoid(lat,lon);

Calculate the ellipsoidal height of the summit.

h = H + N

h = 8.8193e+03

References
[1] NOAA. "What is the geoid?" National Ocean Service website. https://oceanservice.noaa.gov/facts/

geoid.html, 06/25/18.

See Also
egm96geoid | geodetic2enu

More About
• “Reference Spheroids” on page 3-4

 Find Ellipsoidal Height from Orthometric Height

3-57

https://oceanservice.noaa.gov/facts/geoid.html
https://oceanservice.noaa.gov/facts/geoid.html

Creating and Viewing Maps

• “Introduction to Mapping Graphics” on page 4-2
• “Continent, Country, Region, and State Maps Made Easy” on page 4-3
• “Set Background Colors for Map Displays” on page 4-4
• “Create Simple Maps Using worldmap” on page 4-5
• “Create Simple Maps Using usamap” on page 4-7
• “The Map Axes” on page 4-11
• “Access and Change Map Axes Properties” on page 4-13
• “Map Limit Properties” on page 4-19
• “Switch Between Projections” on page 4-34
• “Reprojection of Graphics Objects” on page 4-40
• “Create Maps Using geoshow” on page 4-43
• “Creating Maps Using MAPSHOW” on page 4-50
• “Change Map Projections Using geoshow” on page 4-68
• “Use Geographic and Nongeographic Objects in Map Axes” on page 4-72
• “The Map Frame” on page 4-75
• “Plot Regions of Robinson Frame and Grid Using Map Limits” on page 4-77
• “Map and Frame Limits” on page 4-82
• “The Map Grid” on page 4-83
• “Summary of Polygon Display Functions” on page 4-86
• “Display Vector Data as Points and Lines” on page 4-87
• “Display Vector Maps as Lines or Patches” on page 4-91
• “Types of Data Grids and Raster Display Functions” on page 4-98
• “Fit Gridded Data to the Graticule” on page 4-99
• “Create 3-D Displays with Raster Data” on page 4-103
• “Create Map Displays with Geographic Data” on page 4-106
• “Creating Map Displays with Data in Projected Coordinate Reference System” on page 4-116
• “Pick Locations Interactively” on page 4-125
• “Create an Interactive Map for Selecting Point Features” on page 4-127
• “Create Small Circle and Track Annotations on Maps Interactively” on page 4-133
• “Interactively Display Text Annotations on a Map” on page 4-135
• “Work with Objects by Name” on page 4-136

4

Introduction to Mapping Graphics
Even though geospatial data often is manipulated and analyzed without being displayed, high-quality
interactive cartographic displays can play valuable roles in exploratory data analysis, application
development, and presentation of results.

Using Mapping Toolbox capabilities, you can display geographic information almost as easily as you
can display tabular or time-series data in MATLAB plots. Most mapping functions are similar to
MATLAB plotting functions, except they accept data with geographic/geodetic coordinates (latitudes
and longitudes) instead of Cartesian and polar coordinates. Mapping functions typically have the
same names as their MATLAB counterparts, with the addition of an 'm' suffix (for maps). For
example, the Mapping Toolbox analog to the MATLAB plot function is plotm.

Mapping Toolbox software manages most of the details in displaying a map. It projects your data, cuts
and trims it to specified limits, and displays the resulting map at various scales. With the toolbox you
can also add customary cartographic elements, such as a frame, grid lines, coordinate labels, and text
labels, to your displayed map. If you change your projection properties, or even the projection itself,
some Mapping Toolbox map displays are automatically redrawn with the new settings, undoing any
cuts or trims if necessary.

The toolbox also makes it easy to modify and manipulate maps. You can modify the map display and
mapped objects either from the command line or through property editing tools you can invoke by
clicking on the display.

Note In its current implementation, the toolbox maintains the map projection and display properties
by storing special data in the UserData property of the map axes. The toolbox also takes over the
UserData property of mapped objects. Therefore, never attempt to set the UserData property of a
map axes or a projected map object. Do not apply the MATLAB get function to axes UserData,
depend on the contents of UserData in any way, or apply functions that set or get UserData to the
map axes or mapped objects. Only use the Mapping Toolbox functions getm and setm to obtain and
modify map axes properties.

4 Creating and Viewing Maps

4-2

Continent, Country, Region, and State Maps Made Easy
Mapping Toolbox functions axesm and setm enable you to control the full range of properties when
constructing a projected map axes. Functions worldmap and usamap, on the other hand, trade
control for simplicity and convenience. These two functions each create a map axes object that is
suitable for a country or region of the world or the United States, automatically selecting the map
projection, limits, and other properties based on the name of the area you want to map. Once you
have jump-started your map with worldmap or usamap, you are ready to add your data, using
geoshow or any of the lower level geographic data display functions. Optionally, you can use the map
axes object created by worldmap or usamap as a starting point, and then customize it by adjusting
selected properties with setm.

 Continent, Country, Region, and State Maps Made Easy

4-3

Set Background Colors for Map Displays
If you prefer that your maps have white backgrounds instead, you can create figures with the
command

figure('Color','white')

If you want a custom background color, specify a color triplet in place of white. For example, to
make a beige background, type

figure('Color',[.95 .9 .8])

To give a white background to an existing figure, type

set(gca,'color','white')

If you want all figures in a session to have white backgrounds, set this as a default with the command

set(0, 'DefaultFigureColor', 'white');

To avoid having to do this every time you start MATLAB, place this command in your startup.m file.

You can also use the Property Editor, part of the MATLAB plotting tools, to modify background colors
for figures and axes.

4 Creating and Viewing Maps

4-4

Create Simple Maps Using worldmap
This example shows how to create simple maps using the worldmap function.

Set up the map frame, letting the worldmap function pick the projection. This example creates a map
of South America.

worldmap 'south america'
axis off

Determine which map projection the worldmap function used by looking at the value of the
MapProjection property of the map axes. The value eqdconic stands for Equidistant Conic
projection

getm(gca,'MapProjection')

ans =
'eqdconic'

Use the geoshow function to import sample data for land areas, major rivers, and major cities from
shapefiles and display it using color you specify.

geoshow('landareas.shp','FaceColor',[0.5 0.7 0.5])
geoshow('worldrivers.shp','Color', 'blue')
geoshow('worldcities.shp','Marker','.','Color','red')

 Create Simple Maps Using worldmap

4-5

4 Creating and Viewing Maps

4-6

Create Simple Maps Using usamap
This example shows how to create maps of the United States using the usamap function. The usamap
function lets you make maps of the United States as a whole, just the conterminous portion (the
"lower 48" states), groups of states, or a single state. The map axes you create with the usamap
function has a labelled grid fitted around the area you specify but contains no data, allowing you to
generate the kind of map you want using display functions such as the geoshow function.

Specify map limits and set up a map axes object. This example creates a map of the Chesapeake Bay
region.

latlim = [37 40];
lonlim = [-78 -74];
figure
ax = usamap(latlim, lonlim)

ax =
 Axes with properties:

 XLim: [-1.8118e+05 1.8118e+05]
 YLim: [4.4299e+06 4.7720e+06]
 XScale: 'linear'
 YScale: 'linear'
 GridLineStyle: '-'
 Position: [0.1300 0.1100 0.7750 0.8150]
 Units: 'normalized'

 Show all properties

axis off

 Create Simple Maps Using usamap

4-7

Determine the map projection used by the usamap function. The Lambert Conformal Conic projection
is often used for maps of the conterminous United States.

getm(gca,'MapProjection')

ans =
'lambert'

Use the shaperead function to read U.S. state polygon boundaries from the usastatehi shapefile.
The function returns the data in a geostruct.

states = shaperead('usastatehi',...
 'UseGeoCoords',true,'BoundingBox',[lonlim',latlim']);

Make a symbolspec to create a political map using the polcmap function.

faceColors = makesymbolspec('Polygon',...
 {'INDEX',[1 numel(states)],'FaceColor',polcmap(numel(states))});

Display the filled polygons with the geoshow function.

geoshow(ax,states,'SymbolSpec',faceColors)

4 Creating and Viewing Maps

4-8

Extract the names for states within the window from the geostruct and use the textm function to plot
them at the label points provided by the geostruct. Because polcmap assigns random pastel colors to
patches, your map might look different than this example.

for k = 1:numel(states)
 labelPointIsWithinLimits = ...
 latlim(1) < states(k).LabelLat &&...
 latlim(2) > states(k).LabelLat &&...
 lonlim(1) < states(k).LabelLon &&...
 lonlim(2) > states(k).LabelLon;
 if labelPointIsWithinLimits
 textm(states(k).LabelLat,...
 states(k).LabelLon, states(k).Name,...
 'HorizontalAlignment','center')
 end
end
textm(38.2,-76.1,' Chesapeake Bay ',...
 'fontweight','bold','Rotation',270)

 Create Simple Maps Using usamap

4-9

4 Creating and Viewing Maps

4-10

The Map Axes
When you create a map, you can use one of the Mapping Toolbox built-in user interfaces (UIs), or you
can build the graphic with MATLAB and Mapping Toolbox functions. Many MATLAB graphics are built
using the axes function:

axes
axes('PropertyName',PropertyValue,...)
axes(h)
h = axes(...)

Mapping Toolbox functions include an extended version of axes, called axesm. Axes created with
axesm share all properties associated with regular axes, and they includes information about the
current coordinate system (map projection), as well as data to define the map grid and its labeling,
the map frame and its limits, scale, and other properties. For complete descriptions of all map axes
properties, see the axesm reference page.

The syntax of axesm is similar to that of axes:

axesm
axesm(PropertyName,PropertyValue,...)
axesm(ProjectionFcn,PropertyName,PropertyValue,...)

The axesm function without arguments brings up a UI that lists all supported projections and assists
in defining their parameters. You can also summon this UI with the axesmui function once you have
created a map axes.

The figure window created using axesm contains the same set of tools and menus as any MATLAB
figure. By default, the figure window is blank, even if there is map data in your workspace. You can
toggle certain properties, such as grids, frames, and axis labels, by right-clicking in the figure window
to obtain a pop-up menu.

Tips to Working with Map Axes
• You can list all the names, classes, and IDs of Mapping Toolbox map projections with the maps

function.
• You can place many types of objects in a map axes, such as lines, patches, markers, scale rulers,

north arrows, grids, and text. You can use the handlem function and its associated UI to list these
objects. See the handlem reference page for a list of the objects that can occupy a map axes and
how to query for them.

• You can define multiple independent figures containing map axes, but only one can be active at
any one time. Use axes(obj) to activate an existing map axes object.

• Map axes objects created by axesm contain projection information in a structure. For an example
of what these properties are, type

h = axesm('MapProjection','mercator')

and then use the getm function to retrieve all the map axes properties:

p = getm(h)

 The Map Axes

4-11

See Also
axesm | axesmui | handlem

4 Creating and Viewing Maps

4-12

Access and Change Map Axes Properties
Just as the properties of the underlying standard axes can be accessed and manipulated using the
MATLAB® functions get and set, map axes properties can also be accessed and manipulated using
the functions getm and setm.

Use the axesm function only to create a map axes object. Use the setm function to modify an existing
map axes.

Create a map axes object containing no map data. Note that you specify MapProjection ID values in
lowercase.

axesm('MapProjection','miller','Frame','on')

At this point you can begin to customize the map. For example, you might decide to make the frame
lines bordering the map thicker. First, you need to identify the current line width of the frame, which
you do by querying the current axes, identified as gca.

getm(gca,'FLineWidth')

ans = 2

Now reset the line width to four points. The default fontunits value for axes is points. You can set
fontunits to be points, normalized, inches, centimeters, or pixels.

setm(gca,'FLineWidth',4)

 Access and Change Map Axes Properties

4-13

You can set any number of properties simultaneously with setm. Continue by reducing the line width,
changing the projection to equidistant cylindrical, and verify the changes.

setm(gca,'FLineWidth',3,'Grid','on','MapProjection','robinson')

4 Creating and Viewing Maps

4-14

getm(gca,'FLineWidth')

ans = 3

getm(gca,'MapProjection')

ans =
'robinson'

Inspect the entire set of map axes properties at their current settings. Note that the list of properties
includes both those particular to map axes and general ones that apply to all MATLAB® axes.

getm(gca)

ans = struct with fields:
 mapprojection: 'robinson'
 zone: []
 angleunits: 'degrees'
 aspect: 'normal'
 falsenorthing: 0
 falseeasting: 0
 fixedorient: []
 geoid: [1 0]
 maplatlimit: [-90 90]
 maplonlimit: [-180 180]
 mapparallels: 38
 nparallels: 0
 origin: [0 0 0]

 Access and Change Map Axes Properties

4-15

 scalefactor: 1
 trimlat: [-90 90]
 trimlon: [-180 180]
 frame: 'on'
 ffill: 100
 fedgecolor: [0.1500 0.1500 0.1500]
 ffacecolor: 'none'
 flatlimit: [-90 90]
 flinewidth: 3
 flonlimit: [-180 180]
 grid: 'on'
 galtitude: Inf
 gcolor: [0.1500 0.1500 0.1500]
 glinestyle: ':'
 glinewidth: 0.5000
 mlineexception: []
 mlinefill: 100
 mlinelimit: []
 mlinelocation: 30
 mlinevisible: 'on'
 plineexception: []
 plinefill: 100
 plinelimit: []
 plinelocation: 15
 plinevisible: 'on'
 fontangle: 'normal'
 fontcolor: [0.1500 0.1500 0.1500]
 fontname: 'Helvetica'
 fontsize: 10
 fontunits: 'points'
 fontweight: 'normal'
 labelformat: 'compass'
 labelrotation: 'off'
 labelunits: 'degrees'
 meridianlabel: 'off'
 mlabellocation: 30
 mlabelparallel: 90
 mlabelround: 0
 parallellabel: 'off'
 plabellocation: 15
 plabelmeridian: -180
 plabelround: 0

Similarly, use the setm function alone to display the set of properties, their enumerated values, and
defaults.

setm(gca)

AngleUnits [{degrees} | radians]
Aspect [{normal} | transverse]
FalseEasting
FalseNorthing
FixedOrient FixedOrient is a read-only property
Geoid
MapLatLimit
MapLonLimit
MapParallels

4 Creating and Viewing Maps

4-16

MapProjection
NParallels NParallels is a read-only property
Origin
ScaleFactor
TrimLat TrimLat is a read-only property
TrimLon TrimLon is a read-only property
Zone
Frame [on | {off}]
FEdgeColor
FFaceColor
FFill
FLatLimit
FLineWidth
FLonLimit
Grid [on | {off}]
GAltitude
GColor
GLineStyle [- | -- | -. | {:}]
GLineWidth
MLineException
MLineFill
MLineLimit
MLineLocation
MLineVisible [{on} | off]
PLineException
PLineFill
PLineLimit
PLineLocation
PLineVisible [{on} | off]
FontAngle [{normal} | italic | oblique]
FontColor
FontName
FontSize
FontUnits [inches | centimeters | normalized | {points} | pixels]
FontWeight [{normal} | bold]
LabelFormat [{compass} | signed | none]
LabelRotation [on | {off}]
LabelUnits [{degrees} | radians]
MeridianLabel [on | {off}]
MLabelLocation
MLabelParallel
MLabelRound
ParallelLabel [on | {off}]
PLabelLocation
PLabelMeridian
PLabelRound

Many, but not all, property choices and defaults can also be displayed individually.

setm(gca,'FontUnits')

FontUnits [inches | centimeters | normalized | {points} | pixels]

setm(gca,'MapProjection')

An axes's "MapProjection" property does not have a fixed set of property values.

setm(gca,'Frame')

 Access and Change Map Axes Properties

4-17

Frame [on | {off}]

setm(gca,'FixedOrient')

FixedOrient FixedOrient is a read-only property

In the same way, getm displays the current value of any axes property.

getm(gca,'FontUnits')

ans =
'points'

getm(gca,'MapProjection')

ans =
'robinson'

getm(gca,'Frame')

ans =
'on'

getm(gca,'FixedOrient')

ans =

 []

For a complete listing and descriptions of map axes properties, see the reference page for axesm. To
identify which properties apply to a given map projection, see the reference page for that projection.

See Also
axesm | getm | setm

4 Creating and Viewing Maps

4-18

Map Limit Properties
In many common situations, the map limit properties, MapLatLimit and MapLonLimit, provide a
convenient way of specifying your map projection origin or frame limits. Note that these properties
are intentionally redundant; you can always avoid them if you wish and instead use the Origin,
FLatLimit, and FLonLimit properties to set up your map. When they're applicable, however, you'll
probably find that it's easier and more intuitive to set MapLatLimit and MapLonLimit, especially
when creating a new map axes with axesm.

You typically use the MapLatLimit and MapLonLimit properties to set up a map axes with a non-
oblique, non-azimuthal projection, with its origin on the Equator. (Most of the projections included in
the Mapping Toolbox fall into this category; e.g., cylindrical, pseudo-cylindrical, conic, or modified
azimuthal.) In addition, even with a non-zero origin latitude (origin off the Equator), you can use the
MapLatLimit and MapLonLimit properties with projections that are implemented directly rather
than via rotations of the sphere (e.g., tranmerc, utm, lambertstd, cassinistd, eqaconicstd,
eqdconicstd, and polyconicstd). This list includes the projections used most frequently for large-
scale maps, such as U.S. Geological Survey topographic quadrangle maps. Finally, when the origin is
located at a pole or on the Equator, you can use the map limit properties with any azimuthal
projection (e.g., stereo, ortho, breusing, eqaazim, eqdazim, gnomonic, or vperspec).

On the other hand, you should avoid the map limit properties, working instead with the Origin,
FLatLimit, and FLonLimit properties, when:

• You want your map frame to be positioned asymmetrically with respect to the origin longitude.
• You want to use an oblique aspect (that is, assign a non-zero rotation angle to the third element of

the "orientation vector" supplied as the Origin property value).
• You want to change your projection's default aspect (normal vs. transverse).
• You want to use a nonzero origin latitude, except in one of the special cases noted above.
• You are using one of the following projections:

• globe — No need for map limits; always covers entire planet
• cassini — Always in a transverse aspect
• wetch — Always in a transverse aspect
• bries — Always in an oblique aspect

There's no need to supply a value for the MapLatLimit property if you've already supplied one for
the Origin and FLatLimit properties. In fact, if you supply all three when calling either axesm or
setm, the FLatLimit value will be ignored. Likewise, if you supply values for Origin, FLonLimit,
and MapLonLimit, the FLonLimit value will be ignored.

If you do supply a value for either MapLatLimit or MapLonLimit in one of the situations listed
above, axesm or setm will ignore it and issue a warning. For example,

axesm('lambert','Origin',[40 0],'MapLatLimit',[20 70])

generates the warning message:

Ignoring value of MapLatLimit due to use of nonzero origin
 latitude with the lambert projection.

 Map Limit Properties

4-19

It's important to understand that MapLatLimit and MapLonLimit are extra, redundant properties
that are coupled to the Origin, FLatLimit, and FLonLimit properties. On the other hand, it's not
too difficult to know how to update your map axes if you keep in mind the following:

• The Origin property takes precedence. It is set (implicitly, if not explicitly) every time you call
axesm and you cannot change it just by changing the map limits. (Note that when creating a new
map axes from scratch, the map limits are used to help set the origin if it is not explicitly
specified.)

• MapLatLimit takes precedence over FLatLimit if both are provided in the same call to axesm
or setm, but changing either one alone affects the other.

• MapLonLimit and FLonLimit have a similar relationship.

The precedence of Origin means that if you want to reset your map limits with setm and have setm
also determine a new origin, you must set Origin to [] in the same call. For example,

setm(gca,'Origin',[],'MapLatLimit',newMapLatlim,...
 'MapLonLimit',newMapLonlim)

On the other hand, a call like this will automatically update the values of FLatLimit and
FLonLimit. Similarly, a call like:

setm(gca,'FLatLimit',newFrameLatlim,'FLonLimit',newFrameLonlim)

will update the values of MapLatLimit and MapLonLimit.

Finally, you probably don't want to try the following:

setm(gca,'Origin',[],'FLonLimit',newFrameLonlim)

because the value of FLonLimit (unlike MapLonLimit) will not affect Origin, which will merely
change to a projection-dependent default value (typically [0 0 0]).

Specify Map Projection Origin and Frame Limits Automatically
This example shows how to specify the map projection origin and frame limits using the two map limit
properties: MapLatLimit and MapLonLimit. While the map axes supports properties to set these
values directly, Origin, FLatLimit, and FLonLimit, it is easier and more intuitive to use the map
limit properties, especially when creating a new map axes with axesm. This example highlights the
interdependency of the map axes limits and the map limit properties.

Create a map using a cylindrical projection or pseudo-cylindrical projection showing all or most of the
Earth, with the Equator running as a straight horizontal line across the center of the map. The map is
bounded by a geographic quadrangle and the projection origin is located on the Equator, centered
between the longitude limits you specify using the map projection limits.

latlim = [-80 80];
lonlim = [100 -120];
figure
axesm('robinson','MapLatLimit',latlim,'MapLonLimit',lonlim,...
 'Frame','on','Grid','on','MeridianLabel','on','ParallelLabel','on')
axis off
setm(gca,'MLabelLocation',60)
load coastlines
plotm(coastlat,coastlon)

4 Creating and Viewing Maps

4-20

Check that the axesm function set the origin and frame limits based on the values you specified using
the MapLatLim and MapLonLim properties. The longitude of the origin should be located halfway
between the longitude limits of 100 E and 120 W. Since the map spans 140 degrees, adding half of
140 to the western limit, the origin longitude should be 170 degrees. The frame is centered on this
longitude with a half-width of 70 degrees and the origin latitude is on the Equator.

origin = getm(gca,'Origin')

origin = 1×3

 0 170 0

flatlim = getm(gca,'FLatLimit')

flatlim = 1×2

 -80 80

flonlim = getm(gca,'FLonLimit')

flonlim = 1×2

 -70 70

 Map Limit Properties

4-21

Shift the western longitude to 40 degrees E (rather than 100 degrees) to include a little more of Asia.
Use the setm function to assign a new value to the MapLonLimit property. Note the asymmetric
appearance of the map.

setm(gca,'MapLonLimit',[40 -120])

To correct the asymmetry, shift the western longitude again, this time specifying the origin. While the
MapLatLimit and MapLonLimit properties are convenient, the values of the Origin, FLatLimit,
and FLonLimit properties take precedence. You must specify the value of the origin to achieve the
map you intended. The best way to do this is to specify an empty value for the Origin property and
let the setm command calculate the value.

setm(gca,'MapLonLimit',[40 -120],'Origin',[])

4 Creating and Viewing Maps

4-22

Create Cylindrical Projection Using Map Limit Properties
This example shows how to create cylindrical projection using map limit properties.

Load the coastline data.

load coastlines

Construct a Mercator projection covering the full range of permissible latitudes with longitudes
covering a full 360 degrees starting at 60 West.

figure('Color','w')
axesm('mercator','MapLatLimit',[-90 90],'MapLonLimit',[-60 300])
axis off;
framem on;
gridm on;
mlabel on;
plabel on;
setm(gca,'MLabelLocation',60)
geoshow(coastlat,coastlon,'DisplayType','polygon')

 Map Limit Properties

4-23

The previous call to axesm is equivalent to:

axesm('mercator','Origin',[0 120 0],'FlatLimit',[-90 90],'FLonLimit',[-180
180]);

You can verify this by checking the properties.

getm(gca,'Origin')

ans = 1×3

 0 120 0

getm(gca,'FLatLimit')

ans = 1×2

 -86 86

getm(gca,'FLonLimit')

ans = 1×2

 -180 180

4 Creating and Viewing Maps

4-24

Note that the map and frame limits are clamped to the range of [-86 86] imposed by the read-only
TrimLat property.

getm(gca,'MapLatLimit')

ans = 1×2

 -86 86

getm(gca,'FLatLimit')

ans = 1×2

 -86 86

getm(gca,'TrimLat')

ans = 1×2

 -86 86

Create Conic Projection Using Map Limit Properties
This example shows how to create a map of the standard version of the Lambert Conformal Conic
projection covering latitudes 20 North to 75 North and longitudes covering 90 degrees starting at 30
degrees West.

Load coastline data and display it. The call to axesm above is equivalent to:
axesm('lambertstd','Origin', [0 15 0], 'FLatLimit',[20 75],FLonLimit',[-45
45])

load coastlines
figure('Color','w')
axesm('lambertstd','MapLatLimit',[20 75],'MapLonLimit',[-30 60])
axis off;
framem on;
gridm on;
mlabel on;
plabel on;
geoshow(coastlat, coastlon, 'DisplayType', 'polygon')

 Map Limit Properties

4-25

Create Southern Hemisphere Conic Projection
This example shows how to create a map of the standard version of the Lambert Conformal Conic
projection into the Southern Hemisphere. The example overrides the default standard parallels and
sets the MapLatLimit and MapLonLimit properties.

Load the coastline data MAT file, coastlines.mat.

load coastlines

Display the map, setting the MapLatLimit and MapLonLimit properties.

figure('Color','w')
axesm('lambertstd','MapParallels',[-75 -15], ...
 'MapLatLimit',[-75 -20],'MapLonLimit',[-30 60])
axis off
framem on
gridm on
mlabel on
plabel on
geoshow(coastlat,coastlon,'DisplayType','polygon')

4 Creating and Viewing Maps

4-26

Create North-Polar Azimuthal Projection
This example shows how to construct a North-polar Equal-Area Azimuthal projection map extending
from the Equator to the pole and centered by default on longitude 0.

Load coastline data set MAT file, coastlines.mat.

load coastlines

Create map. The call to axesm is equivalent to:
axesm('eqaazim','MLabelParallel',0,'Origin',[90 0 0],'FLatLimit',[-Inf 90]);

figure('Color','w')
axesm('eqaazim','MapLatLimit',[0 90])
axis off
framem on
gridm on
mlabel on
plabel on;
setm(gca,'MLabelParallel',0)

 Map Limit Properties

4-27

Plot the coast lines.

geoshow(coastlat,coastlon,'DisplayType','polygon')

4 Creating and Viewing Maps

4-28

Create South-Polar Azimuthal Projection
This example shows how to create a South-polar Stereographic Azimuthal projection map extending
from the South Pole to 20 degrees S, centered on longitude 150 degrees West. Include a value for the
Origin property in order to control the central meridian.

Load coastline data and display map.

load coastlines
figure('Color','w')
axesm('stereo','Origin',[-90 -150],'MapLatLimit',[-90 -20])
axis off;
framem on;
gridm on;
mlabel on;
plabel on;
setm(gca,'MLabelParallel',-20)
geoshow(coastlat,coastlon,'DisplayType','polygon')

 Map Limit Properties

4-29

The call to the axesm function above is equivalent to:

axesm('stereo','Origin',[-90 -150 0],'FLatLimit',[-Inf 70])

Create Equatorial Azimuthal Projection
This example shows how to create a map of an Equidistant Azimuthal projection with the origin on
the Equator, covering from 10° E to 170° E. The origin longitude falls at the center of this range (90
E), and the map reaches north and south to within 10° of each pole.

Read coast data and display. The call to axesm is equivalent to axesm('eqaazim','Origin',[0
90 0],'FLatLimit',[-Inf 80]).

load coastlines
figure('Color','w')
axesm('eqdazim','FLatLimit',[],'MapLonLimit',[10 170])
axis off;
framem on;
gridm on;
mlabel on;
plabel on;
setm(gca,'MLabelParallel',0,'PLabelMeridian',60)
geoshow(coastlat,coastlon,'DisplayType','polygon')

4 Creating and Viewing Maps

4-30

Create General Azimuthal Projection
This example shows how to construct an Orthographic projection map with the origin centered near
Paris, France. You can't use MapLatLimit or MapLonLimit here.

Read in coast data and display.

load coastlines
originLat = dm2degrees([48 48]);
originLon = dm2degrees([2 20]);

figure('Color','w')
axesm('ortho','Origin',[originLat originLon])
axis off; framem on; gridm on; mlabel on; plabel on;
setm(gca,'MLabelParallel',30,'PLabelMeridian',-30)
geoshow(coastlat,coastlon,'DisplayType','polygon')

 Map Limit Properties

4-31

Create Long Narrow Oblique Mercator Projection
This example shows how to create a map with a long, narrow, oblique Mercator projection. The
example shows the area 10 degrees to either side of the great-circle flight path from Tokyo to New
York. You can't use MapLatLimit or MapLonLimit .

load coastlines
latTokyo = dm2degrees([35 40]);
lonTokyo = dm2degrees([139 45]);

latNewYork = dm2degrees([40 47]);
lonNewYork = dm2degrees([-73 58]);

[dist,az] = distance(latTokyo,lonTokyo,latNewYork,lonNewYork);
[midLat,midLon] = reckon(latTokyo,lonTokyo,dist/2,az);
midAz = azimuth(midLat,midLon,latNewYork,lonNewYork);

buf = [-10 10];

figure('Color','w')
axesm('mercator','Origin',[midLat midLon 90-midAz], ...
 'FLatLimit',buf,'FLonLimit',[-dist/2 dist/2] + buf)
axis off; framem on; gridm on; tightmap
geoshow(coastlat,coastlon,'DisplayType','polygon')
plotm([latTokyo latNewYork],[lonTokyo lonNewYork],'r-')

4 Creating and Viewing Maps

4-32

See Also

More About
• “The Map Frame” on page 4-75
• “Map and Frame Limits” on page 4-82

 Map Limit Properties

4-33

Switch Between Projections
Once a map axes object has been created with axesm, whether map data is displayed or not, it is
possible to change the current projection as well as many of its parameters. You can use setm or the
maptool UI to reset the projection. The rest of this section describes the considerations and
parameters involved in switching projections in a map axes. Additional details are given for doing this
with the geoshow function in “Change Map Projections Using geoshow” on page 4-68.

When you switch from one projection to another, setm clears out settings that were specific to the
earlier projection, updates the map frame and graticule, and generally keeps the map covering the
same part of the world—even when switching between azimuthal and non-azimuthal projections. But
in some cases, you might need to further adjust the map axes properties to achieve proper
appearance. Settings that are suitable for one projection might not be appropriate for another. Most
often, you'll need to update the positioning of your meridian and parallel labels.

Change Projection Updating Meridian and Parallel Labels
This example shows how to change the projection of a map and update the meridian and parallel
labels.

Create a Mercator projection with meridian and parallel labels.

axesm mercator
framem on; gridm on; mlabel on; plabel on
setm(gca,'LabelFormat','signed')
axis off

4 Creating and Viewing Maps

4-34

Get the default map and frame latitude limits for the Mercator projection. Note that both the frame
and map latitude limits are set to 86 degrees north and south for the Mercator projection to maintain
a safe distance from the singularity at the poles.

[getm(gca,'MapLatLimit'); getm(gca,'FLatLimit')]

ans = 2×2

 -86 86
 -86 86

Switch the projection to an orthographic azimuthal.

setm(gca,'MapProjection','ortho')

Specify new locations for the meridian and parallel labels.

setm(gca,'MLabelParallel',0,'PLabelMeridian',-90, ...
 'PLabelMeridian',-30)

 Switch Between Projections

4-35

Change Projection Resetting Frame Limits
This example shows how to switch from one projection to another and reset the origin and frame
limits, especially when mapping a small portion of the Earth.

Construct an empty map axes for a region of the United States in the Lambert Conformal Conic
projection (the default projection for the usamap function).

latlim = [32 42];
lonlim = [-125 -111];
h = usamap(latlim, lonlim);

4 Creating and Viewing Maps

4-36

Read the usastatehi shapefile and return a subset of the shapefile contents, as defined by the
latitude and longitude limits. The shaperead function returns the data in a structure called states .

states = shaperead('usastatehi', 'UseGeoCoords', true, ...
 'BoundingBox', [lonlim', latlim']);

Save the latitude and longitude data from the structure in the vectors lat and lon .

lat = [states.Lat];
lon = [states.Lon];

Project patch objects on the map axes.

patchm(lat, lon, [0.5 0.5 1])

 Switch Between Projections

4-37

Change the projection to Lambert Equal Area Azimuthal and reset the origin and frame limits.

setm(gca,'MapProjection','eqaazim','Origin',[37 -118], ...
 'FLatLimit',[-Inf 6])
setm(gca,'mlinelocation',2,'plinelocation',2)
tightmap

4 Creating and Viewing Maps

4-38

 Switch Between Projections

4-39

Reprojection of Graphics Objects
Many Mapping Toolbox cartographic functions project features on a map axes based on their
designated latitude-longitude positions. The latitudes and longitudes are mathematically transformed
to x and y positions using the formulas for the current map projection. If the map projection or its
parameters change, objects on a map axes can be automatically reprojected to update the map
display accordingly.

The table summarizes the four common use cases for changing a map projection in a map axes with
setm or for reprojecting map data plotted on a regular MATLAB axes.

Mapping Use Case Type of Axes Reprojection Behavior
Plot geographic (latitude-longitude)
vector coordinate data or data grid
using a Mapping Toolbox function from
releases prior to Version 2 (e.g.,
plotm)

Map axes Automatic reprojection

Plot geographic vector data with
geoshow

Map axes No automatic reprojection; delete
graphics objects prior to changing the
projection and redraw them afterwards.

Plot data grids, images, and contours
with geographic coordinates with
geoshow

Map axes Automatic reprojection; this behavior
could change in a future release

Plot projected (x-y) vector or raster
map data with mapshow or with a
MATLAB graphics function (e.g., line,
contour, or surf)

Regular axes Manual reprojection (reproject
coordinates with projinv/projfwd);
delete graphics objects prior to changing
the projection and redraw them
afterwards.

You can use handlem to help identify which objects to delete when manual deletion is necessary. See
“Work with Objects by Name” on page 4-136 for an example of its use.

Auto-Reprojection of Mapped Objects and Its Limitations
Using the setm function, you can change the current map projection on the fly if the map display was
created in a way that permits reprojection. Note that map displays can contain objects that cannot be
reprojected, and may need to be explicitly deleted and redrawn. Automatic reprojection will take
place when you use setm to modify the MapProjection property, or any other map axes property
from the following list:

• AngleUnits
• Aspect
• FalseEasting
• FalseNorthing
• FLatLimit
• FLonLimit
• Geoid
• MapLatLimit

4 Creating and Viewing Maps

4-40

• MapLonLimit
• MapParallels
• Origin
• ScaleFactor
• TrimLat
• TrimLon
• Zone

Auto-reprojection takes place for objects created with any of the following Mapping Toolbox
functions:

• contourm
• contour3m
• fillm
• fill3m
• gridm
• linem
• meshm
• patchm
• plotm
• plot3m
• surfm
• surfacem
• textm

The above Mapping Toolbox functions are analogous to standard MATLAB graphics functions having
the same name, less the trailing m. You can use both types of functions to plot data on a map axes, as
long as you are aware that the standard MATLAB graphics functions do not apply map projection
transformations, and therefore require you to specify positions in map x-y space.

In general, objects created with geoshow or with a combination of calls to projfwd followed by
ordinary MATLAB graphics functions, such as line, patch, or surface, are not automatically
reprojected. You should delete such objects whenever you change one or more of the map axes
properties listed above, and then redisplay them.

If you have preprojected vector or raster map data or read such data from files, you can display it
with mapshow, mapview, or standard MATLAB graphics functions, such as plot or mesh. If its
projection is known and is included in the Mapping Toolbox projection libraries, you can use its
parameters to project geodata in geographic coordinates to display it in the same axes.

Reprojectability of Maps Generated Using geoshow
If you want to be able to change the projection of a map on the fly, you should not use geoshow.
Some display functions, such as patchm , fillm, displaym, and linem, enable you to reproject
vector map data, but geoshow does not. That is, when you change a map axes projection, with setm
for example, vector map symbology that was created with geoshow will not be transformed. Gridded

 Reprojection of Graphics Objects

4-41

data rendered with geoshow (when DisplayType is surface, texturemap, or contour), however,
can be reprojected.

For examples of reprojection behavior with vector data and raster data, see “Change Map Projections
Using geoshow” on page 4-68.

4 Creating and Viewing Maps

4-42

Create Maps Using geoshow
Create a range of different maps using geoshow.

Geographic map 1: World Land Area

Create a worldmap. Then project and display world land areas.

worldmap world
geoshow('landareas.shp','FaceColor',[0.5 1.0 0.5])

You can also project and display world land areas using a default Plate Carree projection.

figure
geoshow('landareas.shp','FaceColor',[0.5 1.0 0.5])

 Create Maps Using geoshow

4-43

The axes show position in latitude and longitude, but are displayed on a set of ordinary axes. To
display geographic data on a set of map axes instead, use axesm, usamap, or worldmap before
calling geoshow.

ismap

ans = 0

Geographic map 2: North America with Custom Colored States in the U.S.

Read the USA high resolution data.

states = shaperead('usastatehi','UseGeoCoords',true);

Create a SymbolSpec to display Alaska and Hawaii as red polygons.

symbols = makesymbolspec('Polygon', ...
 {'Name','Alaska','FaceColor','red'}, ...
 {'Name','Hawaii','FaceColor','red'});

Create a world map of North America with Alaska and Hawaii in red, and all other states in blue.

figure
worldmap('north america')
geoshow(states,'SymbolSpec',symbols, ...
 'DefaultFaceColor','blue','DefaultEdgeColor','black')
axis off

4 Creating and Viewing Maps

4-44

Geographic map 3: Korea Elevation Grid

Load elevation data and a geographic cells reference object for the Korean peninsula. Import a land
area boundary using shaperead.

load korea5c
S = shaperead('landareas','UseGeoCoords',true);

Create a world map. Then project and display the elevation data as a texture map.

figure
worldmap(korea5c,korea5cR)
geoshow(korea5c,korea5cR,'DisplayType','texturemap')
demcmap(korea5c)

Overlay the land area boundary as a line.

geoshow([S.Lat],[S.Lon],'Color','k')

 Create Maps Using geoshow

4-45

Geographic map 4: EGM96 Geoid Heights

Get geoid heights and a geographic postings reference object from the EGM96 geoid model. Then,
display the heights as a surface using an Eckert projection. Ensure the surface appears below the
grid lines by setting the 'CData' name-value pair to the geoid height data and the 'ZData' name-
value pair to a matrix of zeros. Display the frame and grid of the map using framem and gridm.
Display the parallel and meridian labels using plabel and mlabel.

[N,R] = egm96geoid;
figure
axesm eckert4
Z = zeros(R.RasterSize);
geoshow(N,R,'DisplayType','surface','CData',N,'ZData',Z)
framem
gridm
plabel
mlabel('MLabelLocation',90)
axis off

Create a colorbar and add a text description. Then, mask out all the land.

cb = colorbar('southoutside');
cb.Label.String = 'EGM96 Geoid Heights in Meters';
geoshow('landareas.shp','FaceColor','k')

4 Creating and Viewing Maps

4-46

Geographic map 5: Moon Albedo Image

Load moon albedo data and a geographic cells reference object. Project and display the data using
the default Plate Carree projection.

load moonalb20c
figure
geoshow(moonalb20c,moonalb20cR)

 Create Maps Using geoshow

4-47

Project and display the moon albedo data using an orthographic projection. To do this, create a map
axes object and specify the projection as orthographic. Display the data in the map axes as a texture
map using geoshow. Then, change the colormap to grayscale and remove the axis lines.

figure
axesm ortho
geoshow(moonalb20c,moonalb20cR,'DisplayType','texturemap')
colormap gray
axis off

4 Creating and Viewing Maps

4-48

See Also
axesm | framem | geoshow | makesymbolspec | mapshow | shaperead | worldmap

 Create Maps Using geoshow

4-49

Creating Maps Using MAPSHOW
This example shows how to create a range of different maps using mapshow.

Map 1: Concord Roads - A Geographic Data Structure

Display a geographic data structure array with lines representing roads. In the shapefile
'concord_roads.shp', the road coordinates have been pre-projected to the Massachusetts Mainland
State Plane system (in meters), so the shapefile is imported into a mapstruct (the variable 'roads').

roads = shaperead('concord_roads.shp');
figure
mapshow(roads);
xlabel('easting in meters')
ylabel('northing in meters')

Map 2: Concord Roads with Custom Line Style

Display the roads shape and change the line style.

figure
mapshow('concord_roads.shp','LineStyle',':');
xlabel('easting in meters')
ylabel('northing in meters')

4 Creating and Viewing Maps

4-50

Map 3: Concord Roads with SymbolSpec

Display the roads shape, and render using a SymbolSpec.

To learn about the concord_roads.shp dataset, read its associated concord_roads.txt metadata
file which describes the attributes.

type concord_roads.txt

 A shapefile data set for roads in part of Concord, Massachusetts,
 USA comprising the following files:

 concord_roads.dbf
 concord_roads.shp
 concord_roads.shx

 Source

 Office of Geographic and Environmental Information (MassGIS),
 Commonwealth of Massachusetts Executive Office of Environmental Affairs
 (http://www.state.ma.us/mgis/)

 Coordinate system/projection

 All data distributed by MassGIS are registered to the NAD83 datum,
 Massachusetts State Plane Mainland Zone coordinate system. Units are in
 meters.

 Creating Maps Using MAPSHOW

4-51

 Data set construction

 This data set was constructed by concatenating Massachusetts Highway
 Department road shapefiles for the Maynard and Concord USGS Quadrangles,
 from compressed files mrd97.exe and mrd104.exe.

 Features were selected with bounding boxes intersecting the following
 box:
 [206500 (min easting) 910500 (min northing)
 211500 (max easting) 913500 (max northing)]

 The following attributes were retained:

 'STREETNAME', 'RT_NUMBER', 'CLASS', 'ADMIN_TYPE', 'LENGTH'

 Attributes 'CLASS' and 'ADMIN_TYPE' contain numerical codes defined by
 MassGIS as follows:

 Road classes (from file mrdac.dbf)

 CLASS 1 Limited access highway
 CLASS 2 Multi-lane highway, not limited access
 CLASS 3 Other numbered route
 CLASS 4 Major road - collector
 CLASS 5 Minor street or road
 CLASS 6 Minor street or road
 CLASS 7 Highway ramp

 Road admin types (from file mrdac.dbf)

 ADMIN_TYPE 0 Local road
 ADMIN_TYPE 1 Interstate
 ADMIN_TYPE 2 U.S. Federal
 ADMIN_TYPE 3 State

 Construction date

 November 17, 2003.

Query the attributes in this roads file.

roads = shaperead('concord_roads.shp')

roads =

 609x1 struct array with fields:

 Geometry
 BoundingBox
 X
 Y
 STREETNAME
 RT_NUMBER
 CLASS
 ADMIN_TYPE

4 Creating and Viewing Maps

4-52

 LENGTH

Find out how many roads fall in each CLASS.

histcounts([roads.CLASS],'BinLimits',[1 7],'BinMethod','integer')

ans =

 0 14 93 26 395 81 0

Find out how many roads fall in each ADMIN_TYPE.

histcounts([roads.ADMIN_TYPE],'BinLimits',[0 3],'BinMethod','integer')

ans =

 502 0 0 107

Notice that there are no roads in this file that are CLASS 1 or 7, and the roads are either
ADMIN_TYPE 0 or 3.

Create a SymbolSpec to:

• Color local roads (ADMIN_TYPE=0) black.
• Color state roads (ADMIN_TYPE=3) red.
• Hide very minor roads (CLASS=6).
• Set major or larger roads (CLASS=1-4) with a LineWidth value of 2.0.

roadspec = makesymbolspec('Line',...
 {'ADMIN_TYPE',0, 'Color','black'}, ...
 {'ADMIN_TYPE',3, 'Color','red'},...
 {'CLASS',6, 'Visible','off'},...
 {'CLASS',[1 4], 'LineWidth',2});
figure
mapshow('concord_roads.shp','SymbolSpec',roadspec);
xlabel('easting in meters')
ylabel('northing in meters')

 Creating Maps Using MAPSHOW

4-53

Map 4: Concord Roads, Override SymbolSpec

Override a graphics property of the SymbolSpec.

roadspec = makesymbolspec('Line',...
 {'ADMIN_TYPE',0, 'Color','black'}, ...
 {'ADMIN_TYPE',3, 'Color','red'},...
 {'CLASS',6, 'Visible','off'},...
 {'CLASS',[1 4], 'LineWidth',2});
figure
mapshow('concord_roads.shp','SymbolSpec',roadspec,'Color','black');
xlabel('easting in meters')
ylabel('northing in meters')

4 Creating and Viewing Maps

4-54

Map 5: Boston Roads with SymbolSpec, Override Defaults

Override default property of the SymbolSpec.

roadspec = makesymbolspec('Line',...
 {'Default', 'Color','green'}, ...
 {'ADMIN_TYPE',0, 'Color','black'}, ...
 {'ADMIN_TYPE',3, 'Color','red'},...
 {'CLASS',6, 'Visible','off'},...
 {'CLASS',[1 4], 'LineWidth',2});
figure
mapshow('boston_roads.shp','SymbolSpec',roadspec);
xlabel('easting in meters')
ylabel('northing in meters')

 Creating Maps Using MAPSHOW

4-55

Map 6: GeoTIFF Image of Boston

Display the Boston GeoTIFF image; includes material (c) GeoEye™, all rights reserved.

figure
mapshow boston.tif
axis image manual off

4 Creating and Viewing Maps

4-56

Read Boston placenames in order to overlay on top of the GeoTIFF image.

S = shaperead('boston_placenames.shp');

The projection in the GeoTIFF file is in units of survey feet. The point coordinates in the shapefile are
in meters. Therefore, we need to convert the placename coordinates from meters to survey feet in
order to overlay the points on the image.

surveyFeetPerMeter = unitsratio('sf', 'meter');
for k = 1:numel(S)
 S(k).X = surveyFeetPerMeter * S(k).X;
 S(k).Y = surveyFeetPerMeter * S(k).Y;
end

Display the placenames.

text([S.X], [S.Y], {S.NAME}, 'Color', [0 0 0], ...
 'BackgroundColor',[0.9 0.9 0],'Clipping','on');

 Creating Maps Using MAPSHOW

4-57

Zoom in on a selected region.

xlim([772007, 775582])
ylim([2954572, 2956535])

4 Creating and Viewing Maps

4-58

Map 7: Pond with Islands over Orthophoto Backdrop

Display a pond with three large islands (feature 14 in the concord_hydro_area shapefile). Note that
islands are visible in the orthophoto through three "holes" in the pond polygon. Display roads in the
same figure.

[ortho, cmap] = imread('concord_ortho_w.tif');
R = worldfileread('concord_ortho_w.tfw', 'planar', size(ortho));
figure
mapshow(ortho, cmap, R)

 Creating Maps Using MAPSHOW

4-59

Save map limits used for image

xLimits = xlim;
yLimits = ylim;
pond = shaperead('concord_hydro_area.shp', 'RecordNumbers', 14);
hold on
mapshow(pond, 'FaceColor', [0.3 0.5 1], 'EdgeColor', 'black')
mapshow('concord_roads.shp', 'Color', 'red', 'LineWidth', 1);
xlabel('easting in meters')
ylabel('northing in meters')

4 Creating and Viewing Maps

4-60

Restore map limits to match image

xlim(xLimits)
ylim(yLimits)

 Creating Maps Using MAPSHOW

4-61

Map 8: Mount Washington SDTS Digital Elevation Model

View the Mount Washington terrain data as a mesh. The data grid is georeferenced to Universal
Transverse Mercator (UTM) zone 19.

figure
h = mapshow('sdts/9129CATD.ddf','DisplayType','mesh');
Z = h.ZData;
demcmap(Z)
xlabel('UTM easting in meters')
ylabel('UTM northing in meters')

4 Creating and Viewing Maps

4-62

View the Mount Washington terrain data as a 3-D surface. Use the default 3-D view, which shows how
the range looks from the southwest.

figure
mapshow('sdts/9129CATD.ddf');
demcmap(Z)
view(3);
axis equal;
xlabel('UTM easting in meters')
ylabel('UTM northing in meters')
zlabel('Elevation in feet')

 Creating Maps Using MAPSHOW

4-63

Map 9: Mount Washington and Mount Dartmouth on One Map with Contours

Display the grid and contour lines of Mount Washington and Mount Dartmouth.

Read the terrain data files for Mount Washington and Mount Dartmouth. To plot the data using
mapshow, the raster data must be of type single or double. Specify the data type for the raster
using the 'OutputType' name-value pair.

[ZWash,RWash] = readgeoraster('MtWashington-ft.grd', ...
 'OutputType','double');
[ZDart,RDart] = readgeoraster('MountDartmouth-ft.grd', ...
 'OutputType','double');

% Find missing data using the |georasterinfo| function. The function
% returns an object with a |MissingDataIndicator| property that indicates
% which value represents missing data. Replace the missing data with |NaN|
% values using the |standardizeMissing| function.

infoWash = georasterinfo('MtWashington-ft.grd');
ZWash = standardizeMissing(ZWash,infoWash.MissingDataIndicator);

infoDart = georasterinfo('MountDartmouth-ft.grd');
ZDart = standardizeMissing(ZDart,infoDart.MissingDataIndicator);

Ensure the contour lines and labels appear over the terrain data by specifying the 'ZData' name-
value pair as a matrix of zeros. Apply a colormap appropriate for terrain data using demcmap.

4 Creating and Viewing Maps

4-64

figure
hold on
mapshow(ZWash,RWash,'DisplayType','surface', ...
 'ZData',zeros(RWash.RasterSize))
mapshow(ZDart,RDart,'DisplayType','surface', ...
 'ZData',zeros(RDart.RasterSize))
demcmap(ZWash)
xlabel('UTM easting in meters')
ylabel('UTM northing in meters')
axis equal

Overlay black contour lines and labels.

mapshow(ZWash,RWash,'DisplayType','contour', ...
 'LineColor','k','ShowText','on');
mapshow(ZDart,RDart,'DisplayType','contour', ...
 'LineColor','k','ShowText','on');

 Creating Maps Using MAPSHOW

4-65

Credits

boston_roads.shp, concord_roads.shp, concord_hydro_area.shp, concord_ortho_e.tif:

 Office of Geographic and Environmental Information (MassGIS),
 Commonwealth of Massachusetts Executive Office of Environmental Affairs
 http://www.state.ma.us/mgis

boston.tif

 Copyright GeoEye
 Includes material copyrighted by GeoEye, all rights reserved.
 (GeoEye was merged into the DigitalGlobe corporation January 29th,
 2013.)

 For more information, run:

 >> type boston.txt

9129CATD.ddf (and supporting files):

 United States Geological Survey (USGS) 7.5-minute Digital Elevation
 Model (DEM) in Spatial Data Transfer Standard (SDTS) format for the
 Mt. Washington quadrangle, with elevation in meters.
 http://edc.usgs.gov/products/elevation/dem.html

 For more information, run:

 >> type 9129.txt

4 Creating and Viewing Maps

4-66

MtWashington-ft.grd, MountDartmouth-ft.grd:

 MtWashington-ft.grd is the same DEM as 9129CATD.ddf, but converted to
 Arc ASCII Grid format with elevation in feet.

 MountDartmouth-ft.grd is an adjacent DEM, also converted to Arc ASCII
 Grid with elevation in feet.

 For more information, run:

 >> type MtWashington-ft.txt
 >> type MountDartmouth-ft.txt

See Also
geoshow | makesymbolspec | mapshow | shaperead

 Creating Maps Using MAPSHOW

4-67

Change Map Projections Using geoshow
You can display latitude-longitude vector and raster geodata using the geoshow function (use
mapshow to display preprojected coordinates and grids). When you use geoshow to display maps on a
map axes, the data are projected according to the map projection assigned when axesm, worldmap,
or usamap created the map axes (e.g., axesm('mapprojection','mercator')).

You can also use geoshow to display latitude-longitude data on a regular axes (created by the axes
function, for example). When you do this, the latitude-longitude data are displayed using a pcarree,
which linearly maps longitude to x and latitude to y.

Change Map Projection with Vector Data Using geoshow
This example shows how to change a map projection when displaying vector data using geoshow . If
you need to change projections when displaying both raster and vector geodata, you can combine
these techniques. Removing vector graphic objects does not affect raster data already displayed.

Display vector data using geoshow.

figure;
axesm miller
h = geoshow('landareas.shp');

Delete the original map and change the projection.

4 Creating and Viewing Maps

4-68

delete(h)
setm(gca,'mapprojection','ortho')
geoshow('landareas.shp')

Change Map Projection with Raster Data Using geoshow
Get geoid heights and a geographic postings reference object from the EGM96 geoid model. Then,
display the data using a Mercator projection.

[N,R] = egm96geoid;
axesm mercator
geoshow(N,R,'DisplayType','surface')

 Change Map Projections Using geoshow

4-69

Change the projection using the setm function.

setm(gca,'mapprojection','mollweid')

4 Creating and Viewing Maps

4-70

 Change Map Projections Using geoshow

4-71

Use Geographic and Nongeographic Objects in Map Axes
This example shows how to use geographic and nongeographic objects in a map axes. The example
illustrates the difference between using MATLAB functions, such as plot and grid, and their
Mapping Toolbox counterparts, plotm and gridm .

Make a Miller map axes with a latitude and longitude grid. These functions create a map axes object,
a map frame enclosing the region of interest, and geographic grid lines. The x-y axes, which are
normally hidden, are displayed, and the axes x-y grid is turned off. The gridm function constructs
lines to illustrate the latitude-longitude grid, unlike the MATLAB grid function, which draws an x-y
grid for the underlying projected map coordinates. Depending on the type of projection, a latitude-
longitude grid (or graticule) can contain curves while a MATLAB grid never does.

axesm miller;
framem on;
gridm on;
mlabel on;
plabel on;
showaxes;
grid off;

Place a standard MATLAB text object and a mapped text object, using the two separate coordinate
systems. In the figure, a standard text object is placed at x=-2 and y=-1, while the mapped text object
is placed at (70 degrees N, 150 degrees W) in the Miller projection.

text(-2,-1,'Standard text object at x = -2, y = -1')
textm(70,-150,'Mapped text object at lat = 70, lon = -150')

4 Creating and Viewing Maps

4-72

Change the projection to sinusoidal. The standard text object remains at the same Cartesian position,
which alters its latitude-longitude position. The mapped text object remains at the same geographic
location, so its x-y position is altered. Also, the frame and grid lines reflect the new map projection.
Similarly, vector and raster (matrix) data can be displayed using either mapping functions (plotm)
or standard functions (plot).

setm(gca,'MapProjection','sinusoid')
showaxes;
grid off;
mlabel off

 Use Geographic and Nongeographic Objects in Map Axes

4-73

4 Creating and Viewing Maps

4-74

The Map Frame
The Mapping Toolbox map frame is the outline of the limits of a map, often in the form of a box, the
"edge of the world," so to speak. The frame is displayed if the map axes property Frame is set to
'on'. This can be accomplished upon map axes creation with axesm, or later with setm, or with the
direct command framem on. The frame is geographically defined as a latitude-longitude quadrangle
that is projected appropriately. For example, on a map of the world, the frame might extend from pole
to pole and a full 360° range of longitude. In appearance, the frame would take on the characteristic
shape of the projection. The examples below are full-world frames shown in four very different
projections.

Full-World Map Frames

As a map object, each of the previously displayed frames is identical; however, the selection of a
display projection has varied their appearance.

You can manipulate properties beyond the latitude and longitude limits of the frame. Frame
properties are established upon map axes object creation; you can modify them subsequently with the
setm and the framem functions. The command framem alone is a toggle for the Frame property,
which controls the visibility of the frame. You can also call framem with property names and values to
alter the appearance of the frame:

framem('FlineWidth',4,'FEdgeColor','red')

The frame is actually a patch with a default face color set to 'none' and a default edge color of
black. You can alter these map axes properties by manipulating the FFaceColor and FEdgeColor
properties. For example, the command

setm(gca,'FFaceColor','cyan')

makes the background region of your display resemble water. Since the frame patch is always the
lowest layer of a map display, other patches, perhaps representing land, will appear above the
"water." If an object is subsequently plotted "below" the frame patch, the frame altitude can be
recalculated to lie below this object with the command framem reset. The frame is replaced and
not reprojected.

Set the line width of the edge, which is 2 points by default, using the FLineWidth property.

 The Map Frame

4-75

The primary advantage of displaying the map frame is that it can provide positional context for other
displayed map objects. For example, when vector data of the coasts is displayed, the frame provides
the "edge" of the world.

See the framem reference page for more details.

4 Creating and Viewing Maps

4-76

Plot Regions of Robinson Frame and Grid Using Map Limits
This example shows how to plot four regions of Robinson frame and grid using map limits. Initially,
each of the plots shows the entire world, FLatLimit is [-90 90], and FLonLimit is [-180 180] for
each case. The frame quadrangle can encompass smaller regions, as well, in which case the shape is
a section of a full-world outline or simply a quadrilateral with straight or curving sides.

Plot four quadrangles in the Robinson Projection, symmetric about prime meridian.

figure('color','white')
subplot(2,2,1);
axesm('MapProjection','robinson',...
 'Frame','on','Grid','on')
title('Lat [-90 90], Map lons [-180 180]','FontSize',10)
subplot(2,2,2);
axesm('MapProjection','robinson',...
 'MapLatLimit',[30 70],'MapLonLimit',[-90 90],...
 'Frame','on','Grid','on')
title('Lat [30 70], Lon [-90 90]','FontSize',10)
subplot(2,2,3);
axesm('MapProjection','robinson',...
 'MapLatLimit',[-90 0],'MapLonLimit',[-180 -30],....
 'Frame','on','Grid','on')
title('Lat [-90 0], Lon [-180 -30]','FontSize',10)
subplot(2,2,4);
axesm('MapProjection','robinson',...
 'MapLatLimit',[-70 -30],'MapLonLimit',[60 150],...
 'Frame','on','Grid','on')
title('Lat [-70 -30], Lon [60 150]','FontSize',10)

 Plot Regions of Robinson Frame and Grid Using Map Limits

4-77

Plot the same regions but with frame limits altered after projecting. The projections are not centered
on the prime meridian. Instead, the projections are symmetric about map limits.

figure('color','white')
h11 = subplot(2,2,1);
axesm('MapProjection','robinson',...
 'Frame','on','Grid','on')
title('Lat [-90 90], Lon [-180 180]')
h12 = subplot(2,2,2);
axesm('MapProjection','robinson',...
 'Frame','on','Grid','on')
setm(h12,'FLatLimit',[30 70],'FLonLimit',[-90 90])
title('Lat [30 70], Lon [-90 90]')
h21 = subplot(2,2,3);
axesm('MapProjection','robinson',...
 'Frame','on','Grid','on')
setm(h21,'FLatLimit',[-90 0],'FLonLimit',[-180 -30])
title('Lat [-90 0], Lon [-180 -30]')
h22 = subplot(2,2,4);
axesm('MapProjection','robinson',...
 'Frame','on','Grid','on')
setm(h22,'FLatLimit',[-70 -30],'FLonLimit',[60 150])
title('Lat [-70 -30], Lon [60 150]')

4 Creating and Viewing Maps

4-78

To create a symmetric frame in the lower right subplot, reset the map limits instead of the frame
limits, but be sure to reset the origin.

setm(h22,'MapLonLimit',[60 150],'Origin',[])

 Plot Regions of Robinson Frame and Grid Using Map Limits

4-79

Alter the properties of the frame, which is actually a patch with face color set to 'none'. Set the face
color to 'cyan'.

setm(gca,'FFaceColor','cyan')

4 Creating and Viewing Maps

4-80

 Plot Regions of Robinson Frame and Grid Using Map Limits

4-81

Map and Frame Limits
The Mapping Toolbox map and frame limits are two related map axes properties that limit the map
display to a defined region. The map latitude and longitude limits define the extents of geodata to be
displayed, while the frame limits control how the frame fits around the displayed data. Any object that
extends outside the frame limits is automatically trimmed.

The frame limits are also specified differently from the map limits. The map limits are in absolute
geographic coordinates referenced to an origin at the intersection of the prime meridian and the
equator, while the frame limits are referenced to the rotated coordinate system defined by the map
axes origin.

For all nonazimuthal projections, frame limits are specified as quadrangles ([latmin latmax] and
[longmin longmax]) in the frame coordinate system. In the case of azimuthal projections, the
frames are circular and are described by a polar coordinate system. One of the frame latitude limits
must be a negative infinity (-Inf) to indicate an azimuthal frame (think of this as the center of the
circle), while the other limit determines the radius of the circular frame (rlatmax). The longitude
limits of azimuthal frames are inconsequential, since a full circle is always displayed.

If you are uncertain about the correct format for a particular projection frame limit, you can reset the
formats to the default values using empty matrices.

Note For nonazimuthal projections in the normal aspect, the map extent is limited by the minimum
of the map limits and the frame limits; hence, the two limits will coincide after evaluation. Therefore,
if you manually change one set of limits, you might want to clear the other set to get consistent limits.

4 Creating and Viewing Maps

4-82

The Map Grid
The map grid is the set of displayed meridians and parallels, also known as a graticule. Display the
grid by setting the map axes property Grid to 'on'. You can do this when you create map axes with
axesm, with setm, or with the direct command gridm on.

Control Grid Spacing
To control display of meridians and parallels, set a scalar meridian spacing or a vector of desired
meridians in the MLineLocation property. The property PLineLocation serves a corresponding
purpose for parallels. The default values place grid lines every 30° for meridians and every 15° for
parallels.

Layer Grids
By default, the grid is placed as the top layer of any display. You can alter this by changing the
GAltitude property, so that other map objects can be placed "above" the grid. The new grid is
drawn at its new altitude. The units used for GAltitude are specified with the daspectm function.

To reposition the grid back to the top of the display, use the command gridm reset. You can also
control the appearance of grid lines with the GLineStyle and GLineWidth properties, which are
':' and 0.5, respectively, by default.

Limit Grid Lines
The Miller projection is an example in which all the meridians can extend to the poles without
appearing to be cluttered. In other projections, such as the orthographic (below), the map grid can

 The Map Grid

4-83

obscure the surface where they converge. Two map axes properties, MLineLimit and
MLineException, enable you to control such clutter:

• Use the MLineLimit property to specify a pair of latitudes at which to terminate the meridians.
For example, setting MLineLimit to [-75 75] completely clears the region above and below this
latitude range of meridian lines.

• If you want some lines to reach the poles but not others, you can specify them with the
MLineException property. For example, if MLineException is set to [-90 0 90 180], then
the meridians corresponding to the four cardinal longitudes will continue past the limit on to the
pole.

The use of these properties is illustrated in the figure below. Note that there are two corresponding
map axes properties, PLineLimit and PLineException, for controlling the extent of displayed
parallels.

Label Grids
You can label displayed parallels and meridians. MeridianLabel and ParallelLabel are on-off
properties for displaying labels on the meridians and parallels, respectively. They are both 'off' by
default. Initially, the label locations coincide with the default displayed grid lines, but you can alter
this by using the PlabelLocation and MlabelLocation properties. These grid lines are labeled
across the north edge of the map for meridians and along the west edge of the map for parallels.
However, the property MlabelParallel allows you to specify 'north', 'south', 'equator', or a
specific latitude at which to display the meridian labels, and PlabelMeridian allows the choice of
'west', 'east', 'prime', or a specific longitude for the parallel labels. By default, parallel labels
are displayed in the range of 0° to 90° north and south of the equator while meridian labels are

4 Creating and Viewing Maps

4-84

displayed in the range of 0° to 180° east and west of the prime meridian. You can use the
mlabelzero22pi function to redisplay the meridian labels in the range of 0° to 360° east of the
prime meridian.

Properties affecting grid labeling are listed below.

Property Effect
MeridianLabel Toggle display of meridian labels
ParallelLabel Toggle display of parallel labels
MlabelLocation Alternate interval for labeling meridians
PlabelLocation Alternate interval for labeling parallels
MlabelParallel Keyword or latitude for placing meridian labels
PlabelMeridian Keyword or longitude for placing parallel labels
mlabelzero22pi(function) Relabel meridians with positive angle from 0° to 360°

For complete descriptions of all map axes properties, refer to the axesm reference page.

 The Map Grid

4-85

Summary of Polygon Display Functions
The following table lists the available Mapping Toolbox patch polygon display functions.

Function Used For
fillm Filled 2-D map polygons
fill3m Filled 3-D map polygons in 3-D space
geoshow Display map latitude and longitude data in 2-D
mapshow Display map data without projection in 2-D
patchm Patch objects projected on map axes
patchesm Patches projected as individual objects on map axes

The fillm function makes use of the low-level function patchm. The toolbox provides another patch
drawing function called patchesm. The optimal use of either depends on the application and user
preferences. The patchm function creates one displayed object, which can contain multiple faces that
do not necessarily connect. Mapping Toolbox data arrays contain NaNs to separate unconnected
patch faces, unlike MATLAB patch display functions, which cannot handle NaN-delimited data for
patches. The patchesm function, on the other hand, treats each face as a separate object and returns
an array of patch objects. In general, patchm requires more memory but is faster than patchesm.
The patchesm function is useful if you need to manipulate the appearance of individual patches (as
thematic maps often require).

The geoshow and mapshow functions provide a superset of functionality for displaying unprojected
and projected geodata, respectively, in two dimensions. These functions accept geographic data
structures (geostructs and mapstructs) and coordinate vector arrays, but can also directly read
shapefiles and geolocated raster files. With them, you can map polygon data, controlling rendering by
constructing symbolspecs, data structures that you can construct with the makesymbolspec
function. You can easily construct symbolspecs for point and line data as well as polygon data to
control its display in geoshow, mapshow, and mapview.

See Also

More About
• “Create and Display Polygons” on page 2-12

4 Creating and Viewing Maps

4-86

Display Vector Data as Points and Lines
This example shows how to display vector data as points and lines. Mapping Toolbox vector map
display of line objects works much like MATLAB line display functions. Mapping Toolbox supports
versions of many MATLAB functions that work with geographic coordinates and map projections.

Set up a map axes and frame.

load coastlines
axesm mollweid
framem('FEdgeColor','blue','FLineWidth',0.5)

Plot the coast vector data using plotm and specify line property names and values.

plotm(coastlat,coastlon,'LineWidth',1,'Color','blue')

 Display Vector Data as Points and Lines

4-87

Define the three city geographic locations and plot symbols at these locations. Suppose you have
variables representing the locations of Cairo (30 degrees N, 32 degrees E), Rio de Janeiro (23 degrees
S, 43 degrees W), and Perth (32 degrees S, 116 degrees E), and you want to plot them as markers
only, without connecting line segments. You can also use geoshow (for data in geographic
coordinates) or mapshow (for data in projected coordinates) to create such maps in either a map axes
or a regular axes.

citylats = [30 -23 -32]; citylongs = [32 -43 116];
plotm(citylats,citylongs,'r*')

4 Creating and Viewing Maps

4-88

Calculate and plot a great circle track from Cairo to Rio de Janeiro and a rhumb line track from Cairo
to Perth.

[gclat,gclong] = track2('gc',citylats(1),citylongs(1),...
 citylats(2),citylongs(2));
[rhlat,rhlong] = track2('rh',citylats(1),citylongs(1),...
 citylats(3),citylongs(3));
plotm(gclat,gclong,'m-'); plotm(rhlat,rhlong,'m-')

 Display Vector Data as Points and Lines

4-89

4 Creating and Viewing Maps

4-90

Display Vector Maps as Lines or Patches
This example shows how to display vector maps as lines or patches (filled-in polygons). Mapping
Toolbox functions let you display patch vector data that uses NaNs to separate closed regions.

Use the who command to examine the contents of the conus (conterminous U.S.) MAT-file and then
load it into the workspace. Vector map data for lines or polygons can be represented by simple
coordinate arrays, geostructs, or mapstructs. The variables uslat and uslon together describe
three polygons (separated by NaNs) the largest of which represent the outline of the conterminous
United States. The two smaller polygons represent Long Island, NY, and Martha's vineyard, an island
off Massachusetts. The variables gtlakelat and gtlakelon describe three polygons (separated by
NaNs) for the Great Lakes. The variables statelat and statelon contain line-segment data
(separated by NaNs) for the borders between states, which is not formatted for patch display.

who -file conus.mat

Your variables are:

description gtlakelon statelat uslat
gtlakelat source statelon uslon

load conus

Verify that line and polygon data contains NaNs (hence multiple objects).

find(isnan(gtlakelon))

ans = 3×1

 881
 1056
 1227

Read the worldrivers shapefile for the region that covers the conterminous United States.

uslatlim = [min(uslat) max(uslat)]

uslatlim = 1×2

 25.1200 49.3800

uslonlim = [min(uslon) max(uslon)]

uslonlim = 1×2

 -124.7200 -66.9700

rivers = shaperead('worldrivers', 'UseGeoCoords', true, ...
 'BoundingBox', [uslonlim', uslatlim'])

rivers=23×1 struct array with fields:
 Geometry
 BoundingBox
 Lon
 Lat

 Display Vector Maps as Lines or Patches

4-91

 Name

Note that the Geometry field specifies whether the data is stored as a Point , MultiPoint , Line ,
or Polygon .

rivers(1).Geometry

ans =
'Line'

Set up a map axes to display the state coordinates, turning on the map frame, map grid, and the
meridian and parallel labels.. As conic projections are appropriate for mapping the entire United
States, create a map axes object using an Albers equal-area conic projection ('eqaconic').
Specifying map limits that contain the region of interest automatically centers the projection on an
appropriate longitude. The frame encloses just the mapping area, not the entire globe. As a general
rule, you should specify map limits that extend slightly outside your area of interest (worldmap and
usamap do this for you). Conic projections need two standard parallels (latitudes at which scale
distortion is zero). A good rule is to set the standard parallels at one-sixth of the way from both
latitude extremes. Or, to use default latitudes for the standard parallels, simply provide an empty
matrix in the call to axesm .

figure
axesm('MapProjection', 'eqaconic', 'MapParallels', [], ...
 'MapLatLimit', uslatlim + [-2 2], ...
 'MapLonLimit', uslonlim + [-2 2])
axis off;
framem;
gridm;
mlabel;
plabel

4 Creating and Viewing Maps

4-92

Plot a patch to display the area occupied by the conterminous United States. Use the geoshow
function with DisplayType set to 'polygon' . Note that the order in which add layers to a map can
affect visibility because some layers can hide other layers. For example, because some U.S. state
boundaries follow major rivers, display the rivers last to avoid obscuring them.

geoshow(uslat,uslon, 'DisplayType','polygon','FaceColor',...
 [1 .5 .3], 'EdgeColor','none')

 Display Vector Maps as Lines or Patches

4-93

Plot the Great Lakes on top of the land area, using geoshow .

geoshow(gtlakelat,gtlakelon, 'DisplayType','polygon',...
 'FaceColor','cyan', 'EdgeColor','none')

4 Creating and Viewing Maps

4-94

Plot the line segment data showing state boundaries, using geoshow with DisplayType set to
'line' .

geoshow(statelat,statelon,'DisplayType','line','Color','k')

 Display Vector Maps as Lines or Patches

4-95

Use geoshow to plot the river network. Note that you can omit DisplayType

geoshow(rivers, 'Color', 'blue')

4 Creating and Viewing Maps

4-96

See Also
axesm | geoshow | shaperead

More About
• “Create and Display Polygons” on page 2-12

 Display Vector Maps as Lines or Patches

4-97

Types of Data Grids and Raster Display Functions
Mapping Toolbox functions and GUIs display both regular and geolocated data grids originating in a
variety of formats. Recall that regular data grids require a referencing vector or matrix that describes
the sampling and location of the data points, while geolocated data grids require matrices of latitude
and longitude coordinates.

The data grid display functions are geographic analogies to the MATLAB surface drawing functions,
but operate specifically on map axes objects. Like the line-plotting functions discussed in the previous
chapter, some Mapping Toolbox grid function names correspond to their MATLAB counterparts with
an m appended.

Note Mapping Toolbox functions beginning with mesh are used for regular data grids, while those
beginning with surf are reserved for geolocated data grids. This usage differs from the MATLAB
definition; mesh plots are used for colored wire-frame views of the surface, while surf displays
colored faceted surfaces.

Surface map objects can be displayed in a variety of different ways. You can assign colors from the
figure colormap to surfaces according to the values of their data. You can also display images where
the matrix data consists of indices into a colormap or display the matrix as a three-dimensional
surface, with the z-coordinates given by the map matrix. You can use monochrome surfaces that
reflect a pseudo-light source, thereby producing a three-dimensional, shaded relief model of the
surface. Finally, you can use a combination of color and light shading to create a lighted shaded relief
map.

The following table lists the available Mapping Toolbox surface map display functions.

Function Used For
geoshow Display map data gridded in latitude and longitude in 2-D
mapshow Display gridded map data without projection in 2-D
meshm Regular data grid warped to projected graticule mesh
surfm Geolocated data grid projected on map axes
pcolorm Projected data grid in z = 0 plane
surfacem Data grid warped to projected graticule mesh
surflm 3-D shaded surface with lighting projected on map axes
meshlsrm 3-D lighted shaded relief of regular data grid
surflsrm 3-D lighted shaded relief of geolocated data grid

4 Creating and Viewing Maps

4-98

Fit Gridded Data to the Graticule
The toolbox projects surface objects in a manner similar to the traditional methods of map making. A
cartographer first lays out a grid of meridians and parallels called the graticule. Each graticule cell is
a geographic quadrangle. The cartographer calculates or interpolates the appropriate x-y locations
for every vertex in the graticule grid and draws the projected graticule by connecting the dots.
Finally, the cartographer draws the map data freehand, attempting to account for the shape of the
graticule cells, which usually change shape across the map. Similarly, the toolbox calculates the x-y
locations of the four vertices of each graticule cell and warps or samples the matrix data to fit the
resulting quadrilateral.

In mapping data grids using the toolbox, as in traditional cartography, the finer the mesh (analogous
to using a graticule with more meridians and parallels), the greater precision the projected map
display will have, at the cost of greater effort and time. The graticule in a printed map is analogous to
the spacing of grid elements in a regular data grid, the Mapping Toolbox representation of which is
two-element vectors of the form [number-of-parallels, number-of-meridians]. The graticule
for geolocated data grids is similar; it is the size of the latitude and longitude coordinate matrices:
number-of-parallels = mrows-1 and number-of-meridians = ncols-1. However, because
geolocated data grids have arbitrary cell corner locations, spacing can vary and thus their graticule is
not a regular mesh.

Fit Gridded Data to Fine and Coarse Graticules
This example shows how to fit gridded data to fine and coarse graticules. The choice of graticule is a
balance of speed over precision in terms of positioning the grid on the map. Typically, there is no
point to specifying a mesh finer than the data resolution (in this example, 180-by-360 grid cells). In
practice, it makes sense to use coarse graticules for development tasks and fine graticules for final
graphics production.

Note that, regardless of the graticule resolution, the grid data is unchanged. In this case, the data
grid is a 180-by-360 matrix, and regardless of where it is positioned, the data values are unchanged.

Load elevation raster data and a geographic cells reference object.

load topo60c

Set up a Robinson projection, specify a coarse (10-by-20) cell graticule, and display the data mapped
to the graticule using a colormap appropriate for elevation data. Notice that for this coarse graticule,
the edges of the map do not appear as smooth curves.

figure
axesm robinson
spacing = [10 20];
m = meshm(topo60c,topo60cR,spacing);
demcmap(topo60c)

 Fit Gridded Data to the Graticule

4-99

Now reset the graticule, using the setm function, to make it less coarse, [50 100]. (You can also reset
the graticule using the meshgrat function.) Notice that the jagged edges effect is now negligible.

setm(m,'MeshGrat',[50 100])

4 Creating and Viewing Maps

4-100

Reset the graticule again, this time to a very fine grid using the setm function. Notice that the result
does not appear to be any better than the original display with the default [50 100] graticule, but it
took much longer to produce. Making the mesh more precise is a trade-off of resolution versus time
and memory usage.

setm(m,'MeshGrat',[200 400])

 Fit Gridded Data to the Graticule

4-101

4 Creating and Viewing Maps

4-102

Create 3-D Displays with Raster Data
This example shows how to create 3-D displays with raster data by setting up surface views, which
requires explicit horizontal coordinates. The simplest way to display raster data is to assign colors to
matrix elements according to their data values and view them in two dimensions. Raster data maps
also can be displayed as 3-D surfaces using the matrix values as the z data. The difference between
regular raster data and a geolocated data grid is that each grid intersection for a geolocated grid is
explicitly defined with x-y or latitude/longitude matrices or is interpolated from a graticule, while a
regular matrix only implies these locations (which is why it needs a reference vector, matrix, or
object).

Load elevation data and a geographic cells reference object for the Korean peninsula. Transform the
data and reference object to a fully geolocated data grid using the geographicGrid function.

load korea5c
[lat,lon] = geographicGrid(korea5cR);

Next use the km2deg function to convert the units of elevation from meters to degrees, so they are
commensurate with the latitude and longitude coordinate matrices.

korea5c = km2deg(korea5c/1000);

Observe the results by typing the whos command. The lat and lon coordinate matrices form a mesh
the same size as korea5c. This is a requirement for constructing 3-D surfaces. In lon, all columns
contain the same number for a given row, and in lat, all rows contain the same number for a given
column.

whos

 Name Size Bytes Class Attributes

 description 2x64 256 char
 korea5c 180x240 345600 double
 korea5cR 1x1 128 map.rasterref.GeographicCellsReference
 lat 180x240 345600 double
 lon 180x240 345600 double
 source 2x76 304 char

Now set up a map axes object with the equal area conic projection and, instead of using the meshm
function to make this map, display the geolocated data grid using the surfm function. Set an
appropriate colormap. This produces a map that is really a 3-D view seen from directly overhead (the
default perspective). To appreciate that, all you need to do is to change your viewpoint.

axesm('MapProjection','eqaconic','MapParallels',[],...
 'MapLatLimit',[30 45],'MapLonLimit',[115 135])
surfm(lat,lon,korea5c,korea5c)
demcmap(korea5c)
tightmap

 Create 3-D Displays with Raster Data

4-103

Specify a viewing azimuth of 60 degrees (from the east southeast) and a viewing elevation of 30
degrees above the horizon, using the view function.

view(60,30)

4 Creating and Viewing Maps

4-104

 Create 3-D Displays with Raster Data

4-105

Create Map Displays with Geographic Data
There are many geospatial data sets that contain data with coordinates in latitude and longitude in
units of degrees. This example illustrates how to import geographic data with coordinates in latitude
and longitude, display geographic data in a map display, and customize the display.

In particular, this example illustrates how to

• Import specific geographic vector and raster data sets
• Create map displays and visualize the data
• Display multiple data sets in a single map display
• Customize a map display with a scale ruler and north arrow
• Customize a map display with an inset map

Example 1: Import Polygon Geographic Vector Data

Geographic vector data can be stored in a variety of different formats, for example shapefile and GPS
Exchange (GPX) formats. This example imports polygon geographic vector data from a shapefile.
Vertices in a shapefile can be either in geographic coordinates (latitude and longitude) or in a
projected coordinate reference system.

Read USA state boundaries from the usastatehi.shp file included with the Mapping Toolbox™
software. The state boundaries are in latitude and longitude.

states = shaperead('usastatehi.shp', 'UseGeoCoords', true);

Example 2: Display Polygon Geographic Vector Data

Display the polygon geographic vector data onto a map axes. Since the geographic extent is in the
United States, you can use usamap to setup a map axes. Use geoshow to project and display the
geographic data onto the map axes. Display an ocean color in the background by setting the frame's
face color.

figure
ax = usamap('conus');
oceanColor = [0.3010 0.7450 0.9330];
landColor = [0.9290 0.6940 0.1250];
setm(ax, 'FFaceColor', oceanColor)
geoshow(states,'FaceColor',landColor)
title({ ...
 'Conterminous USA State Boundaries', ...
 'Polygon Geographic Vector Data'})

4 Creating and Viewing Maps

4-106

Example 3: Import Point and Line Geographic Vector Data

Import point geographic vector data from the boston_placenames.gpx file included with the
Mapping Toolbox™ software. The file contains latitude and longitude coordinates of geographic point
features in part of Boston, Massachusetts, USA. Use gpxread to read the GPX file and return a
geopoint vector.

placenames = gpxread('boston_placenames.gpx');

Import line vector data from the sample_route.gpx file included with the Mapping Toolbox™
software. The file contains latitude and longitude coordinates for a GPS route from Boston Logan
International Airport to The MathWorks, Inc in Natick Massachusetts, USA. Use gpxread to read the
GPX file and return a geopoint vector.

route = gpxread('sample_route.gpx');

Example 4: Display Point and Line Geographic Vector Data

Display the geographic vector data in a map axes centered around the state of Massachusetts, using
the data from the state boundaries and the GPX files. The coordinates for all of these data sets are in
latitude and longitude.

Find the state boundary for Massachusetts.

stateName = 'Massachusetts';
ma = states(strcmp({states.Name},stateName));

 Create Map Displays with Geographic Data

4-107

Use usamap to setup a map axes for the region surrounding Massachusetts. Color the ocean by
setting the frame's face color. Display the state boundaries and highlight Massachusetts by using
geoshow to display the geographic data onto the map axes. Since the GPX route is a set of points
stored in a geopoint vector, supply the latitude and longitude coordinates to geoshow to display the
route as a line.

figure
ax = usamap('ma');
maColor = [0.4660 0.6740 0.1880];
setm(ax, 'FFaceColor', oceanColor)
geoshow(states,'FaceColor',landColor)
geoshow(ma, 'FaceColor', maColor)
geoshow(placenames);
geoshow(route.Latitude, route.Longitude);
title({'Massachusetts and Surrounding Region', 'Placenames and Route'})

Example 5: Set Latitude and Longitude Limits Based on Data Extent

Zoom into the map by computing new latitude and longitude limits for the map using the extent of the
placenames and route data. Extend the limits by .05 degrees.

lat = [route.Latitude placenames.Latitude];
lon = [route.Longitude placenames.Longitude];
latlim = [min(lat) max(lat)];
lonlim = [min(lon) max(lon)];
[latlim, lonlim] = bufgeoquad(latlim, lonlim, .05, .05);

Construct a map axes with the new limits and display the geographic data.

4 Creating and Viewing Maps

4-108

figure
ax = usamap(latlim, lonlim);
setm(ax, 'FFaceColor', oceanColor)
geoshow(ma,'FaceColor',maColor)
geoshow(placenames)
geoshow(route.Latitude, route.Longitude)
title('Closeup of Placenames and Route')

Example 6: Import Geographic Raster Data

Geographic raster data can be stored in a variety of different formats, for example GeoTIFF, Esri
Grid, DTED, and ENVI formats. To read data in these formats, use the readgeoraster function.

To read an image associated with a worldfile, use the imread and worldfileread functions instead.
Use imread to read the image and worldfileread to read the worldfile and construct a spatial
referencing object. For this example, import data for the region surrounding Boston, Massachusetts.
The coordinates of the image are in latitude and longitude.

filename = 'boston_ovr.jpg';
RGB = imread(filename);
R = worldfileread(getworldfilename(filename), 'geographic', size(RGB));

Example 7: Display Geographic Raster Data

Display the RGB image onto a map axes. The limits of the map are set to the limits defined by the
spatial referencing object, R. The coordinates of the data are in latitude and longitude.

 Create Map Displays with Geographic Data

4-109

figure
ax = usamap(RGB, R);
setm(ax, ...
 'MLabelLocation',.05, 'PLabelLocation',.05, ...
 'MLabelRound',-2, 'PLabelRound',-2)
geoshow(RGB, R)
title('Boston Overview')

Example 8: Display Geographic Vector and Raster Data

You can display raster and vector data in a single map display. Since the coordinates for all of these
data sets are in latitude and longitude, use geoshow to display them in a single map display. Setup
new limits based on the limits of the route, placenames, and the overview image.

lat = [route.Latitude placenames.Latitude R.LatitudeLimits];
lon = [route.Longitude placenames.Longitude R.LongitudeLimits];
latlim = [min(lat) max(lat)];
lonlim = [min(lon) max(lon)];

figure
ax = usamap(latlim, lonlim);
setm(ax, 'GColor','k', ...
 'PLabelLocation',.05, 'PLineLocation',.05)
geoshow(RGB, R)
geoshow(ma.Lat, ma.Lon, ...
 'LineWidth', 2, 'Color', 'y')
geoshow(placenames)

4 Creating and Viewing Maps

4-110

geoshow(route.Latitude, route.Longitude)
title('Boston Overview and Geographic Vector Data')

Example 9: Customize a Map Display with a Scale Ruler

Customize a map display by including a scale ruler. A scale ruler is a graphic object that shows
distances on the ground at the correct size for the projection. This example illustrates how to
construct a scale ruler that displays horizontal distances in international miles.

Compute latitude and longitude limits of Massachusetts and extend the limits by .05 degrees by using
the bufgeoquad function.

latlim = [min(ma.Lat), max(ma.Lat)];
lonlim = [min(ma.Lon), max(ma.Lon)];
[latlim, lonlim] = bufgeoquad(latlim, lonlim, .05, .05);

Display the state boundary, placenames, route, and overview image onto the map.

figure
ax = usamap(latlim, lonlim);
setm(ax, 'FFaceColor', oceanColor)
geoshow(states,'FaceColor', landColor)
geoshow(ma, 'LineWidth', 1.5, 'FaceColor', maColor)
geoshow(RGB, R)
geoshow(placenames)
geoshow(route.Latitude, route.Longitude)
titleText = 'Massachusetts and Surrounding Region';
title(titleText)

 Create Map Displays with Geographic Data

4-111

Insert a scale ruler. You can determine a location for the scale ruler by using the ginput function as
shown below:

[xLoc,yLoc] = ginput(1);

A location previously chosen is set below.

xLoc = -127800;
yLoc = 5014700;
scaleruler('Units', 'mi', 'RulerStyle', 'patches', ...
 'XLoc', xLoc, 'YLoc', yLoc);
title({titleText, 'with Scale Ruler'})

4 Creating and Viewing Maps

4-112

Example 10: Customize a Map Display with a North Arrow

Customize the map by adding a north arrow. A north arrow is a graphic element pointing to the
geographic North Pole.

Use latitude and longitude values to position the north arrow.

northArrowLat = 42.5;
northArrowLon = -70.25;
northarrow('Latitude', northArrowLat, 'Longitude', northArrowLon);
title({titleText, 'with Scale Ruler and North Arrow'})

 Create Map Displays with Geographic Data

4-113

Example 11: Customize a Map Display with an Inset Map

Customize the map by adding an inset map. An inset map is a small map within a larger map that
enables you to visualize the larger geographic region of your main map. Create a map for the
surrounding region as an inset map. Use the axes function to contain and position the inset map. In
the inset map:

• Display the state boundaries for the surrounding region
• Plot a red box to show the extent of the main map

h2 = axes('Position', [.15 .6 .2 .2], 'Visible', 'off');
usamap({'PA','ME'})
plabel off; mlabel off
setm(h2, 'FFaceColor', 'w');
geoshow(states, 'FaceColor', [0.9 0.9 0.9], 'Parent', h2)
plotm(latlim([1 2 2 1 1]), lonlim([2 2 1 1 2]), ...
 'Color', 'red', 'LineWidth', 2)
title(ax, {titleText, 'with Scale Ruler, North Arrow, and Inset Map'})

4 Creating and Viewing Maps

4-114

Data Set Information

The file boston_placenames.gpx is from the Bureau of Geographic Information (MassGIS),
Commonwealth of Massachusetts, Executive Office of Technology and Security Services. For more
information about the data sets, use the command type boston_placenames_gpx.txt.

The file boston_ovr.jpg includes materials copyrighted by GeoEye, all rights reserved. GeoEye was
merged into the DigitalGlobe corporation on January 29th, 2013. For more information about the data
set, use the command type boston_ovr.txt.

See Also
geoplot | geoscatter | geoshow | northarrow | scaleruler | usamap

 Create Map Displays with Geographic Data

4-115

Creating Map Displays with Data in Projected Coordinate
Reference System

This example illustrates how to import and display geographic data that contain coordinates in a
projected coordinate reference system.

In particular, this example illustrates how to

• Import specific raster and vector data sets
• Create map displays for visualizing the data
• Display multiple data sets in a map display
• Display multiple data sets with coordinates in geographic and projected coordinate reference

systems in a single map display

Example 1: Import Raster Data in Projected Coordinate Reference System

Geographic raster data that contains coordinates in a projected coordinate reference system can be
stored in a variety of different formats, including standard file formats such as GeoTIFF, Spatial Data
Transfer Standard (SDTS), NetCDF, HDF4, or HDF5. This example illustrates importing data from a
GeoTIFF file. The data in the file contains coordinates in the projected map coordinate reference
system Massachusetts State Plane Mainland Zone coordinate system.

The coordinates of the image in the GeoTIFF file, boston.tif, are in a projected coordinate
reference system. You can determine that by using the geotiffinfo function and examine the PCS
and Projection field values.

info = geotiffinfo('boston.tif');
disp(info.PCS)

NAD83 / Massachusetts Mainland

disp(info.Projection)

SPCS83 Massachusetts Mainland zone (meters)

The length unit of the coordinates are defined by the UOMLength field in the info structure.

disp(info.UOMLength)

US survey foot

To import the image and the spatial referencing object, use readgeoraster.

[boston,R] = readgeoraster('boston.tif');

Example 2: Display Raster Data in Projected Coordinate Reference System

You can display the image on a regular MATLAB axes using mapshow, which displays the image and
sets the axes limits to the limits defined by the referencing object, R. The coordinates, as mentioned
above, are in US survey foot and are relative to an origin to the southwest of the map, which is
why the numbers are large. The coordinates are always positive within the zone.

mapshow(boston,R)
axis image
title('Boston')

4 Creating and Viewing Maps

4-116

Example 3: Import Vector Data in Projected Coordinate Reference System

Geographic vector data that contains coordinates in a projected coordinate reference system can be
stored in shapefiles. This example illustrates how to import vector data in a projected coordinate
reference system from the shapefile, boston_roads.shp.

Import vector line data from the boston_roads.shp file.

roads = shaperead('boston_roads.shp');

To get information about the projected coordinate reference system, first return information about
the shapefile as a structure. Then, query the CoordinateReferenceSystem field.

roadsInfo = shapeinfo('boston_roads.shp');
roadsInfo.CoordinateReferenceSystem

ans =
 projcrs with properties:

 Name: "NAD83 / Massachusetts Mainland"
 GeographicCRS: [1×1 geocrs]
 ProjectionMethod: "Lambert Conic Conformal (2SP)"
 LengthUnit: "meter"
 ProjectionParameters: [1×1 map.crs.ProjectionParameters]

 Creating Map Displays with Data in Projected Coordinate Reference System

4-117

Example 4: Display Vector and Raster Data in Projected Coordinate Reference System

The vector and raster data in this example are in the same projected coordinate reference system.
However, the vector data is in length units of meter, while the raster data is in length unit of survey
foot. Convert the raster data to length units of meter and display the data on the same axes.

Convert the coordinates of the raster image from units of US survey foot to meter.

R.XWorldLimits = R.XWorldLimits * unitsratio('m','sf');
R.YWorldLimits = R.YWorldLimits * unitsratio('m','sf');

Display the raster image and vector data using mapshow.

figure
mapshow(boston,R)
mapshow(roads)
title('Boston and Roads')

Example 5: Display Data in both Geographic and Projected Coordinate Reference Systems

You may have geographic data whose coordinates are in latitude and longitude and other data whose
coordinates are in a projected coordinate reference system. You can display these data sets in the
same map display. This example illustrates how to display data in a geographic coordinate reference
system (latitude and longitude) with data in a projected map coordinate reference system
(Massachusetts State Plane Mainland Zone coordinate system).

Read a raster image with a worldfile whose coordinates are in latitude and longitude. Use imread to
read the image and worldfileread to read the worldfile and construct a spatial referencing object.

4 Creating and Viewing Maps

4-118

filename = 'boston_ovr.jpg';
overview = imread(filename);
overviewR = worldfileread(getworldfilename(filename), 'geographic', size(overview));

To display the overview image and the GeoTIFF image in the same map display, you need to create a
map display using a Mapping Toolbox™ projection structure containing the projection information for
the data in the projected coordinate reference system, Massachusetts State Plane Mainland Zone
coordinate system. To make a map display in this system, you can use the projection information
contained in the GeoTIFF file. Use the geotiff2mstruct function to construct a Mapping Toolbox™
projection structure, from the contents of the GeoTIFF information structure. The geotiff2mstruct
function returns a projection in units of meters. Use the projection structure to define the projection
parameters for the map display.

mstruct = geotiff2mstruct(info);

Use the latitude and longitude limits of the Boston overview image.

latlim = overviewR.LatitudeLimits;
lonlim = overviewR.LongitudeLimits;

Create a map display by using the projection information stored in the map projection structure and
set the map latitude and longitude limits. Display the geographic data in the map axes. geoshow
projects the latitude and longitude coordinates.

figure('Renderer', 'opengl')
ax = axesm(mstruct, 'Grid', 'on',...
 'GColor', [.9 .9 .9], ...
 'MapLatlimit', latlim, 'MapLonLimit', lonlim, ...
 'ParallelLabel', 'on', 'PLabelLocation', .025, 'PlabelMeridian', 'west', ...
 'MeridianLabel', 'on', 'MlabelLocation', .05, 'MLabelParallel', 'south', ...
 'MLabelRound', -2, 'PLabelRound', -2, ...
 'PLineVisible', 'on', 'PLineLocation', .025, ...
 'MLineVisible', 'on', 'MlineLocation', .05);
geoshow(overview, overviewR)
axis off
tightmap
title({'Boston and Surrounding Region', 'Geographic Coordinates'})

 Creating Map Displays with Data in Projected Coordinate Reference System

4-119

Since the coordinates of the GeoTIFF image are in a projected coordinate reference system, use
mapshow to overlay the more detailed Boston image onto the display. Plot the boundaries of the
Boston image in red.

mapshow(boston, R)
plot(R.XWorldLimits([1 1 2 2 1]), R.YWorldLimits([1 2 2 1 1]), 'Color', 'red')
title({'Boston and Surrounding Region', 'Geographic and Projected Coordinates'})

4 Creating and Viewing Maps

4-120

Zoom to the geographic region of the GeoTIFF image by setting the axes limits to the limits of the
Boston image and add a small buffer. Note that the buffer size (delta) is expressed in meters.

delta = 1000;
xLimits = R.XWorldLimits + [-delta delta];
yLimits = R.YWorldLimits + [-delta delta];
xlim(ax,xLimits)
ylim(ax,yLimits)
setm(ax, 'Grid', 'off');

 Creating Map Displays with Data in Projected Coordinate Reference System

4-121

You can overlay the road vectors onto the map display. Use a symbol specification to give each class
of road its own color.

roadColors = makesymbolspec('Line',...
 {'CLASS', 2, 'Color', 'k'}, ...
 {'CLASS', 3, 'Color', 'g'},...
 {'CLASS', 4, 'Color', 'magenta'}, ...
 {'CLASS', 5, 'Color', 'cyan'}, ...
 {'CLASS', 6, 'Color', 'b'},...
 {'Default', 'Color', 'k'});
mapshow(roads, 'SymbolSpec', roadColors)
title({'Boston and Surrounding Region','Including Boston Roads'})

4 Creating and Viewing Maps

4-122

You can also overlay data from a GPS stored in a GPX file. Import point geographic vector data from
the boston_placenames.gpx file included with the Mapping Toolbox™ software. The file contains
latitude and longitude coordinates of geographic point features in part of Boston, Massachusetts,
USA. Use gpxread to read the GPX file and return a geopoint vector.

placenames = gpxread('boston_placenames')

placenames =
 13×1 geopoint vector with properties:

 Collection properties:
 Geometry: 'point'
 Metadata: [1×1 struct]
 Feature properties:
 Latitude: [42.3501 42.3515 42.3598 42.3584 42.3529 42.3626 42.3668 42.3668 42.3668 42.3557 42.3557 42.3562 42.3459]
 Longitude: [-71.0870 -71.0926 -71.0662 -71.0598 -71.0662 -71.0789 -71.0995 -71.0564 -71.0801 -71.0662 -71.0495 -71.0662 -71.0564]
 Name: {''BACK BAY'' 'BACK BAY FENS' 'BEACON HILL' 'BOSTON' 'BOSTON NECK' 'BROAD CANAL' 'CAMBRIDGE' 'COPPS HILL' ''EAST CAMBRIDGE'' 'FLAGSTAFF HILL' 'FORT POINT CHANNEL' 'FROG POND' 'SOUTH BAY'}
 Description: {'PPL-SUBDVSN' 'MARSH' 'HILL' 'PPL' 'PENINSULA' 'CANAL' 'PPL' 'HILL' 'PPL-SUBDVSN' 'HILL' 'CHANNEL' 'LAKE' 'INLET'}

Overlay the placenames onto the map and increase the marker size, change the markers to circles
and set their edge and face colors to yellow.

geoshow(placenames, 'Marker','o', 'MarkerSize', 6, ...
 'MarkerEdgeColor', 'y', 'MarkerFaceColor','y')
title({'Boston and Surrounding Region','Including Boston Roads and Placenames'})

 Creating Map Displays with Data in Projected Coordinate Reference System

4-123

Data Set Information

The files boston.tif and boston_ovr.jpg include materials copyrighted by GeoEye, all rights
reserved. GeoEye was merged into the DigitalGlobe corporation on January 29th, 2013. For more
information about the data sets, use the commands type boston.txt and type boston_ovr.txt.

The files boston_roads.shp and boston_placenames.gpx are from the Bureau of Geographic
Information (MassGIS), Commonwealth of Massachusetts, Executive Office of Technology and
Security Services. For more information about the data sets, use the commands type
boston_roads.txt and type boston_placenames_gpx.txt.

4 Creating and Viewing Maps

4-124

Pick Locations Interactively
You can use Mapping Toolbox functions and GUIs to interact with maps, both in mapview and in
figures created with axesm. This section describes two useful graphic input functions, inputm and
gcpmap. The inputm function (analogous to the MATLAB ginput function) allows you to get the
latitude-longitude position of a mouse click. The gcpmap function (analogous to the MATLAB function
get(gca,'CurrentPoint')) returns the current mouse position, also in latitude and longitude.

Explore inputm with the following commands, which display a map axes with its grid and then
request three mouse clicks, the locations of which are stored as geographic coordinates in the
variable points. Then the plotm function plots the points you clicked as red markers. The display
you see depends on the points you select:

axesm sinusoid
framem on; gridm on
points=inputm(3)

points =
 -41.7177 -145.0293
 7.9211 -0.5332
 38.5492 149.2237

plotm(points,'r*')

Note If you click outside the map frame, inputm returns a valid but incorrect latitude and longitude,
even though the point you indicated is off the map.

One reason you might want to manually identify points on a map is to interactively explore how much
distortion a map projection has at given locations. For example, you can feed the data acquired with
inputm to the distortcalc function, which computes area and angular distortions at any location
on a displayed map axes. If you do so using the points variable, the results of the previous three
mouse clicks are as follows:

[areascale,angledef] = distortcalc(points(1,1),points(1,2))

areascale =
 1.0000
angledef =
 85.9284

[areascale,angledef] = distortcalc(points(2,1),points(2,2))

 Pick Locations Interactively

4-125

areascale =
 1.0000
angledef =
 3.1143

[areascale,angledef] = distortcalc(points(3,1),points(3,2))

areascale =
 1.0000
angledef =
 76.0623

This indicates that the current projection (sinusoidal) has the equal-area property, but exhibits
variable angular distortion across the map, less near the equator and more near the poles.

See Also
gcpmap | inputm

Related Examples
• “Create an Interactive Map for Selecting Point Features” on page 4-127

4 Creating and Viewing Maps

4-126

Create an Interactive Map for Selecting Point Features
This example shows how to construct a map of major world cities enhanced with coastlines and
terrain. It uses the modified azimuthal Briesemeister map projection. The example includes some
optional code that allows a user to interactively pick a location and get the name and location of the
nearest city. To see this part of the example, you must run the complete example, pop-out the last
illustration into a separate MATLAB figure, and then run the optional code at the MATLAB command
line.

Step 1: Set up a Map Axes Object and Render a Global Elevation Grid

Create a map axes object.

figure
axesm bries
text(2.8,-1.8,'Briesemeister projection','HorizontalAlignment','right')
framem('FLineWidth',1)

Load elevation raster data and a geographic cells reference object. Display the data on the map.

load topo60c
geoshow(topo60c,topo60cR,'DisplayType','texturemap')

 Create an Interactive Map for Selecting Point Features

4-127

Step 2: Improve the Terrain Display

Apply a colormap appropriate for elevation data. Make the display brighter.

demcmap(topo60c)
brighten(0.5)

4 Creating and Viewing Maps

4-128

Step 3: Add Simplified Coastlines

Load global coastline coordinates. Generalize the coastlines to 0.25-degree tolerance. Then, plot the
coastlines in brown.

load coastlines
[rlat,rlon] = reducem(coastlat,coastlon,0.25);
geoshow(rlat,rlon,'Color',[.6 .5 .2],'LineWidth',1.5)

 Create an Interactive Map for Selecting Point Features

4-129

Step 4: Plot City Locations with Red Point Markers

Read a shapefile containing names of cities worldwide and their coordinates in latitude and longitude.

cities = shaperead('worldcities','UseGeoCoords',true);

Extract the point latitudes and longitudes with extractfield, and add them to the map.

lats = extractfield(cities,'Lat');
lons = extractfield(cities,'Lon');
geoshow(lats, lons,...
 'DisplayType', 'point',...
 'Marker', 'o',...
 'MarkerEdgeColor', 'r',...
 'MarkerFaceColor', 'r',...
 'MarkerSize', 3)
text(-2.8,-1.8,'Major World Cities')

4 Creating and Viewing Maps

4-130

Step 5: Select Cities Interactively (Optional)

Now, using the map you've created, you can set up a simple loop to prompt for clicks on the map and
display the name and coordinates of the nearest city. You must pop the last map you created in Step 4
into a separate MATLAB figure window, using the button that appears at the top of the map. Also, in
the following code, set runCitySelectionLoop to true, and execute the code at the command line.

The code first displays text instructions at the upper left of the map. Then, it enters a loop in which it
captures selected latitudes and longitudes with inputm. Use distance to calculate the great circle
distance between each selected point and every city in the database. Determine index of the closest
city, change the appearance of its marker symbol, and display the city's name and latitude/longitude
coordinates.

runCitySelectionLoop = false; % Set to true to run optional city selection loop

if(runCitySelectionLoop)
 h1 = text(-2.8, 1.9, 'Click on a dot for its city name. Press ENTER to stop');
 h2 = text(-2.8, 1.7, '');
 h3 = text(-2.8, 1.5, 'City Coordinates.');
 while true
 [selected_lat,selected_lon] = inputm(1);
 if isempty(selected_lat)
 break % User typed ENTER
 end
 d = distance(lats, lons, selected_lat, selected_lon);
 k = find(d == min(d(:)),1);
 city = cities(k);

 Create an Interactive Map for Selecting Point Features

4-131

 geoshow(city.Lat, city.Lon, ...
 'DisplayType', 'point', ...
 'Marker', 'o', ...
 'MarkerEdgeColor', 'k', ...
 'MarkerFaceColor', 'y', ...
 'MarkerSize', 3)
 h2.String = city.Name;
 h3.String = num2str([city.Lat, city.Lon],'%10.2f');
 end
 disp('End of input.')
end

See Also
demcmap | geoshow | inputm | shaperead

4 Creating and Viewing Maps

4-132

Create Small Circle and Track Annotations on Maps
Interactively

You can generate geographic line annotations, such as navigational tracks and small circles,
interactively. Great circle tracks are the shortest distance between points that, when closed, partition
the Earth into equal halves. A small circle is the locus of points at a constant distance from a
reference point. Use trackg and scircleg to create them by clicking on the map. Double-click the
tracks or circles to modify the lines. Shift+click the tracks to type specific parameters into a control
panel. The control panels also allow you to retrieve or set properties of tracks and circles (for
instance, great circle distances and small circle radii).

Set up an orthographic view centered over the Pacific Ocean. Use the coastlines MAT-file.

axesm('ortho','origin',[30 180])
framem;
gridm
load coastlines
plotm(coastlat,coastlon,'k')

Create a track with the trackg function, which prompts for two endpoints. The default track type is
a great circle. Create a great circle track from Los Angeles, California, to Tokyo, Japan, and a 1000
km radius small circle centered on the Hawaiian Islands.

trackg
Track1: Click on starting and ending points

Now create a small circle around Hawaii with the scircleg function, which prompts for a center
point and a point on the perimeter. Make the circle's radius about 2000 km, but don't worry about
getting the size exact.

scircleg
Circle 1: Click on center and perimeter

The map should look approximately like this.

 Create Small Circle and Track Annotations on Maps Interactively

4-133

To adjust the size of the small circle to be 2000 km, Shift+click anywhere on its perimeter. The
Small Circles dialog box appears.

Type 2000 into the Radius field.

Click Close. The small circle adjusts to be 2000 km around Hawaii.

To adjust the track between Los Angeles and Tokyo, Shift+click on it. This brings up the Track
dialog, with which you specify a position and initial azimuth for either endpoint, as well as the length
and type of the track.

Change the track type from Great Circle to Rhumb Line with the Track pop-up menu. The track
immediately changes shape.

Experiment with the other Track dialog controls. Also note that you can move the endpoints of the
track with the mouse by dragging the red circles, and obtain the arc's length in various units of
distance.

The following figure shows the Small Circles and Track dialog boxes.

4 Creating and Viewing Maps

4-134

Interactively Display Text Annotations on a Map
Interactively place text annotations on a map using the gtextm function. Call the function by
specifying text and optional properties as arguments. Then, choose a location for the text by clicking
on the map.

gtextm('Hawaii','color','r')
gtextm('Tokyo')
gtextm('Los Angeles')

After you place text, you can move it interactively using the selection tool in the map figure window.

To display text on a map by specifying numerical arguments, use the textm function. For more
information, see “Use Geographic and Nongeographic Objects in Map Axes” on page 4-72.

 Interactively Display Text Annotations on a Map

4-135

Work with Objects by Name
You can manipulate displayed map objects by name. Many Mapping Toolbox functions assign
descriptive names to the Tag property of the objects they create. The namem and related functions
allow you to control the display of groups of similarly named objects, determine the names and
change them if desired, and use the name in the set and get functions. There is also a Mapping
Toolbox graphical user interface, mobjects, to help you manage the display and control of objects.

Some mapping display functions like framem, gridm, and contourm assign object tags by default.
You can also set the name upon display by assigning a value to the Tag property in mapping display
functions that use property name/property value pairs. If the Tag does not contain a value, the name
defaults to an object's Type property, such as 'line' or 'text'.

Manipulate Displayed Map Objects By Name
This example shows how to manipulate displayed map objects by name. Many functions assign
descriptive names to the Tag property of the objects they create. The namem and related functions
allow you to control the display of groups of similarly named objects, determine the names and
change them, if desired, and use the name in calls to get and set .

Display a vector map of the world.

f = axesm('fournier')

f =
 Axes with properties:

 XLim: [0 1]
 YLim: [0 1]
 XScale: 'linear'
 YScale: 'linear'
 GridLineStyle: '-'
 Position: [0.1300 0.1100 0.7750 0.8150]
 Units: 'normalized'

 Show all properties

framem on;
gridm on;
plabel on;
mlabel('MLabelParallel',0)
load coastlines
plotm(coastlat,coastlon,'k','Tag','Coastline')

4 Creating and Viewing Maps

4-136

List the names of the objects in the current axes using namem .

namem

ans = 6x9 char array
 'PLabel '
 'MLabel '
 'Parallel '
 'Meridian '
 'Coastline'
 'Frame '

Use handlem to get handles to graphic objects in the map. You use these handles to get or set object
properties. For example, to change the line width of the coastline with set . If you call handlem with
no arguments, it opens a graphical user interface that lists all the map axes objects. You can select
objects interactively.

set(handlem('Coastline'),'LineWidth',2)

 Work with Objects by Name

4-137

Change the colors of the meridian and parallel labels separately.

set(handlem('Mlabel'),'Color',[.5 .2 0])
set(handlem('Plabel'),'Color',[.2 .5 0])

4 Creating and Viewing Maps

4-138

Change the color of the labels to be the same.

setm(f,'fontcolor', [.4 .5 .6])

 Work with Objects by Name

4-139

Use handlem specifying the 'all' modifier to get a list of all text objects or all line objects.

t = handlem('alltext')

t =
 26x1 Text array:

 Text (PLabel)
 Text (PLabel)
 Text (PLabel)
 Text (PLabel)
 Text (PLabel)
 Text (PLabel)
 Text (PLabel)
 Text (PLabel)
 Text (PLabel)
 Text (PLabel)
 Text (PLabel)
 Text (PLabel)
 Text (PLabel)
 Text (MLabel)
 Text (MLabel)
 Text (MLabel)
 Text (MLabel)
 Text (MLabel)
 Text (MLabel)
 Text (MLabel)
 Text (MLabel)

4 Creating and Viewing Maps

4-140

 Text (MLabel)
 Text (MLabel)
 Text (MLabel)
 Text (MLabel)
 Text (MLabel)

l = handlem('allline')

l =
 3x1 Line array:

 Line (Parallel)
 Line (Meridian)
 Line (Coastline)

 Work with Objects by Name

4-141

Making Three-Dimensional Maps

• “Sources of Terrain Data” on page 5-2
• “Determine and Visualize Visibility Across Terrain” on page 5-3
• “Light a Terrain Map of a Region” on page 5-5
• “Surface Relief Shading” on page 5-8
• “Colored Surface Shaded Relief” on page 5-13
• “Relief Mapping with Light Objects” on page 5-17
• “Drape Data on Elevation Maps” on page 5-24
• “Drape Geoid Heights Over Topography” on page 5-25
• “Combine Dissimilar Grids by Converting Regular Grid to Geolocated Data Grid” on page 5-30
• “Drape Geolocated Grid on Regular Data Grid via Texture Mapping” on page 5-36
• “The Globe Display Compared with the Orthographic Projection” on page 5-39
• “Access Basemaps and Terrain for Geographic Globe” on page 5-45
• “Create Interactive Basemap Picker” on page 5-47
• “Visualize Aircraft Line-of-Sight Over Terrain” on page 5-49
• “Visualize UAV Flight Path on 2-D and 3-D Maps” on page 5-58

5

Sources of Terrain Data
Nearly all published terrain elevation data is in the form of data grids. “Types of Data Grids and
Raster Display Functions” on page 4-98 described basic approaches to rendering surface data grids
with Mapping Toolbox functions, including viewing surfaces in 3-D axes. The following sections
describe some common data formats for terrain data, and how to access and prepare data sets for
particular areas of interest.

Digital Terrain Elevation Data from NGA
The Digital Terrain Elevation Data (DTED) Model is a series of gridded elevation models with global
coverage at resolutions of 1 kilometer or finer. DTED files are products of the U. S. National
Geospatial Intelligence Agency (NGA), formerly the National Imagery and Mapping Agency (NIMA),
and before that, the Defense Mapping Agency (DMA). The data is provided as 1-by-1 degree tiles of
elevations on geographic grids with product-dependent grid spacing. In addition to NGA's own DTED
files, terrain data from Shuttle Radar Topography Mission (SRTM), a cooperative project between
NASA and NGA, are also available in DTED format, levels 1 and 2 (see below).

The lowest resolution data is the DTED Level 0, with a grid spacing of 30 arc-seconds, or about 1
kilometer. The DTED files are binary. The files have file names with the extension dtN, where N is the
level of the DTED product. You can find published specifications for DTED at the NGA website.

NGA also provides higher resolution terrain data files. DTED Level 1 has a resolution of 3 arc-
seconds, or about 100 meters, increasing to 18 arc-seconds near the poles. It was the primary source
for the USGS 1:250,000 (1 degree) DEMs. Level 2 DTED files have a minimum resolution of 1 arc-
second near the equator, increasing to 6 arc-seconds near the poles. DTED files are available on from
several sources on CD-ROM, DVD, and on the Internet.

Note For information on locating map data for download over the Internet, see the following
documentation at the MathWorks website: “Find Geospatial Data Online” on page 2-73.

Digital Elevation Model Files from USGS
The United States Geological Survey (USGS) has prepared terrain data grids for the U.S. suitable for
use at scales between 1:24,000 and 1:250,000 and beyond. Some of this data originated from Defense
Mapping Agency DTED files. Specifications and data quality information are available for these
digital elevation models (DEMs) and other U.S. National Mapping Program geodata from the USGS.
USGS no longer directly distributes 1:24,000 DEMs and other large-scale geodata. U.S. DEM files in
SDTS format are available from private vendors, either for a fee or at no charge, depending on the
data sets involved.

The largest scale USGS DEMs are partitioned to match the USGS 1:24,000 scale map series. The grid
spacing for these elevations models is 30 meters on a Universal Transverse Mercator grid. Each file
covers a 7.5-minute quadrangle. (Note, however, that only a subset of paper quadrangle maps are
projected with UTM, and that USGS vector geodata products might not use this coordinate system.)
The map and data series is available for much of the conterminous United States, Hawaii, and Puerto
Rico.

5 Making Three-Dimensional Maps

5-2

Determine and Visualize Visibility Across Terrain
You can use regular data grids of elevation data to answer questions about the mutual visibility of
locations on a surface (intervisibility). For example,

• Is the line of sight from one point to another obscured by terrain?
• What area can be seen from a location?
• What area can see a given location?

The first question can be answered with the los2 function. In its simplest form, los2 determines the
visibility between two points on the surface of a digital elevation map. You can also specify the
altitudes of the observer and target points, as well as the datum with respect to which the altitudes
are measured. For specialized applications, you can even control the actual and effective radius of the
Earth. This allows you to assume, for example, that the Earth has a radius 1/3 larger than its actual
value, a setting which is frequently used in modeling radio wave propagation.

Compute Line of Sight
The following example shows a line-of-sight calculation between two points on a regular data grid
generated by the peaks function. The calculation is performed by the los2 function, which returns a
logical result: 1 (points are mutually visible—intervisible), or 0 (points are not intervisible).

1 Create an elevation grid using peaks with a maximum elevation of 500, and set its origin at (0°N,
0°W), with a spacing of 1000 cells per degree):

map = 500*peaks(100);
maplegend = [1000 0 0];

2 Define two locations on this grid to test intervisibility:

lat1 = -0.027;
lon1 = 0.05;
lat2 = -0.093;
lon2 = 0.042;

3 Calculate intervisibility. The final argument specifies the altitude (in meters) above the surface of
the first location (lat1, lon1) where the observer is located (the viewpoint):

los2(map,maplegend,lat1,lon1,lat2,lon2,100)
ans =

 1

 Determine and Visualize Visibility Across Terrain

5-3

The los2 function produces a profile diagram in a figure window showing visibility at each grid cell
along the line of sight that can be used to interpret the Boolean result. In this example, the diagram
shows that the line between the two locations just barely clears an intervening peak.

You can also compute the viewshed, a name derived from watershed, which indicates the elements of
a terrain elevation grid that are visible from a particular location. The viewshed function checks for
a line of sight between a fixed observer and each element in the grid. See the viewshed function
reference page for an example.

5 Making Three-Dimensional Maps

5-4

Light a Terrain Map of a Region
Light a terrain map of a region around South Boulder Peak in Colorado.

First, import elevation data and a geographic postings reference object. To plot the data using
geoshow, the raster data must be of type double or single. Therefore, specify the data type for the
raster using the 'OutputType' name-value pair.

[Z,R] = readgeoraster('n39_w106_3arc_v2.dt1','OutputType','double');

Then, display the data as a surface. Apply a colormap appropriate for terrain data using the demcmap
function.

usamap(R.LatitudeLimits,R.LongitudeLimits);
geoshow(Z,R,'DisplayType','surface')
demcmap(Z)

Set the vertical exaggeration using the daspectm function. Then, specify a light source in the top left
corner of the map. Find the coordinates of the top left corner by querying the LatitudeLimits and
LongitudeLimits properties of the reference object.

daspectm('m',20)
cornerlat = R.LatitudeLimits(2);
cornerlon = R.LongitudeLimits(1);
lightm(cornerlat,cornerlon)

 Light a Terrain Map of a Region

5-5

Restore the luminance of the map by specifying the ambient, diffuse, and specular light strength.

ambient = 0.7;
diffuse = 1;
specular = 0.6;
material([ambient diffuse specular])

5 Making Three-Dimensional Maps

5-6

The DTED file used in this example is courtesy of the US Geological Survey.

See Also
daspectm | lightm

More About
• “Lighting Overview”

 Light a Terrain Map of a Region

5-7

Surface Relief Shading
You can make dimensional monochrome shaded-relief maps with the function surflm, which is
analogous to the MATLAB surfl function. The effect of surflm is similar to using lights, but the
function models illumination itself (with one “light source” that you specify when you invoke it, but
cannot reposition) by weighting surface normals rather than using light objects.

Shaded relief maps of this type are usually portrayed two-dimensionally rather than as perspective
displays. The surflm function works with any projection except globe.

The surflm function accepts geolocated data grids only. Recall, however, that regular data grids are
a subset of geolocated data grids, to which they can be converted using the geographicGrid
function. The following example illustrates this procedure.

Create Monochrome Shaded Relief Map
Simulate a single light source in a figure using surflm. First, load elevation data and a geographic
cells reference object for the Korean peninsula. Import coastline vector data using shaperead.
Create a map with appropriate latitude and longitude limits using worldmap.

load korea5c
latlim = korea5cR.LatitudeLimits;
lonlim = korea5cR.LongitudeLimits;
coastline = shaperead('landareas',...
 'UseGeoCoords', true,...
 'BoundingBox', [lonlim' latlim']);

worldmap(latlim,lonlim)

Display the coastline data using geoshow.

geoshow(coastline,'FaceColor','none')

5 Making Three-Dimensional Maps

5-8

Transform the regular data grid to a geolocated data grid using the geographicGrid function.
Then, generate a shaded relief map using surflm. By default, the lighting direction is 45º
counterclockwise from the viewing direction. Therefore, the light source is in the southeast. Change
the colormap to the monochromatic colormap 'copper'.

[klat,klon] = geographicGrid(korea5cR);
s = surflm(klat,klon,korea5c);
colormap('copper')

 Surface Relief Shading

5-9

Clear the map. Then, display the shaded relief map with a different light source by specifying the
azimuth as 135º and the elevation as 60º. The surface lightens and has a new character because it is
lit closer to overhead and from a different direction.

clmo(s)
s = surflm(klat,klon,korea5c,[135 60]);

5 Making Three-Dimensional Maps

5-10

Shift the light to the northwest by specifying the azimuth as -135º. Lower the light to 40º above the
horizon. A lower light source decreases the overall reflectance of the surface when viewed from
above. Therefore, specify a 1-by-4 vector of reflectance constants that describe the relative
contributions of ambient light, diffuse reflection, specular reflection, and the specular shine
coefficient.

clmo(s);
ht = surflm(klat,klon,korea5c,[-135 30],[0.65 0.4 0.3 10]);

 Surface Relief Shading

5-11

The mountain ridges that run from northeast to southwest are approximately perpendicular to the
light source. Therefore, these parameters demonstrate appropriate lighting for the terrain.

The monochromatic coloration in this example does not differentiate land from water. For an example
that differentiates land from water, see “Colored Surface Shaded Relief” on page 5-13.

5 Making Three-Dimensional Maps

5-12

Colored Surface Shaded Relief
The functions meshlsrm and surflsrm display maps as shaded relief with surface coloring as well
as light source shading. You can think of them as extensions to surflm that combine surface coloring
and surface light shading. Use meshlsrm to display regular data grids and surflsrm to render
geolocated data grids.

These two functions construct a new colormap and associated CData matrix that uses grayscales to
lighten or darken a matrix component based on its calculated surface normal to a light source. While
there are no analogous MATLAB display functions that work like this, you can obtain similar results
using MATLAB light objects, as “Relief Mapping with Light Objects” on page 5-17 explains.

For further information, see the reference pages for surflsrm, meshlsrm, daspectm, and view.

Create Colored Shaded Relief Map
Display surface illumination over colored elevation data using surflsrm. First, load elevation data
and a geographic cells reference object for the Korean peninsula. Georeference the regular data grid
using geographicGrid.

load korea5c
[klat,klon] = geographicGrid(korea5cR);

Create a colormap appropriate for elevation data. Plot the colored shaded relief map by specifying a
light source with an azimuth of -130º and an altitude of 50º. The surflsrm function transforms the
colormap to shade relief according to the light source. Eliminate white space around the map using
tightmap.

[cmap,clim] = demcmap(korea5c);
axesm('miller','MapLatLimit',[30 45],'MapLonLimit',[115 135])
surflsrm(klat,klon,korea5c,[-130 50],cmap,clim)
tightmap

 Colored Surface Shaded Relief

5-13

You can achieve the same effect using meshlsrm, which operates on regular data grids.

The surface has more contrast than if it were not shaded. Lighten the surface uniformly by 25%.

brighten(0.25)

5 Making Three-Dimensional Maps

5-14

Display an oblique view of the surface. Hide the bounding box by setting the Box property,
exaggerate terrain relief by a factor of 50 using daspectm, and set the view to an azimuth of -30º and
an altitude of 30º.

set(gca,'Box','off')
daspectm('meters',50)
view(-30,30)

 Colored Surface Shaded Relief

5-15

You can continue rotating the perspective using view or the Rotate 3D tool in the figure window. You
can continue changing the vertical exaggeration using daspectm. To change the built-in lighting
direction, you must generate a new view using surflsrm.

5 Making Three-Dimensional Maps

5-16

Relief Mapping with Light Objects
This example shows how to create a light object to mimic the map produced in “Colored Surface
Shaded Relief” on page 5-13, which uses shaded relief computations rather than light objects.

The meshlsrm and surflsrm functions simulate lighting by modifying the colormap with bands of
light and dark. The map matrix is then converted to indices for the new "shaded" colormap based on
calculated surface normals. Using light objects allows for a wide range of lighting effects. The toolbox
manages light objects with the lightm function, which depends upon the MATLAB light function.
Lights are separate MATLAB graphic objects.

For more information, consult the reference pages for lightm, daspectm, material, lighting,
and view, along with “Lighting, Transparency, and Shading”.

Illuminate Color 3-D Relief Maps with Light Objects
Add a light source to a surface colored data grid using lightm. First, load elevation data and a
geographic cells reference object for the Korean peninsula. Display the data without lighting effects
using meshm. Apply a colormap appropriate for elevation data using demcmap. Eliminate extra white
space around the map using tightmap.

load korea5c
axesm('miller','MapLatLimit',[30 45],'MapLonLimit',[115 135])
meshm(korea5c,korea5cR,size(korea5c),korea5c)
demcmap(korea5c)
tightmap

 Relief Mapping with Light Objects

5-17

Place a light source at the northwest corner of the grid, one degree high, using lightm. The lightm
function is similar to the MATLAB® function light, but accepts latitude and longitude inputs instead
of x, y, and z. Note that the figure becomes darker.

lightm(45,115,1)

Exaggerate the vertical dimension to make any relief viewable in perspective. Note that the figure
becomes darker still.

daspectm('meters',50)

5 Making Three-Dimensional Maps

5-18

Set the ambient (direct), diffuse (skylight), and specular (highlight) surface reflectivity
characteristics, respectively.

material([0.7 0.9 0.8])

 Relief Mapping with Light Objects

5-19

By default, the lighting is flat (plane facets). Change the light to use Gouraud shading (interpolated
normal vectors at facet corners).

lighting Gouraud

5 Making Three-Dimensional Maps

5-20

Remove the edges of the bounding box. Change the view by specifying an azimuth of -30º and an
altitude of 30º.

ax = gca;
ax.Box = 'off';
view(-30,30)

 Relief Mapping with Light Objects

5-21

If there is only one light in the current figure, you can remove it using clmo.

clmo(handlem('light'))

5 Making Three-Dimensional Maps

5-22

 Relief Mapping with Light Objects

5-23

Drape Data on Elevation Maps

Combine Elevation Maps with Other Kinds of Data
Lighting effects can provide important visual cues when elevation maps are combined with other
kinds of data. The shading resulting from lighting a surface makes it possible to "drape" satellite data
over a grid of elevations. It is common to use this kind of display to overlay georeferenced land cover
images from Earth satellites such as LANDSAT and SPOT on topography from digital elevation
models.

When the elevation and image data grids correspond pixel-for-pixel to the same geographic locations,
you can build up such displays using the optional altitude arguments in the surface display functions.
If they do not, you can interpolate one or both source grids to a common mesh.

Note The geoid can be described as the surface of the ocean in the absence of waves, tides, or land
obstructions. It is influenced by the gravitational attraction of denser or lighter materials in the
Earth's crust and interior and by the shape of the crust. A model of the geoid is required for
converting ellipsoidal heights (such as might be obtained from GPS measurements) to orthometric
heights. Geoid heights vary from a minimum of about 105 meters below sea level to a maximum of
about 85 meters above sea level.

Drape Data over Terrain with Different Gridding
If you want to combine elevation and attribute (color) data grids that cover the same region but are
gridded differently, you must resample one matrix to be consistent with the other. That is, you can
construct a geolocated grid version of the regular data grid values or construct a regular grid version
of the geolocated data grid values.

It helps if at least one of the grids is a geolocated data grid, because their explicit horizontal
coordinates allow them to be resampled using the geointerp function. To combine dissimilar grids,
you can do one of the following:

The following two examples illustrate these closely related approaches.

• “Combine Dissimilar Grids by Converting Regular Grid to Geolocated Data Grid” on page 5-30
• “Drape Geolocated Grid on Regular Data Grid via Texture Mapping” on page 5-36

5 Making Three-Dimensional Maps

5-24

Drape Geoid Heights Over Topography
Display geoid data draped over topographic relief. For this example, display the geoid data as a color
attribute instead of a 3-D surface.

Load topographic raster data and a geographic cells reference object. Get geoid heights by calling
the egm96geoid function and specifying the reference object.

load topo60c
[N,R] = egm96geoid(topo60cR);

Create a map axes object using a Gall stereographic cylindrical projection (a perspective projection).
Use meshm to plot a colored display of the geoid's variations, but specify topo60c as the final
argument, to give each geoid grid cell the height (z value) of the corresponding topographic grid cell.
Low geoid heights are shown as blue, high ones as yellow.

axesm gstereo;
meshm(N,R,size(N),topo60c)

For reference, plot the world coastlines in black, raise their elevation to 1000 meters (high enough to
clear the surface in their vicinity), and expand the map to fill the frame.

load coastlines
plotm(coastlat,coastlon,'k')
zdatam(handlem('allline'),1000)
tightmap

 Drape Geoid Heights Over Topography

5-25

Due to the vertical view and lack of lighting, the topographic relief is not visible, but it is part of the
figure's surface data. Bring it out by exaggerating relief greatly, and then setting a view from the
south-southeast.

daspectm('m',200); tightmap
view(20,35)

5 Making Three-Dimensional Maps

5-26

Remove the bounding box, shine a light on the surface (using the default position, offset to the right
of the viewpoint), and render again with Gouraud shading.

ax = gca;
ax.Box = 'off';
camlight;
lighting Gouraud

 Drape Geoid Heights Over Topography

5-27

Finally, set the perspective to converge slightly (the default perspective is orthographic). Notice that
the geoid mirrors the topography of the major mountain chains such as the Andes, the Himalayas,
and the Mid-Atlantic Ridge. You can also see that large areas of high or low geoid heights are not
simply a result of topography.

ax.Projection = 'perspective';

5 Making Three-Dimensional Maps

5-28

 Drape Geoid Heights Over Topography

5-29

Combine Dissimilar Grids by Converting Regular Grid to
Geolocated Data Grid

This example shows how to combine an elevation data grid and an attribute (color) data grid that
cover the same region but are gridded differently. The example drapes slope data from a regular data
grid on top of elevation data from a geolocated data grid. The example uses the geolocated data grid
as the source for surface elevations and transforms the regular data grid into slope values, which are
then sampled to conform to the geolocated data grid (creating a set of slope values for the diamond-
shaped grid) and color-coded for surface display. This approach works with any dissimilar grids,
although the two data sets in this example actually have the same origin (the geolocated grid derives
from the topo60c data set).

Load the geolocated data grid from the mapmtx file and the regular data grid from the topo60c file.
The mapmtx file actually contains two regions but this example only uses the diamond-shaped
portion, lt1, lg1, and map1, centered on the Middle East.

load mapmtx lt1 lg1 map1
load topo60c

Compute the surface aspect, slope, and gradients for topo60c. This example only uses the slopes in
subsequent steps.

[aspect,slope,gradN,gradE] = gradientm(topo60c,topo60cR);

Use the geointerp function to interpolate slope values to the geolocated grid specified by lt1 and
lg1 . The output is a 50-by-50 grid of elevations matching the coverage of the map1 variable.

slope1 = geointerp(slope,topo60cR,lt1,lg1);

Set up a figure with a Miller projection and use surfm to display the slope data. Specify the z -values
for the surface explicitly as the map1 data, which is terrain elevation. The map mainly depicts steep
cliffs, which represent mountains (the Himalayas in the northeast), and continental shelves and
trenches.

figure
axesm miller
surfm(lt1,lg1,slope1,map1)

5 Making Three-Dimensional Maps

5-30

The coloration depicts steepness of slope. Change the colormap to make the steepest slopes magenta,
the gentler slopes dark blue, and the flat areas light blue:

colormap cool

 Combine Dissimilar Grids by Converting Regular Grid to Geolocated Data Grid

5-31

Use view to get a southeast perspective of the surface from a low viewpoint. In 3-D, you immediately
see the topography as well as the slope.

view(20,30)
daspectm('meter',200)

5 Making Three-Dimensional Maps

5-32

The default rendering uses faceted shading (no smooth interpolation). Render the surface again, this
time making it shiny with Gouraud shading and lighting from the east (the default of camlight lights
surfaces from over the right shoulder of the viewer).

material shiny
camlight
lighting Gouraud

 Combine Dissimilar Grids by Converting Regular Grid to Geolocated Data Grid

5-33

Finally, remove white space and re-render the figure in perspective mode.

axis tight
ax = gca;
ax.Projection = 'perspective';

5 Making Three-Dimensional Maps

5-34

 Combine Dissimilar Grids by Converting Regular Grid to Geolocated Data Grid

5-35

Drape Geolocated Grid on Regular Data Grid via Texture
Mapping

This example shows how to create a new regular data grid that covers the region of the geolocated
data grid, then embed the color data values into the new matrix. The new matrix might need to have
somewhat lower resolution than the original, to ensure that every cell in the new map receives a
value. The example combines dissimilar data grids by creating a new regular data grid that covers
the region of the geolocated data grid's z-data. This approach has the advantage that more
computational functions are available for regular data grids than for geolocated ones. Color and
elevation grids do not have to be the same size. If the resolutions of the two data grids are different,
you can create the surface as a three-dimensional elevation map and later apply the colors as a
texture map. You do this by setting the surface CData property to contain the color matrix, and
setting the surface face color to 'texturemap'.

Load elevation raster data and a geographic cells reference object from topo60c.mat. Get individual
variables containing terrain data from mapmtx.mat.

load topo60c
load mapmtx lt1 lg1 map1

Identify the geographic limits of the geolocated grid that was loaded from mapmtx.

latlim(1) = 2*floor(min(lt1(:))/2);
lonlim(1) = 2*floor(min(lg1(:))/2);
latlim(2) = 2*ceil(max(lt1(:))/2);
lonlim(2) = 2*ceil(max(lg1(:))/2);

Crop the global elevation data to the rectangular region enclosing the smaller grid.

[topo1,topo1R] = geocrop(topo60c,topo60cR,latlim,lonlim);

Allocate a regular grid filled uniformly with -Inf, to receive texture data.

L1R = georefcells(latlim,lonlim,2,2);
L1 = zeros(L1R.RasterSize);
L1 = L1 - Inf;

Overwrite L1 using imbedm, converting it from a geolocated grid to a regular grid, in which the
values come from the discrete Laplacian of the elevation grid map1.

L1 = imbedm(lt1,lg1,del2(map1),L1,L1R);

Set up a map axes with the Miller projection and use meshm to display the cropped data. Render the
figure as a 3-D view from a 20 degree azimuth and 30 degree altitude, and exaggerate the vertical
dimension by a factor of 200. Both the surface relief and coloring represent topographic elevation.

figure
axesm miller
h = meshm(topo1,topo1R,size(topo1),topo1);
view(20,30)
daspectm('m',200)

5 Making Three-Dimensional Maps

5-36

Apply the L1 matrix as a texture map directly to the surface using the set function. The area not
covered by the [lt1,lg1,map1] geolocated data grid appears dark blue because the corresponding
elements of L1 were set to -Inf.

h.CData = L1;
h.FaceColor = 'texturemap';
material shiny
camlight
lighting gouraud
axis tight

 Drape Geolocated Grid on Regular Data Grid via Texture Mapping

5-37

5 Making Three-Dimensional Maps

5-38

The Globe Display Compared with the Orthographic Projection
This example illustrates the differences between the two-dimensional orthographic projection, which
looks spherical but is really flat, and the three-dimensional globe display. Use the Rotate 3D tool to
manipulate the display.

Render 2-D Orthographic Projection

Load elevation raster data and a geographic cells reference object. Display the data using a two-
dimensional orthographic map projection.

load topo60c
axesm ortho
framem
meshm(topo60c,topo60cR)
demcmap(topo60c)

View the map obliquely.

view(3)
daspectm('m',1)

 The Globe Display Compared with the Orthographic Projection

5-39

You can view the map in 3-D from any perspective, even from underneath. To visualize this, define a
geolocated data grid with the geographicGrid function, populate it with a constant z-value, and
render it as a stem plot with stem3m.

topo60cRg = topo60cR;
topo60cRg.RasterSize = [20 20];
[latgrat,longrat] = geographicGrid(topo60cRg);
stem3m(latgrat,longrat,500000*ones(size(latgrat)),'r')

5 Making Three-Dimensional Maps

5-40

Use the Rotate 3D tool on the figure window toolbar to change your viewpoint. No matter how you
position the view, you are looking at a disc with stems protruding perpendicularly.

Render 3-D Globe Display

Display the elevation data using a three-dimensional globe rather than an orthographic projection.

figure
axesm('globe','Geoid',earthRadius)
meshm(topo60c,topo60cR)
demcmap(topo60c)
view(3)

 The Globe Display Compared with the Orthographic Projection

5-41

Include the stem plot to visualize the difference in surface normals on a sphere.

stem3m(latgrat,longrat,500000*ones(size(latgrat)),'r')

5 Making Three-Dimensional Maps

5-42

You can apply lighting to the display, but its location is fixed, and does not move as the camera
position is shifted.

camlight('headlight','infinite')

 The Globe Display Compared with the Orthographic Projection

5-43

You can use the LabelRotation property when you use the orthographic or any other Mapping
Toolbox™ projection to align meridian and parallel labels with the graticule. Because the globe
display is not a true map projection and is handled differently internally, LabelRotation does not
work with it.

See Also
camlight | geographicGrid | stem3m | view

5 Making Three-Dimensional Maps

5-44

Access Basemaps and Terrain for Geographic Globe
Geographic globe objects created using the geoglobe function plot data over basemaps and terrain.
You can access different basemap and terrain choices in different ways.

MathWorks offers a selection of basemaps, including two-tone, color terrain, and high-zoom-level
displays. Six of the basemaps are tiled data sets created using Natural Earth. Five of the basemaps
are high-zoom-level maps provided by Esri. For more information about basemap options, see
geobasemap.

Use Installed Basemap
The 'darkwater' basemap is installed with MATLAB. The other basemaps are not installed with
MATLAB, but you can access them over an Internet connection.

Download Basemaps
To work offline or to improve map responsiveness, you can download the basemaps created using
Natural Earth onto your local system. The basemaps provided by Esri are not available for download.

Download basemaps using the Add-On Explorer.

1 On the MATLAB Home tab, in the Environment section, click Add-Ons > Get Add-Ons.
2 In the Add-On Explorer, scroll to the MathWorks Optional Features section, and click Show

All to find the basemap add-ons. You can also search for the basemap add-ons by name (listed in
the following table) or click Optional Features in Filter by Type.

3 Select the basemap add-ons that you want to download.

Basemap Name Basemap Data Package Name
'bluegreen' MATLAB Basemap Data - bluegreen
'grayland' MATLAB Basemap Data - grayland
'colorterrain' MATLAB Basemap Data - colorterrain
'grayterrain' MATLAB Basemap Data - grayterrain
'landcover' MATLAB Basemap Data - landcover

Add Custom Basemaps
Add custom basemaps using the addCustomBasemap function. An active Internet connection is
required to add and use custom basemaps.

Access Terrain
By default, the geographic globe uses terrain data hosted by MathWorks and derived from the
GMTED2010 model by the USGS and NGA. You need an active Internet connection to access this
terrain data, and you cannot download it.

To work offline or to improve terrain responsiveness, add custom terrain from DTED files using the
addCustomTerrain function. You do not need an active Internet connection to add or use custom
terrain.

 Access Basemaps and Terrain for Geographic Globe

5-45

Alternatively, you can set the Terrain property of the geographic globe object to 'none'.

Specify Basemaps and Terrain
To specify a basemap for a geographic globe, you can either:

• Use the geobasemap function. Specify the geographic globe as the first argument.

uif = uifigure;
g = geoglobe(uif);
geobasemap(g,'streets')

• Set the Basemap property of the GeographicGlobe object. You can set this property by using a
name-value pair or by using dot notation.

uif = uifigure;
g = geoglobe(uif,'Basemap','streets');
g.Basemap = 'topographic';

To specify terrain for the geographic globe, set the Terrain property of the GeographicGlobe
object. You can set this property by using a name-value pair or by using dot notation.

uif = uifigure;
g = geoglobe(uif,'Terrain','none');
g.Terrain = 'gmted2010';

See Also
addCustomBasemap | addCustomTerrain | geobasemap | geoglobe

More About
• “System Requirements for Graphics”
• “Resolving Low-Level Graphics Issues”

5 Making Three-Dimensional Maps

5-46

Create Interactive Basemap Picker
Interactively change the basemap of a geographic globe by adding a drop-down menu to the figure.

First, create a program file called basemapPicker.m. Within the program file:

• Create a geographic globe in a figure created using the uifigure function.
• Specify a position for the menu. In this example, the values of x, y, w, and h position the menu in

the upper-right corner of the figure window.
• Specify the basemaps to include in the menu.
• Create the menu. Use a ValueChangedFcn callback that executes when you make a selection

from the menu. The callback changes the basemap using the geobasemap function.
• Write custom code to reposition the menu when you change the size of the figure. To do this,

disable automatic resizing of the menu. Then, create custom behavior by defining a
SizeChangedFcn callback. The repositionDropdown function repositions the menu, so that it
stays in the upper-right corner of the figure.

function basemapPicker
 uif = uifigure;
 gl = geoglobe(uif);

 x = 0.8;
 y = 0.9;
 w = 0.2;
 h = 0.1;
 uifW = uif.Position(3);
 uifH = uif.Position(4);
 pos = [x*uifW y*uifH w*uifW h*uifH];

 basemaps = ["satellite" "streets" "streets-light" "streets-dark" ...
 "landcover" "darkwater" "grayland" "bluegreen" ...
 "grayterrain" "colorterrain"];

 dd = uidropdown(uif,'Position',pos,'Items',basemaps);
 dd.ValueChangedFcn = @(src,eventdata)geobasemap(gl,src.Value);

 uif.AutoResizeChildren = 'off';
 uif.SizeChangedFcn = @(src,eventdata)repositionDropdown(dd,x,y,w,h);
end

function repositionDropdown(dd,x,y,w,h)
 fig = dd.Parent;
 uifW = fig.Position(3);
 uifH = fig.Position(4);
 dd.Position = [x*uifW y*uifH w*uifW h*uifH];
end

Run the program file. Change the basemap to 'colorterrain' using the drop-down menu.

 Create Interactive Basemap Picker

5-47

See Also
geobasemap | geoglobe | uidropdown

More About
• “Callback Definition”

5 Making Three-Dimensional Maps

5-48

Visualize Aircraft Line-of-Sight Over Terrain
This example shows how to compute and visualize the line-of-sight visibility of an aircraft from a
ground location over terrain. First, import terrain data for a region and apply it to a 3-D geographic
globe. Then, perform point-to-point visibility analysis from a ground location to a simulated flight
path, and display the results on a 3-D geographic globe. Finally, perform point-to-area visibility
analysis from the ground location corresponding to aircraft flying at constant altitude, and display the
results on a 2-D geographic axes.

Use line-of-sight analysis for ground-to-air scenarios where unobstructed visibility is important, such
as for radar surveillance, communications, and UAV path planning. This example applies the analysis
to radar surveillance for an airport.

Import Terrain Data

Specify a DTED-format terrain file to use for data analysis and 3-D visualization. The terrain file was
downloaded from the "SRTM Void Filled" data set available from the United States Geological Survey
(USGS).

dtedfile = "n39_w106_3arc_v2.dt1";
attribution = "SRTM 3 arc-second resolution. Data available from the U.S. Geological Survey.";

Import DTED file data into the workspace as an array and a geographic raster reference object,
specifying the return type as double so that the data works with all analysis functions.

[Zterrain,Rterrain] = readgeoraster(dtedfile,"OutputType","double");

View the geographic limits and sample resolution of the terrain data by accessing properties of the
geographic raster reference object. The limits for the file correspond to the region around Boulder,
Colorado, US, and the resolution corresponds to the DTED level-1 format, which has sample
resolution of 3 arc seconds, or about 90 meters.

latlim = Rterrain.LatitudeLimits;
lonlim = Rterrain.LongitudeLimits;
latspc = Rterrain.SampleSpacingInLatitude;
lonspc = Rterrain.SampleSpacingInLongitude;
disp("Latitude limits of terrain: " + mat2str(latlim) + newline + ...
 "Longitude limits of terrain: " + mat2str(lonlim) + newline + ...
 "Terrain resolution in latitude: " + latspc*3600 + " arc seconds" + newline + ...
 "Terrain resolution in longitude: " + lonspc*3600 + " arc seconds")

Latitude limits of terrain: [39 40]
Longitude limits of terrain: [-106 -105]
Terrain resolution in latitude: 3 arc seconds
Terrain resolution in longitude: 3 arc seconds

Visualize Aircraft Trajectory Line-of-Sight on a 3-D Map

Create Geographic Globe with Custom Terrain

Add custom data with the DTED file for use with 3-D visualization.

addCustomTerrain("southboulder",dtedfile,"Attribution",attribution)

Specify the custom terrain with a new geographic globe. Preserve the custom terrain on the globe
when data is added by setting hold on.

 Visualize Aircraft Line-of-Sight Over Terrain

5-49

fig = uifigure;
g = geoglobe(fig,"Terrain","southboulder");
hold(g,"on")

View Radar Ground Location

Define a radar ground location at Rocky Mountain Metropolitan Airport. The radar is mounted on a
tower 10 meters above the ground. The radar altitude is the sum of the ground elevation and the
radar tower height, referenced to mean sea level.

rdrlat = 39.913756;
rdrlon = -105.118062;
rdrtowerht = 10;
rdralt = 1717 + rdrtowerht;

Plot the radar location on the geographic globe.

geoplot3(g,rdrlat,rdrlon,rdralt,"co", ...
 "LineWidth",6, ...
 "MarkerSize",1)

Simulate Aircraft Trajectory

Simulate the trajectory of an aircraft circling over the mountains.

Define the center location of a circling aircraft.

5 Making Three-Dimensional Maps

5-50

tlat0 = 39.80384;
tlon0 = -105.49916;
tht0 = 3000;

Define trajectory waypoints for the aircraft using east-north-up (ENU) Cartesian coordinates. Specify
a curve with a radius of 5 km (5000 m) and a vertical offset of 1 km (1000 m) over 1.5 revolutions.
Then, convert the ENU coordinates to geodetic coordinates that are referenced to the WGS84
ellipsoid.

azs = 1:540;
r = 5000;
[X,Y] = pol2cart(deg2rad(azs),r);
Z = linspace(0,1000,numel(azs));
wgs84 = wgs84Ellipsoid;
[tlat,tlon,tht] = enu2geodetic(X,Y,Z,tlat0,tlon0,tht0,wgs84);

View Aircraft Trajectory Over Terrain

Plot the aircraft trajectory on the geographic globe. The default view, or camera position, is overhead
and oriented down.

traj = geoplot3(g,tlat,tlon,tht,"y", ...
 "HeightReference","ellipsoid", ...
 "LineWidth",3);

View the 3-D terrain and radar location from a distance by changing the camera position and rotation
angles.

 Visualize Aircraft Line-of-Sight Over Terrain

5-51

campos(g,39.77114,-105.62662,6670)
camheading(g,70)
campitch(g,-12)

Compute Line-of-Sight Visibility with Aircraft Trajectory

Compute line-of-sight visibility with the los2 function and the DTED data.

The los2 function supports either orthometric height (height above mean sea level) or height above
ground level. Convert the aircraft trajectory heights from ellipsoidal height to orthometric height.
Then, compute the line-of-sight from the airport radar location to each aircraft trajectory waypoint
and convert the results to a logical array.

numwaypts = numel(tlat);
isvis = zeros(1,numwaypts);
talt = tht - egm96geoid(tlat,tlon);
for k = 1:numwaypts
 isvis(k) = los2(Zterrain,Rterrain,rdrlat,rdrlon,tlat(k),tlon(k),rdralt,talt(k),"MSL","MSL");
end
isvis = logical(isvis);

Note that los2 calculates line-of-sight visibility assuming the data is referenced to a spherical Earth,
whereas the data is actually referenced to the WGS84 ellipsoid, and as a result there may be minor
discrepancies. The line-of-sight calculation also corresponds to optical line-of-sight and does not
account for refraction through the atmosphere.

5 Making Three-Dimensional Maps

5-52

Visualize Line-of-Sight Visibility Over Terrain

Plot the line-of-sight visibility. Use green markers where the aircraft is visible from the airport and
magenta markers where it is not visible.

delete(traj)
geoplot3(g,tlat(isvis),tlon(isvis),tht(isvis),"og", ...
 "HeightReference","ellipsoid", ...
 "LineWidth",2, ...
 "MarkerSize",1)
geoplot3(g,tlat(~isvis),tlon(~isvis),tht(~isvis),"om", ...
 "HeightReference","ellipsoid", ...
 "LineWidth",2, ...
 "MarkerSize",1)

View the line-of-sight plot from the perspective of the airport. Get the geodetic coordinates of the
position that is 900 meters east, 200 meters north, and 100 meters up from the radar location. Then,
set the camera position and rotation angles. The green markers appear in view, but the magenta
markers are either completely or partially obstructed by terrain.

rdrht = rdralt + egm96geoid(rdrlat,rdrlon);
[camlat,camlon,camht] = enu2geodetic(900,200,100,rdrlat,rdrlon,rdrht,wgs84);
campos(g,camlat,camlon,camht)
camheading(g,-110)
campitch(g,0)

 Visualize Aircraft Line-of-Sight Over Terrain

5-53

Visualize Aircraft Line-of-Sight Visibility Contours on a 2-D Map

The previous sections performed point-to-point line-of-sight analysis and visualization from a radar
location to an aircraft trajectory. Now perform point-to-area line-of-sight analysis and visualization
from the same radar location over the terrain region. The visualization displays the edge of visibility
for an aircraft flying at constant altitude.

Plot Radar Location and Terrain Limits on a 2-D Map

Plot the radar location in a new figure with a topographic 2-D map.

figure
geoplot(rdrlat,rdrlon,"co", ...
 "LineWidth",6, ...
 "MarkerSize",3, ...
 "DisplayName","Radar location")
hold on
geobasemap topographic
gx = gca;
gx.InnerPosition = gx.OuterPosition;

Display the limits of the custom terrain as a rectangle on the map.

latmin = latlim(1);
latmax = latlim(2);

5 Making Three-Dimensional Maps

5-54

lonmin = lonlim(1);
lonmax = lonlim(2);
geoplot([latmin latmin latmax latmax latmin],[lonmin lonmax lonmax lonmin lonmin], ...
 "LineWidth",1, ...
 "Color","k", ...
 "DisplayName","Terrain limits")

Display a legend in the northwest corner.

legend("Location","northwest")

Plot Visibility Contours for Aircraft Flying at Constant Altitude

Specify three altitudes above mean sea level for the aircraft. For each altitude:

• Compute the viewshed using the radar location as the observer. The viewshed defines the area
that has line-of-sight visibility.

• Find the edge of aircraft visibility by computing contours from the viewshed data.
• Remove small contour segments.
• Plot the contours on the geographic axes.

tgtalts = [3000 4000 5000];

minVertices = 10;
cfig = figure("Visible","off"); % Suppress contour plot using invisible figure
cax = axes("Parent",cfig);

 Visualize Aircraft Line-of-Sight Over Terrain

5-55

for tgtalt = tgtalts
 vis = viewshed(Zterrain,Rterrain,rdrlat,rdrlon,rdralt,tgtalt,"MSL","MSL");

 C = contourm(vis,Rterrain,"LevelList",1,"Parent",cax);
 clat = C(2,:);
 clon = C(1,:);

 clats = [];
 clons = [];
 k = 1;
 while k < size(C,2)
 numVertices = clat(k);
 if numVertices > minVertices % Do not plot small segments
 clats = [clats clat(k+1:k+numVertices) NaN]; %#ok<AGROW>
 clons = [clons clon(k+1:k+numVertices) NaN]; %#ok<AGROW>
 end
 k = k + numVertices + 1;
 end

 geoplot(gx,clats,clons,"LineWidth",2, ...
 "DisplayName", "Aircraft: " + string(tgtalt) + " m");
end

The contours appear primarily to the west of the radar location over the mountains. The contours do
not appear in other directions because visibility is not constrained by the terrain in those directions
within the terrain data limits.

5 Making Three-Dimensional Maps

5-56

If the radar is constrained by line-of-sight visibility, then the contours correspond to radar coverage
regions for varying altitude, where the nearest contour to the radar corresponds to radar coverage
for an aircraft flying at 3000 meters and the furthest contour corresponds to radar coverage for an
aircraft flying at 5000 meters.

As with los2, the viewshed function calculates line-of-sight visibility assuming the data is
referenced to a spherical Earth, whereas the data is actually referenced to the WGS84 ellipsoid, and
as a result there may be minor discrepancies. The line-of-sight calculation also corresponds to optical
line-of-sight and does not account for refraction through the atmosphere.

Clean Up

Clean up by closing the geographic globe and removing the imported terrain data.

if isvalid(fig)
 close(fig)
end
removeCustomTerrain("southboulder")

See Also
Functions
addCustomTerrain | campos | geoglobe | geoplot3 | los2 | readgeoraster

Objects
GeographicPostingsReference

More About
• “Find Ellipsoidal Height from Orthometric Height” on page 3-55
• “Find Geospatial Raster Data” on page 2-76

 Visualize Aircraft Line-of-Sight Over Terrain

5-57

Visualize UAV Flight Path on 2-D and 3-D Maps
This example visualizes a simulated unmanned aerial vehicle (UAV) flight from the Mauna Loa
Baseline Observatory to the top of the Mauna Loa Volcano in Hawaii. First, display the track on
geographic axes and a geographic globe. Then, synchronize the view and visualize the flight path by
using camera navigation functions. Finally, view the top of the Mauna Loa volcano as a panorama.

Visualize Region of Interest in 2-D

The use of UAVs to track characteristics of changing topology, gasses, and ash clouds around
volcanos is becoming an important area of research for scientists [1]. A UAV can travel in regions that
are hazardous for a volcanologist. Simulating the flight path of the UAV prior to sending it out on a
mission can assist with understanding the topology and terrain. To gain an overview and 2-D
perspective of the region, view the locations of the Mauna Loa Baseline Observatory and the Mauna
Loa Volcano in a geographic axes.

Get Coordinates of Mauna Loa Baseline Observatory

Specify the coordinates of the Mauna Loa Baseline Observatory [2]. The height of the observatory is
in meters above mean sea level (MSL).

obslat = 19.5362;
obslon = -155.5763;
obsH = 3397.00;

Get Coordinates of Mauna Loa Volcano

Specify the coordinates of the top of Mauna Loa [3]. The height of the volcano is orthometric and is in
meters.

mllat = 19.475;
mllon = -155.608;
mlH = 4169;

View Mauna Loa Baseline Observatory and Mauna Loa Volcano in 2-D

For a 2-D perspective of the region, use geoaxes and geoplot to plot the location of the observatory
and the top of the volcano.

figure
geoaxes("Basemap","satellite","ZoomLevel",12);
hold("on")
geoplot(obslat,obslon,"ow","MarkerSize",10,"MarkerFaceColor","magenta", ...
 "DisplayName","Mauna Loa Observatory");
geoplot(mllat,mllon,"ow","MarkerSize",10,"MarkerFaceColor","blue", ...
 "DisplayName","Mauna Loa Volcanao");
legend

5 Making Three-Dimensional Maps

5-58

https://www.esrl.noaa.gov/gmd/obop/mlo/
https://www.esrl.noaa.gov/gmd/obop/mlo/
https://www.usgs.gov/volcanoes/mauna-loa

Synchronize View of Mauna Loa Baseline Observatory in 2-D and 3-D

Use the geographic axes to view the observatory in 2-D and the geographic globe to view the
observatory in 3-D.

Create Geographic Axes and Geographic Globe in Same Figure

Set up a 2-D and 3-D map display by creating geographic axes and a geographic globe in the same UI
figure. To view more of the 2-D map, set the InnerPosition of the geographic axes to its
OuterPosition. To view both map displays with the same basemap, set the basemap of the
geographic axes to "satellite".

figpos = [1000 500 800 400];
uif = uifigure("Position",figpos);
ug = uigridlayout(uif,[1,2]);
p1 = uipanel(ug);
p2 = uipanel(ug);
gx = geoaxes(p1,"Basemap","satellite");
gg = geoglobe(p2);
gx.InnerPosition = gx.OuterPosition;
gg.Position = [0 0 1 1];

 Visualize UAV Flight Path on 2-D and 3-D Maps

5-59

View Observatory in 2-D

View the observatory from 200 meters above the terrain. Control the view of the geographic axes by
changing its map center and zoom level. You can synchronize the view of the geographic axes with
the view of the geographic globe by converting the camera height of the globe to a zoom level for the
axes. Calculate an approximate zoom level from terrain height by using the heightToZoomLevel
local function.

heightAboveTerrain = 200;
gx.MapCenter = [obslat, obslon];
zoomLevel = heightToZoomLevel(heightAboveTerrain, obslat);
gx.ZoomLevel = zoomLevel;

View Observatory in 3-D

Control the view of the geographic globe by changing the position of the camera. The campos
function requires you to specify ellipsoidal height (relative to the WGS84 ellipsoid) instead of
orthometric height (relative to mean sea level). Convert the height of the observatory to ellipsoidal
height. All heights are in meters.

N = egm96geoid(obslat, obslon);
obsh = obsH + N;
ellipsoidalHeight = obsh + heightAboveTerrain;
campos(gg,obslat,obslon,ellipsoidalHeight)
drawnow

5 Making Three-Dimensional Maps

5-60

Import Flight Track Data and Calculate Heading and 3-D Distance

Import the simulated flight track from the Mauna Loa Baseline Observatory to the top of the Mauna
Loa volcano. The file contains the latitudes, longitudes, and altitudes of the UAV path, referenced to
mean sea level.

trk = gpxread("sample_uavtrack.gpx");
tlat = trk.Latitude;
tlon = trk.Longitude;
talt = trk.Elevation;

Calculate Flight Headings

Calculate the UAV heading at each track point using the azimuth function.

wgs84 = wgs84Ellipsoid;
theading = azimuth(tlat(1:end-1),tlon(1:end-1),tlat(2:end),tlon(2:end),wgs84);
theading = [theading(1);theading(:)];

Calculate 3-D Distances

Calculate the cumulative distance for the UAV flight track. The distance function does not take into
account changes in elevation or altitude. In order to calculate the distance the UAV moves from point
to point in 3-D, you need to work in geocentric Cartesian coordinates (X, Y, Z). Compute the point-to-
point offset components (in meters) using the ecefOffset function. The altitude data of the UAV
flight is referenced to the mean sea level. To use the ecefOffset function, the heights must be
referenced to the ellipsoid. Convert the orthometric heights of the flight track to ellipsoidal height
(relative to the WGS84 ellipsoid). All heights are in meters.

N = egm96geoid(tlat,tlon);
h = talt + N;

Compute distance offsets.

 Visualize UAV Flight Path on 2-D and 3-D Maps

5-61

lat1 = tlat(1:end-1);
lat2 = tlat(2:end);
lon1 = tlon(1:end-1);
lon2 = tlon(2:end);
h1 = h(1:end-1);
h2 = h(2:end);
[dx,dy,dz] = ecefOffset(wgs84,lat1,lon1,h1,lat2,lon2,h2);

Calculate the Euclidean distance between each pair of adjacent points using the hypot function. The
distance is in meters.

distanceIncrementIn3D = hypot(hypot(dx, dy), dz);

Compute cumulative distance in 3-D and the total distance in meters.

cumulativeDistanceIn3D = cumsum(distanceIncrementIn3D);
totalDistanceIn3D = sum(distanceIncrementIn3D);
fprintf("Total UAV track distance is %f meters.\n",totalDistanceIn3D)

Total UAV track distance is 8931.072120 meters.

Assign a variable for the cumulative distance to be used for plotting the animation.

tdist = [0 cumulativeDistanceIn3D];

Plot Flight Line from Mauna Loa Baseline Observatory to top of Mauna Loa Volcano

Plot the simulated flight line from the Mauna Loa Baseline Observatory to the top of the Mauna Loa
volcano.

Plot the flight line. By default, the geographic globe places the line at the center of the display. Hold
the geographic axes to preserve the basemap. Its location will not change because you have
previously set the MapCenter and ZoomLevel.

geoplot3(gg,tlat,tlon,talt,"c","LineWidth",2,"HeightReference","geoid")
hold(gx,"on")
ptrack = geoplot(gx,tlat,tlon,"c","LineWidth",2);

Set the map center and zoom level to be consistent with the 3-D view by converting the camera
height for the globe to the zoom level for the axes.

[clat,clon,cheight] = campos(gg);
gx.MapCenter = [clat,clon];
gx.ZoomLevel = heightToZoomLevel(cheight, clat);
drawnow

5 Making Three-Dimensional Maps

5-62

Set Initial View from Mauna Loa Baseline Observatory to Top of Mauna Loa Volcano

View the flight line from the start position by setting the camera position to the first coordinate of the
track. For a better perspective, set the camera height to 75 meters about the height of the track.
View straight down to the observatory by setting the camera pitch to -90. View the track by setting
the heading to the third element of the calculated heading array since the first two points of the track
are the same location and the calculated heading for those locations is 0.

campos(gg,tlat(1),tlon(1))
camheight(gg,talt(1) + 75)
campitch(gg,-90)
camheading(gg,theading(3))

Show the location of the UAV in the 2-D map, and the start and end locations of the flight track with
markers. Create a legend for the UAV track and markers.

marker = geoplot(gx,tlat(1),tlon(1),"ow","MarkerSize",10,"MarkerFaceColor","k");
mstart = geoplot(gx,tlat(1),tlon(1),"ow","MarkerSize",10,"MarkerFaceColor","magenta");
mend = geoplot(gx,tlat(end),tlon(end),"ow","MarkerSize",10,"MarkerFaceColor","blue");

marker.DisplayName = "Current Location";
mstart.DisplayName = "Start Location";
mend.DisplayName = "End Location";
ptrack.DisplayName = "UAV Track";
legend(gx)

View the topology of the region by changing the basemap.

gx.Basemap = "topographic";

View the coordinate location, altitude, and heading of the UAV by using a custom data tip that
corresponds with the location of the UAV. Include the distance from the observatory.

 Visualize UAV Flight Path on 2-D and 3-D Maps

5-63

dt = datatip(ptrack,"DataIndex",1,"Location","southeast");
dtrow = dataTipTextRow("Distance",tdist);
dtrow(end+1) = dataTipTextRow("Altitude",talt);
dtrow(end+1) = dataTipTextRow("Heading",theading);
ptrack.DataTipTemplate.DataTipRows(end+1:end+3) = dtrow;

Fly from Mauna Loa Baseline Observatory to Top of Mauna Loa Volcano

Animate a flight from the Mauna Loa Baseline Observatory to the top of the Mauna Loa volcano. View
the location of the UAV on the 2-D map by animating a marker and data tip. Animate the 3-D flight by
setting the camera position. For a better view of the UAV track, set the camera height to 100 meters
above the flight track. Update the camera pitch value for a better view of the flight track as the UAV
navigates to the top of the volcano. To view the current location, altitude, and heading of the UAV,
update the data tip with the current index.

pitch = -2.7689;
campitch(gg,pitch)

for k = 2:(length(tlat)-1)
 campos(gg,tlat(k),tlon(k))
 camheight(gg,talt(k)+100)
 camheading(gg,theading(k))

 set(marker,"LatitudeData",tlat(k),"LongitudeData",tlon(k));
 dt.DataIndex = k;

 drawnow
 pause(.25)
end

campos(gg,tlat(end),tlon(end),talt(end)+100)
dt.DataIndex = length(tlat);

5 Making Three-Dimensional Maps

5-64

View a 360-Degree Panorama from Top of Mauna Loa Volcano

View a 360-degree panorama from the top of Mauna Loa by rotating the camera heading 360
degrees. Rotate clockwise with a step size of 5-degrees and start at the next 5 degree step. Update
the heading data tip.

initialHeading = camheading(gg);
increment = 5;
initialHeading = initialHeading + (increment - mod(initialHeading,increment));

filename = 'panoramic.gif';
for degree = initialHeading:increment:initialHeading+360
 heading = mod(degree,360);
 ptrack.DataTipTemplate.DataTipRows(end).Value(dt.DataIndex) = heading;
 camheading(gg,heading);
 drawnow
end

 Visualize UAV Flight Path on 2-D and 3-D Maps

5-65

Local Functions

Convert Height (in meters above WGS84 ellipsoid) to Zoom Level

function zoomLevel = heightToZoomLevel(height, lat)
 earthCircumference = 2 * pi * 6378137;
 zoomLevel = log2((earthCircumference *cosd(lat)) / height) + 1;
 zoomLevel = max(0, zoomLevel);
 zoomLevel = min(19, zoomLevel);
end

References
[1] Williams, Sarah C. P. “Studying Volcanic Eruptions with Aerial Drones.” Proceedings of the

National Academy of Sciences of the United States of America 110, no. 27 (July 2, 2013):
10881. https://doi.org/10.1073/pnas.1309922110.

[2] NOAA. “Mauna Loa Baseline Observatory.” Global Monitoring Laboratory. Accessed June 16, 2020.
https://www.esrl.noaa.gov/gmd/obop/mlo/.

[3] USGS. “Mauna Loa.” Hawaiian Volcano Observatory. Accessed June 16, 2020. https://
www.usgs.gov/volcanoes/mauna-loa.

See Also
Functions
azimuth | camheading | campitch | campos | camroll | egm96geoid

Objects
GeographicGlobe

5 Making Three-Dimensional Maps

5-66

https://doi.org/10.1073/pnas.1309922110
https://www.esrl.noaa.gov/gmd/obop/mlo/
https://www.usgs.gov/volcanoes/mauna-loa
https://www.usgs.gov/volcanoes/mauna-loa

Properties
GeographicAxes Properties

More About
• “Find Ellipsoidal Height from Orthometric Height” on page 3-55

 Visualize UAV Flight Path on 2-D and 3-D Maps

5-67

Customizing and Printing Maps

• “Inset Maps” on page 6-2
• “Graphic Scales” on page 6-9
• “North Arrows” on page 6-15
• “Thematic Maps” on page 6-18
• “Create Choropleth Map of Population Density” on page 6-21
• “Contour Colormaps” on page 6-24
• “Colormaps for Political Maps” on page 6-27
• “Scale Maps for Printing” on page 6-31

6

Inset Maps
Inset maps are often used to display widely separated areas, generally at the same scale, or to place a
map in context by including overviews at smaller scales. You can create inset maps by nesting
multiple axes in a figure and defining appropriate map projections for each. To ensure that the scale
of each of the maps is the same, use axesscale to resize them. In this example, create an inset map
of California at the same scale as the map of South America, to relate the size of that continent to a
more familiar region.

Begin by defining a map frame for South America using worldmap.

figure
h1 = worldmap('south america');

Use shaperead to read the world land areas polygon shapefile.

land = shaperead('landareas.shp', 'UseGeoCoords', true);

Display the data in the map axes.

geoshow([land.Lat],[land.Lon])
setm(h1,'FFaceColor','w') % set the frame fill to white

6 Customizing and Printing Maps

6-2

Place axes for an inset in the lower middle of the map frame, and project a line map of California:

h2 = axes('pos',[.5 .2 .1 .1]);
CA = shaperead('usastatehi', 'UseGeoCoords', true, ...
 'Selector', {@(name) isequal(name,'California'), 'Name'});
usamap('california')
geoshow([CA.Lat],[CA.Lon])

 Inset Maps

6-3

Set the frame fill color and set the labels.

setm(h2,'FFaceColor','w')
mlabel; plabel; gridm % toggle off

6 Customizing and Printing Maps

6-4

Make the scale of the inset axes, h2 (California), match the scale of the original axes, h1 (South
America). Hide the map border.

axesscale(h1)

 Inset Maps

6-5

set([h1 h2], 'Visible', 'off')

Note that the toolbox software chose a different projection and appropriate parameters for each
region based on its location and shape. You can override these choices to make the two projections
the same.

Find out what map projections are used, and then make South America's projection the same as
California's.

getm(h1, 'mapprojection')

ans =
'eqdconic'

getm(h2, 'mapprojection')

ans =
'lambert'

setm(h1, 'mapprojection', getm(h2, 'mapprojection'))

6 Customizing and Printing Maps

6-6

Note that the parameters for South America defaulted properly (those appropriate for California were
not used).

Finally, experiment with changing properties of the inset, such as its color.

setm(h2, 'ffacecolor', 'y')

 Inset Maps

6-7

6 Customizing and Printing Maps

6-8

Graphic Scales
This example shows how to add graphic scales to maps and how to modify the display properties of
graphic scales.

Graphic scale elements are used to provide indications of size even more frequently than insets are.
These are ruler-like objects that show distances on the ground at the nominal scale of the projection.
You can use the scaleruler function to add a graphic scale to the current map. You can check and
modify the scaleruler settings using getm and setm. You can also move the graphic scale to a new
position by dragging its baseline.

Use usamap to plot a map of Texas and surrounding states as filled polygons.

states = shaperead('usastatehi.shp', 'UseGeoCoords', true);
figure
usamap('Texas')
faceColors = makesymbolspec('Polygon',...
 {'INDEX', [1 numel(states)], ...
 'FaceColor', polcmap(numel(states))});
geoshow(states,'DisplayType', 'polygon', ...
 'SymbolSpec', faceColors)

Because polcmap randomizes patch colors, your display can look different.

Add a default graphic scale and then move it to a new location.

 Graphic Scales

6-9

scaleruler on
setm(handlem('scaleruler1'), ...
 'XLoc',-6.2e5,'YLoc',3.1e6, ...
 'MajorTick',0:200:600)

The units of scaleruler default to kilometers. Note that handlem accepts the keyword
'scaleruler' or 'scaleruler1' for the first scaleruler, 'scaleruler2' for the second one,
etc. If there is more than one scaleruler on the current axes, specifying the keyword
'scaleruler' returns a vector of handles.

Return the scaleruler as a Group object using the handlem function and inspect its properties
using getm.

s = handlem('scaleruler');
getm(s)

ans = struct with fields:
 Azimuth: 0
 Children: []
 Color: [0 0 0]
 FontAngle: 'normal'
 FontName: 'Helvetica'
 FontSize: 9
 FontUnits: 'points'
 FontWeight: 'normal'
 Label: ''
 Lat: 29.6479

6 Customizing and Printing Maps

6-10

 Long: -101.7263
 LineWidth: 0.5000
 MajorTick: [0 200 400 600]
 MajorTickLabel: {4x1 cell}
 MajorTickLength: 20
 MinorTick: [0 25 50 75 100]
 MinorTickLabel: '100'
 MinorTickLength: 12.5000
 Radius: 'earth'
 RulerStyle: 'ruler'
 TickDir: 'up'
 TickMode: 'manual'
 Units: 'km'
 XLoc: -620000
 YLoc: 3100000
 ZLoc: []

Change the font size of the scaleruler to 8 points.

setm(s,'fontsize',8)

Place a second graphic scale, this one in units of nautical miles.

scaleruler('units','nm')

 Graphic Scales

6-11

Modify the tick properties of the second graphic scale.

setm(handlem('scaleruler2'), 'YLoc', 3.0e6, ...
 'MajorTick', 0:100:300,...
 'MinorTick', 0:25:50, 'TickDir', 'down', ...
 'MajorTickLength', km2nm(25),...
 'MinorTickLength', km2nm(12.5))

6 Customizing and Printing Maps

6-12

Experiment with the two other ruler styles available.

setm(handlem('scaleruler1'), 'RulerStyle', 'lines')
setm(handlem('scaleruler2'), 'RulerStyle', 'patches')

 Graphic Scales

6-13

6 Customizing and Printing Maps

6-14

North Arrows
The north arrow element provides the orientation of a map by pointing to the geographic North Pole.
You can use the northarrow function to display a symbol indicating the direction due north on the
current map. The north arrow symbol can be repositioned by clicking and dragging its icon. The
orientation of the north arrow is computed, and does not need manual adjustment no matter where
you move the symbol. Ctrl+clicking the icon creates an input dialog box with which you can change
the location of the north arrow:

Create a map centered at the South Pole. Add a north arrow symbol at a specified geographic
position.

Antarctica = shaperead('landareas', 'UseGeoCoords', true, ...
 'Selector',{@(name) strcmpi(name,{'Antarctica'}), 'Name'});
figure
worldmap('south pole')
geoshow(Antarctica)
northarrow('latitude', -57, 'longitude', 135);

Click and drag the north arrow symbol to another corner of the map. Note that it always points to the
North Pole.

Drag the north arrow back to the top left corner.

 North Arrows

6-15

Right-click or Ctrl+click the north arrow. The Inputs for North Arrow dialog opens, which lets you
specify the line weight, edge and fill colors, and relative size of the arrow. Set some properties and
click OK.

Also set some north arrow properties manually, just to get a feel for them.

h = handlem('NorthArrow');
set(h, 'FaceColor', [1.000 0.8431 0.0000],...
 'EdgeColor', [0.0100 0.0100 0.9000])

Make three more north arrows, to show that from the South Pole, every direction is north. Note:
north arrows are created as objects in the MATLAB® axes (and thus have Cartesian coordinates), not
as mapping objects. As a result, if you create more than one north arrow, any Mapping Toolbox™
function that manipulates a north arrow will affect only the last one drawn.

northarrow('latitude',-57,'longitude', 45);
northarrow('latitude',-57,'longitude',225);
northarrow('latitude',-57,'longitude',315);

6 Customizing and Printing Maps

6-16

 North Arrows

6-17

Thematic Maps
Most published and online maps fall into four categories:

• Navigation maps, including topographic maps and nautical and aeronautical charts
• Geophysical maps, that show the structure and dynamics of earth, oceans and atmosphere
• Location maps, that depict the locations and names of physical features
• Thematic maps, that portray attribute data about locations and features

Although online maps often combine these categories in new and unexpected ways, published maps
and atlases tend to respect them.

Thematic maps tend to be more highly stylized than other types of maps and frequently omit
locational information such as place names, physical features, coordinate grids, and map scales. This
is because rather than showing physical features on the ground, such as shorelines, roads,
settlements, topography, and vegetation, a thematic map displays quantified facts (a "theme"), such
as statistics for a region or sets of regions. Examples include the locations of traffic accidents in a
city, or election results by state. Thematic maps have a wide vocabulary of cartographic symbols,
such as point symbols, dot distributions, "quiver" vectors, isolines, colored zones, raised prisms, and
continuous 3-D surfaces. Mapping Toolbox functions, listed in the following table, can generate most
of these types of map symbology.

Function Used For
quiverm Plots directed vectors in 2-D from specified latitudes and longitudes with

lengths also specified as latitudes and longitudes
quiver3m Plots directed vectors in 3-D from specified latitudes, longitudes, and

altitudes with lengths also specified as latitudes and longitudes and
altitudes

scatterm Draws fixed or proportional symbol maps for each point in a vector with
specified marker symbol. Similar maps can be generated using geoshow
and mapshow using appropriate symbol specifications ("symbolspecs").

stem3m Projects a 3-D stem plot map on the current map axes. The stem3m
function allows you to display geographic bar graphs.

tissot Calculates and displays Tissot Indicatrices, which graphically portray the
shape distortions of any map projection.

Choropleth Maps
The most familiar form of thematic map is probably the choropleth map (from the Greek choros, for
place, and plethos, for magnitude). Choropleth maps use colors or patterns to represent attributes
associated with certain geographic regions. For example, the global distribution of malaria-carrying
mosquitoes can be illustrated in a choropleth map, with the habitat of each mosquito represented by
a different color. In this example, colors are used to represent nominal data; the categories of
mosquitoes have no inherent ranking. If the data is ordinal, rather than nominal, the map may contain
a colorbar with shades of colors representing the ranking. For instance, a map of crime rates in
different areas could show high crime areas in red, lower crime areas in pink, and lowest crime areas
in white. See “Create Choropleth Map of Population Density” on page 6-21 for an example of
creating a choropleth map where the color of each location indicates the population density.

To create a choropleth map with the Mapping Toolbox:

6 Customizing and Printing Maps

6-18

1 Start with a geographic data structure on page 2-22.
2 Create a symbolspec to map attribute values to face colors.
3 Apply either geoshow or mapshow, depending on whether you are working with latitude-

longitude or pre-projected map coordinates.

Stem Maps
Stem plots are 3-D geographic bar graphs portraying numeric attributes at point locations, usually on
vector base maps. Below is an example of a stem plot over a map of the continental United States.
The bars could represent anything from selected city populations to the number of units of a product
purchased at each location:

Contour Maps
Contour and quiver plots can be useful in analyzing matrix data. In the following example, contour
elevation lines have been drawn over a topographical map of the Gulf of Mexico. Quiver plots have
been added to visualize the gradient of the topographical matrix.

Here is the displayed map:

 Thematic Maps

6-19

Scatter Maps
The scatterm function plots symbols at specified point locations, like the MATLAB scatter
function. If the symbols are small and inconspicuous and do not vary in size, the result is a dot-
distribution map. If the symbols vary in size and/or shape according to a vector of attribute values,
the result is a proportional symbol map.

6 Customizing and Printing Maps

6-20

Create Choropleth Map of Population Density
This example shows how to create a choropleth map of population density for the six New England
states in the year 2000.

Import low-resolution U.S. state boundary polygons, setting the map limits for the New England
region.

MapLatLimit = [41 48];
MapLonLimit = [-74 -66];

NEstates = shaperead('usastatelo', 'UseGeoCoords', true, ...
 'BoundingBox', [MapLonLimit' MapLatLimit']);

Set up map axes with a projection suitable to display the New England states.

axesm('MapProjection', 'eqaconic', 'MapParallels', [],...
 'MapLatLimit', MapLatLimit, 'MapLonLimit', MapLonLimit,...
 'GLineStyle', '-')
geoshow(NEstates, 'DisplayType', 'polygon', 'FaceColor','green')

Identify the maximum population density for New England states.

maxdensity = max([NEstates.PopDens2000])

maxdensity = 1.1345e+03

 Create Choropleth Map of Population Density

6-21

Create an autumn colormap for the six New England states, and then use the flipud command to
invert the matrix.

fall = flipud(autumn(numel(NEstates)));

Make a symbol specification structure, a symbolspec, that assigns an autumn color to each polygon
according to the population density.

densityColors = makesymbolspec('Polygon', {'PopDens2000', ...
 [0 maxdensity], 'FaceColor', fall});

Display the map.

geoshow(NEstates, 'DisplayType', 'polygon', ...
 'SymbolSpec', densityColors)
title ({'Population Density in New England in 2000', ...
 'in Persons per Square Mile'})

Add a colorbar. You can also experiment with other colormaps.

caxis([0 maxdensity])
colormap(fall)
colorbar

6 Customizing and Printing Maps

6-22

 Create Choropleth Map of Population Density

6-23

Contour Colormaps
Use colormaps to display surfaces as contour maps for data types other than terrain, such as geoid
heights. First, get geoid heights and a geographic postings reference object from the EGM96 geoid
model. Display the geoid heights using the default colormap.

[N,R] = egm96geoid;
worldmap(N,R)
geoshow(N,R,'DisplayType','surface')

Then, display a colorbar using the 'jet' colormap. Specify the contour interval as 10 meters.

contourcmap('jet',10,'Colorbar','on','Location','horizontal')

6 Customizing and Printing Maps

6-24

Display a restricted value range by specifying a vector of evenly spaced values.

range = 0:5:50;
contourcmap('jet',range,'Colorbar','on','Location','horizontal')

 Contour Colormaps

6-25

6 Customizing and Printing Maps

6-26

Colormaps for Political Maps
Political maps typically use muted, contrasting colors that make it easy to distinguish one country
from its neighbors. You can create colormaps of this kind using the polcmap function. The polcmap
function creates a colormap with randomly selected colors of all hues. Since the colors are random, if
you don't like the result, execute polcmap again to generate a different colormap.

Note The famous Four Color theorem states that any political map can be colored to completely
differentiate neighboring patches using only four colors. Experiment to find how many colors it takes
to color neighbors differently with polcmap.

Explore Colormaps for Political Maps
Display the usastatelo data set as patches, setting up the map with worldmap and plotting it with
geoshow. Note that the default face color is yellow.

figure
worldmap na
states = shaperead('usastatelo', 'UseGeoCoords', true);
geoshow(states)

Use polcmap to populate color definitions to a symbolspec to recolor the patches randomly.

faceColors = makesymbolspec('Polygon',...
 {'INDEX', [1 numel(states)], 'FaceColor',...

 Colormaps for Political Maps

6-27

 polcmap(numel(states))});
geoshow(states,'SymbolSpec',faceColors)

The polcmap function can also control the number and saturation of colors. Reissue the command
specifying 256 colors and a maximum saturation of 0.2. To ensure that the colormap is always the
same, seed the MATLAB® random number function using the rng function and a fixed value of your
choice.

figure
worldmap na
rng(0)
faceColors = makesymbolspec('Polygon',...
 {'INDEX', [1 numel(states)], 'FaceColor', polcmap(256,.2)});
geoshow(states, 'SymbolSpec', faceColors)

6 Customizing and Printing Maps

6-28

Labeling Colorbars
Political maps are an example of nominal data display. Many nominal data sets have names associated
with a set of integer values, or consist of codes that identify values that are ordinal in nature (such as
low, medium, and high). The function lcolorbar creates a colorbar having a text label aligned with
each color. Nominal colorbars are customarily used only with small colormaps (where 10 categories
or fewer are being displayed). lcolorbar has options for orienting the colorbar and aligning text in
addition to the graphic properties it shares with axes objects.

figure; colormap(jet(5))
labels = {'apples','oranges','grapes','peaches','melons'};
lcolorbar(labels,'fontweight','bold');

 Colormaps for Political Maps

6-29

Editing Colorbars
Maps of nominal data often require colormaps with special colors for each index value. To avoid
building such colormaps by hand, use the MATLAB GUI for colormaps, Colormap Editor, described
in the MATLAB Function Reference pages. Also see the MATLAB colormap function documentation.

6 Customizing and Printing Maps

6-30

Scale Maps for Printing
Maps are often printed at a size that makes objects on paper a particular fraction of their real size.
The linear ratio of the mapped to real object sizes is called map scale, and it is usually notated with a
colon as "1:1,000,000" or "1:24,000." Another way of specifying scale is to call out the printed and
real lengths, for example "1 inch = 1 mile."

You can specify the printed scale using the paperscale function. It modifies the size of the printed
area on the page to match the scale. If the resulting dimensions are larger than your paper, you can
reduce the amount of empty space around the map using tightmap, zoom, or panzoom, and by
changing the axes position to fill the figure. This also reduces the amount of memory needed to print
with the zbuffer (raster image) renderer. Be sure to set the paper scale last. For example,

set(gca,'Units','Normalized','Position',[0 0 1 1])
tightmap
paperscale(1,'in', 5,'miles')

The paperscale function also can take a scale denominator as its first and only argument. If you
want the map to be printed at 1:20,000,000, type

paperscale(2e7)

To check the size and extent of text and the relative position of axes, use previewmap, which resizes
the figure to the printed size.

previewmap

For more information on printing, see “Printing and Saving”.

 Scale Maps for Printing

6-31

Manipulating Geospatial Data

For some purposes, geospatial data is fine to use as is. Sooner or later, though, you need to extract,
combine, massage, and transform geodata. This chapter discusses some Mapping Toolbox tools and
techniques provided for such purposes.

• “Extract and Join Polygons or Line Segments” on page 7-2
• “Link Line Segments with Common Endpoints into Polygons” on page 7-4
• “Geographic Interpolation of Vectors” on page 7-5
• “Interpolate Vertices Between Known Data Points” on page 7-7
• “Interpolate Coordinates at Specific Locations” on page 7-8
• “Vector Intersections” on page 7-9
• “Calculate Intersections of Small Circles” on page 7-11
• “Calculate Intersection of Rhumb Line Tracks” on page 7-12
• “Calculate Intersections of Vector Data” on page 7-13
• “Calculate Area of Geographic Polygons” on page 7-15
• “Polygon Set Logic” on page 7-16
• “Overlay Polygons Using Set Logic” on page 7-17
• “Remove Longitude Coordinate Discontinuities at Date Line Crossings” on page 7-22
• “Polygon Buffer Zones” on page 7-26
• “Trim Vectors to Preserve Polygonal Patches” on page 7-28
• “Simplify Vector Coordinate Data” on page 7-31
• “Simplify Polygon and Line Data” on page 7-32
• “Convert Vector Data to Raster Format” on page 7-37
• “Rasterize Polygons Interactively” on page 7-42
• “Data Grids as Logical Variables” on page 7-44
• “Compute Elevation Profile Along Straight Line” on page 7-45
• “Compute Gradient, Slope, and Aspect from Regular Data Grid” on page 7-48

7

Extract and Join Polygons or Line Segments
This example shows how to identify line or patch segments once they have been combined into large
NaN-clipped vectors. You can separate these polygon or line vectors into their component segments
using the polysplit function, which takes column vectors as inputs. To join together individual
polygon or line vectors use polyjoin.

Create two NaN-delimited arrays in the form of column vectors.

lat = [45.6 -23.47 78 NaN 43.9 -67.14 90 -89]';
lon = [13 -97.45 165 NaN 0 -114.2 -18 0]';

Split the column vectors into individual line segment cell arrays at the NaN separators using
polysplit.

[latc,lonc] = polysplit(lat,lon)

latc=2×1 cell array
 {3x1 double}
 {4x1 double}

lonc=2×1 cell array
 {3x1 double}
 {4x1 double}

Inspect the contents of the cell arrays. Note that each cell array element contains a segment of the
original line.

[latc{1} lonc{1}]

ans = 3×2

 45.6000 13.0000
 -23.4700 -97.4500
 78.0000 165.0000

[latc{2} lonc{2}]

ans = 4×2

 43.9000 0
 -67.1400 -114.2000
 90.0000 -18.0000
 -89.0000 0

To reverse the process, use polyjoin.

[lat2,lon2] = polyjoin(latc,lonc);

Perform a logical comparison of the joined segments. Note that they are identical with the initial lat
and lon arrays. The logical comparison is false for the NaN delimiters, by definition.

[lat lon] == [lat2 lon2]

7 Manipulating Geospatial Data

7-2

ans = 8x2 logical array

 1 1
 1 1
 1 1
 0 0
 1 1
 1 1
 1 1
 1 1

Test for global equality, including NaN values.

isequaln(lat,lat2) & isequaln(lon,lon2)

ans = logical
 1

See Also
polyjoin | polysplit

More About
• “Create and Display Polygons” on page 2-12

 Extract and Join Polygons or Line Segments

7-3

Link Line Segments with Common Endpoints into Polygons
This example shows how to link line segments into polygons using the polymerge function.
polymerge links sets of line segments together by concatenating segments that have matching
endpoints. An end point can be either the first or last vertex in a given part. The polymerge function
compares endpoints of segments within latitude and longitude vectors to identify endpoints that
match exactly or lie within a specified distance. The matching segments are then concatenated, and
the process continues until no more coincidental endpoints can be found. For more information, see
the polymerge reference page.

Construct column vectors representing coordinate values. The vectors use NaN separators to define
four line segments.

lat = [3 2 NaN 1 2 NaN 5 6 NaN 3 4]';
lon = [13 12 NaN 11 12 NaN 15 16 NaN 13 14]';

Concatenate the segments with matching endpoints. Three of the line segments have overlapping end
points, so polymerge returns two line segments.

[latm, lonm] = polymerge(lat,lon)

latm = 8×1

 1
 2
 3
 4
 NaN
 5
 6
 NaN

lonm = 8×1

 11
 12
 13
 14
 NaN
 15
 16
 NaN

See Also
polysplit

More About
• “Create and Display Polygons” on page 2-12

7 Manipulating Geospatial Data

7-4

Geographic Interpolation of Vectors
When using vector data, remember that, like raster data, coordinates are sampled measurements.
This involves unavoidable assumptions concerning what the geographic reality is between specified
data points. The normal assumption when plotting vector data requires that points be connected with
straight line segments, which essentially indicates a lack of knowledge about conditions between the
measured points. For lines that are by nature continuous, such as most rivers and coastlines, such
piecewise linear interpolation can be false and misleading, as the following figure depicts.

Interpolating Sparse Vector Data

Despite the possibility of misinterpretation, circumstances do exist in which geographic data
interpolation is useful or even necessary. To do this, use the interpm function to interpolate between
known data points. One value of linearly interpolating points is to fill in lines of constant latitude or
longitude (e.g., administrative boundaries) that can curve when projected. To see an example that
uses interpm, view “Interpolate Vertices Between Known Data Points” on page 7-7.

interpm returns both the original data and new linearly interpolated points. Sometimes, however,
you might want only the interpolated values. The functions intrplat and intrplon work similarly
to the MATLAB interp1 function, and give you control over the method used for interpolation. Note
that they only interpolate and return one value at a time. Use intrplat to interpolate a latitude for a
given longitude. Given a monotonic set of longitudes and their matching latitude points, you can
interpolate a new latitude for a longitude you specify, interpolating along linear, spline, cubic, rhumb
line, or great circle paths. The longitudes must increase or decrease monotonically. If this is not the
case, you might be able to use the intrplon companion function if the latitude values are
monotonic. The following diagram illustrates these three types of interpolation. The intrplat
function also can perform spline and cubic spline interpolations.

 Geographic Interpolation of Vectors

7-5

Three Types of Interpolation

To see an example that uses intrplat, view “Interpolate Coordinates at Specific Locations” on page
7-8.

7 Manipulating Geospatial Data

7-6

Interpolate Vertices Between Known Data Points
This example shows how to interpolate values in a set of vertices using the interpm function. In this
example, you specify that no gap greater than 1 degree should exist between existing vertices, as
specified by the maxdiff parameter. See interpm for more information.

Define two vectors containing the latitude and longitude values for a set of vertices. In lat, note that
a gap of 2 degrees exists between the values 2 and 4. Similarly, in lon, a gap of 2 degrees exists
between the values 1 and the 3.

lat = [1 2 4 5];
lon = [1 3 4 5];

Call interpm to fill in any gaps greater than 1 degree in either vector. For example, interpm
interpolates and inserts the value 2 into the lon vector to fill the gap between the values 1 and 3, and
inserts the value 1.5 in the lat vector for this new vertex. Similarly, interpm inserts the value 3 into
the lat vector to fill the gap between the values 2 and 4, and inserts the value 3.5 in the lon vector
for this new vertex. Now, the separation of adjacent vertices is no greater than maxdiff in either
newlat or newlon.

maxdiff = 1;
[newlat,newlon] = interpm(lat,lon,maxdiff)

newlat = 6×1

 1.0000
 1.5000
 2.0000
 3.0000
 4.0000
 5.0000

newlon = 6×1

 1.0000
 2.0000
 3.0000
 3.5000
 4.0000
 5.0000

 Interpolate Vertices Between Known Data Points

7-7

Interpolate Coordinates at Specific Locations
This example shows how to interpolate coordinates at specific locations using intrplat and
intrplon functions. intrplat and intrplon return one value at a time and give you control over
the interpolation method used. For more information, see the intrplat and intrplon reference
pages.

Define latitudes and longitudes.

lat = [57 68 60 65 56];
lon = [1 3 4 9 13];

Specify the longitude for which you want to compute a latitude.

newlon = 7.3;

Linear Interpolation

Generate a new latitude with linear interpolation.

newlat = intrplat(lon,lat,newlon,'linear')

newlat = 63.3000

Great Circle Interpolation

Generate a new latitude using great circle interpolation.

newlat = intrplat(lon,lat,newlon,'gc')

newlat = 63.5029

Rhumb Line Interpolation

Generate a new latitude using interpolation along a rhumb line.

newlat = intrplat(lon,lat,newlon,'rh')

newlat = 63.3937

To see an illustration comparing these three interpolations, see “Geographic Interpolation of Vectors”
on page 7-5.

7 Manipulating Geospatial Data

7-8

Vector Intersections
Mapping Toolbox includes a set of functions that calculate the intersections of vector data, such as
great circles, small circles, and rhumb line tracks. The functions also determine intersections of
arbitrary vector data.

Function Description
gcxgc Find intersection points for pairs of great circles on the sphere
scxsc Find intersection points for pairs of small circles on the sphere
rhxrh Find intersection points, if any, for pairs of rhumb lines
gcxsc Find intersection points, if any, between a great circle and a small

circle on the sphere
polyxpoly Find intersection points for lines or polygon edges in the plane

In general, small circles intersect twice or never, as shown in the following figure. For the case of
exact tangency, scxsc returns two identical intersection points. To see an example of using scxsc,
see “Calculate Intersections of Small Circles” on page 7-11.

To illustrate finding the intersection of rhumb lines, imagine a ship setting sail from Norfolk, Virginia
(37°N,76°W), maintaining a steady due-east course (90°), and another ship setting sail from Dakar,
Senegal (15°N,17°W), with a steady northwest course (315°). Where would the tracks of the two
vessels cross? The intersection of the tracks is at (37°N,41.7°W), which is roughly 600 nautical miles
west of the Azores in the Atlantic Ocean. To see an example of using rhxrh, see “Calculate
Intersection of Rhumb Line Tracks” on page 7-12.

 Vector Intersections

7-9

See Also

More About
• “Calculate Intersections of Vector Data” on page 7-13
• “Calculate Intersection of Rhumb Line Tracks” on page 7-12
• “Calculate Intersections of Small Circles” on page 7-11

7 Manipulating Geospatial Data

7-10

Calculate Intersections of Small Circles
This example shows how to calculate the intersection of vector data, in particular, two small circles.
The scxsc function returns the intersecting points on the circles.

Calculate the intersection of two small circles. One circle is centered at (0,0) degrees with a radius of
1250 nautical miles. The other circle is centered at 5 degrees north and 30 degrees east with a radius
of 2500 kilometers. The function returns the latitude and longitude of the two points of intersection.
(Circles typically intersect at two points.) To see an illustration of this calculation, see “Vector
Intersections” on page 7-9.

[lat,lon] = scxsc(0,0,nm2deg(1250),5,30,km2deg(2500))

lat = 1×2

 -12.9839 17.7487

lon = 1×2

 16.4170 11.0624

 Calculate Intersections of Small Circles

7-11

Calculate Intersection of Rhumb Line Tracks
This example shows how to calculate the intersection of rhumb lines using the rhxrh function.

Calculate the intersection of two rhumb lines. One line starts at latitude 37 degrees North and
longitude 76 degrees West and continues due-east at 90 degrees. The other line starts at latitude 15
degrees North and longitude 17 degrees West and continues on a north-west track. To see an
illustration of this example, see “Vector Intersections” on page 7-9.

[lat,long] = rhxrh(37,-76,90,15,-17,315)

lat = 37.0000

long = -41.7028

7 Manipulating Geospatial Data

7-12

Calculate Intersections of Vector Data
This example shows how to calculate the intersections of arbitrary vector data, such as polylines or
polygons, using the polyxpoly function.

Create two polygons that intersect.

x1 = [10 20 40 50 50 40 20 10 10];
y1 = [20 10 10 20 40 50 50 40 20];

x2 = [30 60 30 0 30];
y2 = [40 50 70 60 40];

Plot the polygons.

mapshow(x1,y1)
mapshow(x2,y2)

Calculate the points where these two polygons intersect. The polyxpoly command finds the
segments that intersect and interpolates to find the intersection points.

[xint,yint] = polyxpoly(x1,y1,x2,y2)

xint = 2×1

 45
 18

 Calculate Intersections of Vector Data

7-13

yint = 2×1

 45
 48

Display the points of intersection. If the spacing between points is large, there can be some difference
between the intersection points computed by polyxpoly and the intersections shown on a map
display. This is a result of the difference between straight lines in the unprojected and projected
coordinates. Similarly, there can be differences between the polyxpoly result and intersections
assuming great circles or rhumb lines between points.

mapshow(xint,yint,'Displaytype','point','Marker','o')

7 Manipulating Geospatial Data

7-14

Calculate Area of Geographic Polygons
This example shows how to calculate geographic areas for vector data in polygon format using the
areaint function. areaint performs a numerical integration using Green's Theorem for the area on
a surface enclosed by a polygon. Because this is a discrete integration on discrete data, the results
are not exact. Nevertheless, the method provides the best means of calculating the areas of
arbitrarily shaped regions. Better measures result from better data. For more information, see
areaint.

Load the continental United States MAT-file, conus.mat , and calculate the radius of the Earth.

load conus
earthradius = almanac('earth','radius');

Calculate the area of the continental United States, along with the area of Long Island and Martha's
Vineyard. areaint like the other area functions, areaquad and areamat, returns the area as a
fraction of the entire planet's surface, unless you provide a radius. Because the default Earth radius
is in kilometers, the area is in square kilometers.

area = areaint(uslat,uslon,earthradius)

area = 3×1
106 ×

 7.9256
 0.0035
 0.0004

Calculate the areas of the Great Lakes using the same variables, this time in square miles. areaint
returns three areas: the largest for the polygon representing Superior, Michigan, and Huron together,
the other two for Erie and Ontario.

earthradius = almanac('earth','radius','miles');
area = areaint(gtlakelat,gtlakelon,earthradius)

area = 3×1
104 ×

 8.0120
 1.0382
 0.7634

 Calculate Area of Geographic Polygons

7-15

Polygon Set Logic
Polygon set operations are used to answer a variety of questions about logical relationships of vector
data polygon objects. Standard set operations include intersection, union, subtraction, and an
exclusive OR operation. The polybool function performs these operations on two sets of vectors,
which can represent x-y or latitude-longitude coordinate pairs. In computing points where boundaries
intersect, interpolations are carried out on the coordinates as if they were planar. Here is an example
that shows all the available operations.

The result is returned as NaN-clipped vectors by default. In cases where it is important to distinguish
outer contours of polygons from interior holes, polybool can also accept inputs and return outputs
as cell arrays. In the cell array format, a cell array entry starts with the list of points making up the
outer contour. Subsequent NaN-clipped faces within the cell entry are interpreted as interior holes.

For an example, view “Overlay Polygons Using Set Logic” on page 7-17.

7 Manipulating Geospatial Data

7-16

Overlay Polygons Using Set Logic
This example shows how to overlay polygons using set logic. The polybool function can perform
standard set operations, such as intersection, union, subtraction, and exclusive OR, on two sets of
vectors, which can represent x-y or latitude-longitude coordinate pairs. For more information, see
“Polygon Set Logic” on page 7-16.

Create Two Polygons

To illustrate these set operations, create a 12-sided polygon and a triangle that overlaps it.

az = (0:pi/6:2*pi)';
lat1 = cos(az);
lon1 = sin(az);

lat2 = [0 1 -1 0]';
lon2 = [0 2 2 0]';

Compute the Intersection of the Two Polygons

Plot the two shapes together with blue and red lines. Compute the intersection polygon using
polybool and plot it using geoshow.

figure
axesm miller
plotm(lat1,lon1,'b')
plotm(lat2,lon2,'r')
[loni,lati] = polybool('intersection',lon1,lat1,lon2,lat2);
[lati loni]

ans = 5×2

 0.0000 1.0000
 -0.4409 0.8819
 0.0000 0
 0.4409 0.8819
 0.0000 1.0000

geoshow(lati,loni,'DisplayType','polygon')

 Overlay Polygons Using Set Logic

7-17

Compute the Union of the Two Polygons

Plot the two shapes together with blue and red lines. Compute the union polygon using polybool
and plot it using geoshow.

figure
axesm miller
plotm(lat1,lon1,'b')
plotm(lat2,lon2,'r')
[lonu,latu] = polybool('union',lon1,lat1,lon2,lat2);
[latu lonu]

ans = 16×2

 -1.0000 2.0000
 -0.4409 0.8819
 -0.5000 0.8660
 -0.8660 0.5000
 -1.0000 0.0000
 -0.8660 -0.5000
 -0.5000 -0.8660
 0.0000 -1.0000
 0.5000 -0.8660
 0.8660 -0.5000
 ⋮

geoshow(latu,lonu,'DisplayType','polygon')

7 Manipulating Geospatial Data

7-18

Compute the Exclusive-Or of the Two Polygons

Plot the two shapes together with blue and red lines. Compute the Exclusive-Or polygon using
polybool and plot it using geoshow.

figure
axesm miller
plotm(lat1,lon1,'b')
plotm(lat2,lon2,'r')
[lonx,latx] = polybool('xor',lon1,lat1,lon2,lat2);
[latx lonx]

ans = 22×2

 -1.0000 2.0000
 -0.4409 0.8819
 -0.5000 0.8660
 -0.8660 0.5000
 -1.0000 0.0000
 -0.8660 -0.5000
 -0.5000 -0.8660
 0.0000 -1.0000
 0.5000 -0.8660
 0.8660 -0.5000
 ⋮

geoshow(latx,lonx,'DisplayType','polygon')

 Overlay Polygons Using Set Logic

7-19

Compute the Subtraction of the Two Polygons

Plot the two shapes together with blue and red lines. Subtract the Exclusive-Or triangle from the 12-
sided polygon and plot the resulting concave polygon using geoshow.

figure
axesm miller
plotm(lat1,lon1,'b')
plotm(lat2,lon2,'r')
[lonm,latm] = polybool('minus',lon1,lat1,lon2,lat2);
[latm lonm]

ans = 15×2

 0.8660 0.5000
 0.5000 0.8660
 0.4409 0.8819
 0.0000 0
 -0.4409 0.8819
 -0.5000 0.8660
 -0.8660 0.5000
 -1.0000 0.0000
 -0.8660 -0.5000
 -0.5000 -0.8660
 ⋮

geoshow(latm,lonm,'DisplayType','polygon')

7 Manipulating Geospatial Data

7-20

 Overlay Polygons Using Set Logic

7-21

Remove Longitude Coordinate Discontinuities at Date Line
Crossings

This example shows how to remove longitude coordinate discontinuities at date line crossings that
can confuse set operations on polygons. This can happen when points with longitudes near 180
degrees connect to points with longitudes near -180 degrees, as might be the case for eastern Siberia
and Antarctica, and also for small circles and other patch objects. To prepare geographic data for use
with polybool or for patch rendering, cut the polygons at the date line with the flatearthpoly
function. flatearthpoly returns a polygon with points inserted to follow the date line up to the
pole, traverse the longitudes at the pole, and return to the date line crossing along the other edge of
the date line.

Note: The toolbox display functions automatically cut and trim geographic data if required by the
map projection. Use flatearthpoly only when performing set operations on polygons.

Create an orthographic view of the Earth and plot the coastlines on it.

axesm ortho
setm(gca,'Origin', [60 170]); framem on; gridm on
load coastlines
plotm(coastlat,coastlon)

Generate a small circle that encompasses the North Pole and color it yellow.

[latc,lonc] = scircle1(75,45,30);
patchm(latc,lonc,'y')

7 Manipulating Geospatial Data

7-22

Flatten the small circle using the flatearthpoly function.

[latf,lonf] = flatearthpoly(latc,lonc);

Plot the cut circle that you just generated as a magenta line.

plotm(latf,lonf,'m')

 Remove Longitude Coordinate Discontinuities at Date Line Crossings

7-23

Generate a second small circle that does not include a pole.

[latc1 lonc1] = scircle1(20, 170, 30);

Flatten the circle and plot it as a red line. Note that the second small circle, which does not cover a
pole, is clipped into two pieces along the date line. The polygon for the first small circle is plotted in
plane coordinates to illustrate its flattened shape. The flatearthpoly function assumes that the
interior of the polygon being flattened is in the hemisphere that contains most of its edge points. Thus
a polygon produced by flatearthpoly does not cover more than a hemisphere.

[latf1,lonf1] = flatearthpoly(latc1,lonc1);
plotm(latf1,lonf1,'r')

7 Manipulating Geospatial Data

7-24

See Also
flatearthpoly | ispolycw | poly2ccw | poly2cw

More About
• “Create and Display Polygons” on page 2-12

 Remove Longitude Coordinate Discontinuities at Date Line Crossings

7-25

Polygon Buffer Zones
A buffer zone is the area within a specified distance of a map feature. For vector geodata, buffer
zones are constructed as polygons. A buffer zone can be defined as the locus of points within a
certain distance of the boundary of the feature polygon, either inside or outside the polygon. Buffer
zones form equidistant contour lines around objects.

The bufferm function computes and returns vectors that represent a set of points that define a
buffer zone. It forms the buffer by placing small circles at the vertices of the polygon and rectangles
along each of its line segments, and applying a polygon union set operation to these objects.

Generate Buffer Internal to Polygon
This example shows how to use the bufferm function to generate a buffer zone internal to a land
area polygon.

Import Madagascar polygon shape.

madagascar = shaperead('landareas','UseGeoCoords',true, ...
 'Selector', {@(name)strcmpi(name,'Madagascar'),'Name'});

Create a map showing Madagascar.

figure
worldmap('madagascar')
geoshow(madagascar)

7 Manipulating Geospatial Data

7-26

Use bufferm to create a buffer zone that extends 0.75 degrees inland from the coast of Madagascar.

madlat = madagascar.Lat;
madlon = madagascar.Lon;
bufwidth = 0.75;
direction = 'in';
[latbuf,lonbuf] = bufferm(madlat,madlon,bufwidth,direction);

Show the buffer zone in green.

geoshow(latbuf,lonbuf,'DisplayType','polygon','FaceColor','green')

 Polygon Buffer Zones

7-27

Trim Vectors to Preserve Polygonal Patches
This example shows how to trim vectors to form lines and polygons using the maptriml and
maptrimp functions. It is not unusual for vector data to extend beyond the geographic region
currently of interest. For example, you might have coastline data for the entire world, but are
interested in mapping Australia only. In this and other situations, you might want to eliminate
unnecessary data from the workspace and from calculations in order to save memory or to speed up
processing and display. Line data and patch data need to be trimmed differently. You can trim line
data by simply removing points outside the region of interest by clipping lines at the map frame or to
some other defined region. Patch data requires a more complicated method to ensure that the patch
objects are correctly formed. If you want to handle vectors as line data, the maptriml function
returns variables containing only those points that lie within the defined region. If, instead, you want
to maintain polygon format, use the maptrimp function. Be aware, however, that patch-trimmed data
is usually larger and more expensive to compute.

Note: When drawing maps, Mapping Toolbox display functions automatically trim vector geodata to
the region specified by the frame limits (FLatLimit and FLonLimit map axes properties) for
azimuthal projections, or to frame or map limits (MapLatLimit and MapLonLimit map axes
properties) for nonazimuthal projections. The trimming is done internally in the display routine,
keeping the original data intact.

Load the coastlines MAT-file. This file contains data for the entire world.

load coastlines

Define a region-of-interest centered on Australia.

latlim = [-50 0];
lonlim = [105 160];

Use maptriml to delete all line data outside these limits, producing line vectors.

[linelat,linelon] = maptriml(coastlat,coastlon,latlim,lonlim);

Use maptrimp to delete all polygon data outside these limits, producing polygon vectors.

[polylat,polylon] = maptrimp(coastlat,coastlon,latlim,lonlim);

Examine the variables to see how much data has been reduced. The clipped data is only 10% as large
as the original data set.

whos

 Name Size Bytes Class Attributes

 coastlat 9865x1 78920 double
 coastlon 9865x1 78920 double
 latlim 1x2 16 double
 linelat 977x1 7816 double
 linelon 977x1 7816 double
 lonlim 1x2 16 double
 polylat 961x1 7688 double
 polylon 961x1 7688 double

Plot the trimmed patch vectors using a Miller projection.

7 Manipulating Geospatial Data

7-28

axesm('MapProjection', 'miller', 'Frame', 'on',...
'FlatLimit', latlim, 'FlonLimit', lonlim)
patchesm(polylat, polylon, 'c')

Plot the trimmed line vectors to see that they conform to the patches.

plotm(linelat, linelon, 'm')

 Trim Vectors to Preserve Polygonal Patches

7-29

7 Manipulating Geospatial Data

7-30

Simplify Vector Coordinate Data
Avoiding visual clutter in composing maps is an essential part of cartographic presentation. In
cartography, this is described as map generalization, which involves coordinating many techniques,
both manual and automated. Limiting the number of points in vector geodata is an important part of
generalizing maps, and is especially useful for conditioning cartographic data, plotting maps at small
scales, and creating versions of geodata for use at small scales.

An easy, but naive, approach to point reduction is to discard every nth element in each coordinate
vector (simple decimation). However, this can result in poor representations of the original shapes.
The toolbox provides a function to eliminate insignificant geometric detail in linear and polygonal
objects, while still maintaining accurate representations of their shapes. The reducem function
implements a powerful line simplification algorithm (known as Douglas-Peucker) that intelligently
selects and deletes visually redundant points.

The reducem function takes latitude and longitude vectors, plus an optional linear tolerance
parameter as arguments, and outputs reduced (simplified) versions of the vectors, in which deviations
perpendicular to local "trend lines" in the vectors are all greater than the tolerance criterion.
Endpoints of vectors are preserved. Optional outputs are an error measure and the tolerance value
used (it is computed when you do not supply a value). For an example, see “Simplify Polygon and Line
Data” on page 7-32

Note Simplified line data might not always be appropriate for display. If all or most intermediate
points in a feature are deleted, then lines that appear straight in one projection can be incorrectly
displayed as straight lines in others, and separate lines can be caused to intersect. In addition, when
you are reducing data over large world regions, the effective degree of reduction near the poles are
less than that achieved near the equator, due to the fact that the algorithm treats geographic
coordinates as if they were planar.

 Simplify Vector Coordinate Data

7-31

Simplify Polygon and Line Data
This example shows how to simplify polygon and line data using the reducem function. Simplifying
polygon and line data can speed up certain calculations without making any noticeable impact on the
data. One way to approach simplification is to use reducem with the default tolerance value at first
and view the output. If the results do not meet your requirements, repeat the operation, increasing or
decreasing the tolerance value to achieve the result you desire. reducem returns the tolerance value
used. For more information about vector data simplification, see “Simplify Vector Coordinate Data” on
page 7-31.

Simplify Line Data Using Default Settings

Extract Massachusetts coastlines and state borders from the usastatehi.shp shapefile.

ma = shaperead('usastatehi.shp','UseGeoCoords',true, ...
 'Selector', {@(name)strcmpi(name,'Massachusetts'),'Name'});
masslat = ma.Lat;
masslon = ma.Lon;

The result is a pair of vectors that outline the state with 957 vertices.

numel(masslat)

ans = 957

Simplify the outline using the reducem function with the default tolerance value.

[masslat1, masslon1, cerr, tol] = reducem(masslat', masslon');

Inspect the results. The number of vertices has been reduced to 252. The vectors have been reduced
to about a quarter of their original lengths.

numel(masslat1)

ans = 252

numel(masslat1)/numel(masslat)

ans = 0.2633

Examine the error and tolerance values returned by reducem. The cerr value indicates that
reducem has reduced the total length of the outline by about 3.3 percent. The tolerance that
reducem used to achieve this reduction was 0.006 degrees, or about 660 meters.

[cerr tol]

ans = 1×2

 0.0331 0.0060

Plot the reduced outline in red over the original outline in blue, using geoshow. At this resolution, it's
hard to see any difference between the original outline and the reduced outline.

figure
axesm('MapProjection', 'eqdcyl', 'MapLatLim', [41.1 43.0],...
'MapLonLim', [-73.6, -69.8], 'Frame', 'off', 'Grid', 'off');

7 Manipulating Geospatial Data

7-32

geoshow(masslat, masslon, 'DisplayType', 'line', 'color', 'blue')
geoshow(masslat1, masslon1, 'DisplayType', 'line', 'color', 'red')

To get a better look at the two outlines, use xlim and ylim to zoom in on a portion of the map.
Notice how the reduced outline conforms to the general contours of the original map but loses a lot of
the detail.

axesm('MapProjection', 'eqdcyl', 'MapLatLim', [41.1 43.0],...
'MapLonLim', [-73.6, -69.8], 'Frame', 'off', 'Grid', 'off');
xlim([0.0104 0.0198])
ylim([0.7202 0.7264])
geoshow(masslat, masslon, 'DisplayType', 'line', 'color', 'blue')
geoshow(masslat1, masslon1, 'DisplayType', 'line', 'color', 'red')

 Simplify Polygon and Line Data

7-33

Simplify Line Data Changing the Default Tolerance Value

Perform the operation again, this time doubling the tolerance value.

[masslat2,masslon2,cerr2,tol2] = reducem(masslat', masslon', 0.012);
numel(masslat2)

ans = 157

numel(masslat2)/numel(masslat)

ans = 0.1641

Examine the error and tolerance values returned by reducem. This time, the cerr value indicates
that reducem has reduced the total length of the outline by about 5.2 percent. The tolerance that
reducem used to achieve this reduction was 0.012 degrees.

[cerr2 tol2]

ans = 1×2

 0.0517 0.0120

Plot this reduced outline in dark green over the original outline in blue. Note how this reduced
outline maintains the general shape of the original map but loses much of the fine detail.

geoshow(masslat2, masslon2, 'DisplayType', 'line', 'color', [0 .6 0])

7 Manipulating Geospatial Data

7-34

Simplify Line Data Increasing the Tolerance Again

Increase the tolerance to 0.1 degrees.

[masslat3, masslon3, cerr3, tol3] = reducem(masslat', masslon', 0.1);

Plot this reduced outline in black. Note how this reduced map only retains the broadest elements of
the original shape and loses much of the detail.

geoshow(masslat3, masslon3, 'DisplayType', 'line', 'color', 'black')

 Simplify Polygon and Line Data

7-35

7 Manipulating Geospatial Data

7-36

Convert Vector Data to Raster Format
You can convert latitude-longitude vector data to a grid at any resolution you choose to make a raster
base map or grid layer. Certain Mapping Toolbox GUI tools help you do some of this, but you can also
perform vector-to-raster conversions from the command line. The principal function for gridding
vector data is vec2mtx, which allocates lines to a grid of any size you indicate, marking the lines with
1s and the unoccupied grid cells with 0s. The grid contains doubles, but if you want a logical grid (see
“Data Grids as Logical Variables” on page 7-44) cast the result to be a logical array. To see an
example, view “Creating Data Grids from Vector Data” on page 7-37.

If the vector data consists of polygons (patches), the gridded outlines are all hollow. You can
differentiate them using the encodem function, calling it with an array of rows, columns, and seed
values to produce a new grid containing polygonal areas filled with the seed values to replace the
binary values generated by vec2mtx. To see an example, view “Rasterize Polygons Interactively” on
page 7-42.

Creating Data Grids from Vector Data
This example shows how to convert vector data to raster data using the vec2mtx function. The
example uses patch data for Indiana from the usastatehi shapefile. For more information, see
“Convert Vector Data to Raster Format” on page 7-37.

Use shaperead to get the patch data for the boundary.

indiana = shaperead('usastatehi.shp',...
 'UseGeoCoords', true,...
 'Selector', {@(name)strcmpi('Indiana',name),'Name'});
inLat = indiana.Lat;
inLon = indiana.Lon;

Convert the vectors to a regular data grid using vec2mtx. Set the grid density to be 40 cells per
degree. Rasterize the boundary and generate a geographic raster reference object for it.

gridDensity = 40;
[inGrid,R] = vec2mtx(inLat,inLon,gridDensity);

Make a map of the data grid in contrasting colors.

figure
axesm eqdcyl
meshm(inGrid,R)
colormap jet(4)

 Convert Vector Data to Raster Format

7-37

Set up the map limits.

setm(gca,'Flatlimit',R.LatitudeLimits,'FlonLimit',R.LongitudeLimits)
tightmap

7 Manipulating Geospatial Data

7-38

Specify the seed point and seed value. To fill (recode) the interior of Indiana, you need a seed point
(which must be identified by row and column) and a seed value (to be allocated to all cells within the
polygon). Select the middle row and column of the grid and choose an index value of 3 to identify the
territory when calling encodem to generate a new grid. The last argument (1) identifies the code for
boundary cells, where filling should halt.

inPt = round([size(inGrid)/2,3]);
inGrid3 = encodem(inGrid,inPt,1);

Clear and redraw the map using the filled grid.

meshm(inGrid3,R)

 Convert Vector Data to Raster Format

7-39

Plot the original vectors on the grid to see how well data was rasterized. You can use the Zoom tool
on the figure window to examine the gridding results more closely.

plotm(inLat,inLon,'k')

7 Manipulating Geospatial Data

7-40

 Convert Vector Data to Raster Format

7-41

Rasterize Polygons Interactively
This example shows how to use the encodem function with seed points found using the getseeds
function to fill multiple polygons after they are gridded. The example extracts data for Indiana and its
surrounding states, and then deletes unwanted areas of these polygons using maptrimp .

Extract data for Indiana and its neighbors by passing their names in a cell array to shaperead.

pcs = {'Indiana', 'Michigan', 'Ohio', 'Kentucky', 'Illinois'};

centralUS = shaperead('usastatelo.shp',...
 'UseGeoCoords', true,...
 'Selector',{@(name)any(strcmpi(name,pcs),2), 'Name'});

meLat = [centralUS.Lat];
meLon = [centralUS.Lon];

Rasterize the trimmed polygons at a 1-arc-minute resolution (60 cells per degree), also producing a
raster reference object.

[meGrid,meR] = vec2mtx(meLat,meLon,60);

Set up a map figure and display the binary grid you just created.

figure
axesm eqdcyl
geoshow(meLat,meLon,'Color','black');

Use the getseeds function to select five seed points, one in each of the outlines of Indiana,
Michigan, Ohio, Kentucky, and Illinois. The getseeds function changes the cursor to a cross-hairs.
You pick seed points by positioning the cursor within a state boundary and clicking the mouse. The

7 Manipulating Geospatial Data

7-42

getseeds function returns control to the command prompt after you pick five locations in the figure
window.

[row,col,val] = getseeds(meGrid,meR,5,[3 4 5 6 7]);

Fill each state with a unique value, producing a new grid, using the encodem function.

meGrid5 = encodem(meGrid,[row col val],1);

Display meGrid5 to see the result.

clma
meshm(meGrid5,meR)

 Rasterize Polygons Interactively

7-43

Data Grids as Logical Variables
You can apply logical criteria to numeric data grids to create logical grids. Logical grids are data
grids consisting entirely of 1s and 0s. You can create them by performing logical tests on data grid
variables. The resulting binary grid is the same size as the original grid(s) and can use the same
referencing vector, as the following hypothetical data operation illustrates:

logicalgrid = (realgrid > 0);

This transforms all values greater than 0 into 1s and all other values to 0s. You can apply multiple
conditions to a grid in one operation:

logicalgrid = (realgrid >- 100)&(realgrid < 100);

If several grids are the same size and share the same referencing vector (i.e., the grids are co-
registered), you can create a logical grid by testing joint conditions, treating the individual data grids
as map layers:

logicalgrid = (population > 10000)&(elevation < 400)&...
 (country == nigeria);

Several Mapping Toolbox functions enable the creation of logical grids using logical and relational
operators. Grids resulting from such operations contain logical rather than numeric values (which
reduce storage by a factor of 8), but might need to be cast to double in order to be used in certain
functions. Use the ones and zeros functions to create grids of all 1s and all 0s.

7 Manipulating Geospatial Data

7-44

Compute Elevation Profile Along Straight Line
Compute an elevation profile along a straight line using the mapprofile function. Calculating data
values along a path is a common application when working with gridded geodata. For example, you
might want to calculate the terrain height along a transect, a road, or a flight path. The mapprofile
function does this, based on numerical data defining a set of waypoints, or by defining them
interactively via graphic input from a map display. Values computed for the resulting profile can be
displayed in a new plot or returned as output arguments for further analysis or display.

Load elevation data and a geographic cells reference object for the Korean peninsula.

load korea5c

Get the latitude and longitude limits of the elevation data and set up a world map. Display the map
and apply a colormap appropriate for elevation data.

latlim = korea5cR.LatitudeLimits;
lonlim = korea5cR.LongitudeLimits;
worldmap(latlim, lonlim)
meshm(korea5c,korea5cR,size(korea5c),korea5c)
demcmap(korea5c)

Define endpoints for a straight-line transect through the region. Then, compute the elevation profile
using mapprofile. By default, mapprofile uses bilinear interpolation along a great circle track.

 Compute Elevation Profile Along Straight Line

7-45

plat = [40.5 30.7];
plon = [121.5 133.5];
[z,rng,lat,lon] = mapprofile(korea5c,korea5cR,plat,plon);

Plot the transect in 3-D so it follows the terrain.

plot3m(lat,lon,z,'w','LineWidth',2)

Plot the transect range and elevation on a set of Cartesian axes.

figure
plot(rng,z,'r')

7 Manipulating Geospatial Data

7-46

 Compute Elevation Profile Along Straight Line

7-47

Compute Gradient, Slope, and Aspect from Regular Data Grid
This example shows how to compute the gradient, slope, and aspect for a regular data grid. The
gradient components are the change in the grid variable per meter of distance in the north and east
directions. Slope is defined as the change in elevation per unit distance along the path of steepest
ascent or descent from a grid cell to one of its eight immediate neighbors, expressed as the
arctangent. If the grid contains elevations in meters, the aspect and slope are the angles of the
surface normal clockwise from north and up from the horizontal. The gradientm function uses a
finite-difference approach to compute gradients for either a regular or a georeferenced data grid. The
function returns the components of the gradient in the north and east directions (i.e., north-to-south,
east-to-west), as well as slope and aspect. The angles are in units of degrees by default.

Construct a 100-by-100 grid using the peaks function and construct a referencing matrix for it.

datagrid = 500*peaks(100);
gridrv = [1000 0 0];

Generate grids containing aspect, slope, gradients to north, and gradients to east.

[aspect,slope,gradN,gradE] = gradientm(datagrid,gridrv);

Map the surface data in a cylindrical equal area projection. Start with the original elevations.

axesm eqacyl
meshm(datagrid,gridrv)
colormap (jet(64))
colorbar('vert')
title('Peaks: elevation')
axis square

7 Manipulating Geospatial Data

7-48

Clear the frame and display the slope grid.

clma
meshm(slope,gridrv)
colorbar('vert');
title('Peaks: slope')

 Compute Gradient, Slope, and Aspect from Regular Data Grid

7-49

Map the aspect grid.

clma
meshm(aspect,gridrv)
colorbar('vert');
title('Peaks: aspect')

7 Manipulating Geospatial Data

7-50

Map the gradients to the north.

clma
meshm(gradN,gridrv)
colorbar('vert');
title('Peaks: North gradient')

 Compute Gradient, Slope, and Aspect from Regular Data Grid

7-51

Map the gradients to the east.

clma
meshm(gradE,gridrv)
colorbar('vert');
title('Peaks: East Gradient')

7 Manipulating Geospatial Data

7-52

 Compute Gradient, Slope, and Aspect from Regular Data Grid

7-53

Using Map Projections and Coordinate
Systems

All geospatial data must be flattened onto a display surface in order to visually portray what exists
where. The mathematics and craft of map projection are central to this process. Although there is no
limit to the ways geodata can be projected, conventions, constraints, standards, and applications
generally prescribe its usage. This chapter describes what map projections are, how they are
constructed and controlled, their essential properties, and some possibilities and limitations.

• “Map Projections and Distortions” on page 8-2
• “Quantitative Properties of Map Projections” on page 8-4
• “The Three Main Families of Map Projections” on page 8-5
• “Projection Aspect” on page 8-9
• “Projection Parameters” on page 8-16
• “Visualize Spatial Error Using Tissot Indicatrices” on page 8-22
• “Visualize Projection Distortions Using Isolines” on page 8-26
• “Quantify Map Distortions at Point Locations” on page 8-30
• “Rotational Transformations on the Globe” on page 8-34
• “Create a UTM Map” on page 8-38
• “Set UTM Parameters Interactively” on page 8-42
• “Work in UTM Without a Displayed Map” on page 8-45
• “Use the Transverse Aspect to Map Across UTM Zones” on page 8-47
• “Summary and Guide to Projections” on page 8-49
• “Transform Coordinates to a Different Projected CRS” on page 8-62
• “Project and Display Raster Data” on page 8-65

If you are not acquainted with the types, properties, and uses of map projections, read the first four
sections. When constructing maps—especially in an environment in which a variety of projections are
readily available—it is important to understand how to evaluate projections to select one appropriate
to the contents and purpose of a given map.

8

Map Projections and Distortions
Humans have known that the shape of the Earth resembles a sphere and not a flat surface since
classical times, and possibly much earlier than that. If the world were indeed flat, cartography would
be much simpler because map projections would be unnecessary.

A map projection is a procedure that flattens a curved surface such as the Earth onto a plane. Usually
this is done through an intermediate surface such as a cylinder or a cone, which is then unwrapped to
lie flat. Consequently, map projections are classified as cylindrical, conical, and azimuthal (a direct
transformation of the surface of part of a spheroid to a circle). See “The Three Main Families of Map
Projections” on page 8-5 for discussions and illustrations of how these transformations work. The
toolbox can project both vector data and raster data.

Get a map projection by using a projcrs object. For example, get information about a raster data file
by creating a RasterInfo object. Then, find the projection method by querying the
CoordinateReferenceSystem property of the object.

info = georasterinfo('boston.tif');
info.CoordinateReferenceSystem.ProjectionMethod

ans =

 "Lambert Conic Conformal (2SP)"

Alternatively, Mapping Toolbox includes a library of map projections that you can control with axesm
and defaultm. Some are suitable for showing the entire world, others for half of it, and some are
only useful over small areas. For more information, see “Projection Distortions” on page 8-2. For a
list of available projections, see “Summary and Guide to Projections” on page 8-49. If you want to
use a projection that is not included in this list, create a projcrs object instead.

Project coordinates by using the projfwd function and unproject coordinates using the projinv
function.

Use Inverse Projection to Recover Geographic Coordinates
When geospatial data has plane coordinates (i.e., it comes preprojected, as do many satellite images
and municipal map data sets), it is usually possible to recover geographic coordinates if the
projection parameters and datum are known. Using this information, you can perform an inverse
projection, running the projection backward to solve for latitude and longitude. The toolbox can
perform accurate inverse projections for any of its projection functions as long as the original
projection parameters and reference ellipsoid (or spherical radius) are provided to it.

Note Converting a position given in latitude-longitude to its equivalent in a projected map coordinate
system involves converting from units of angle to units of length. Likewise, unprojecting a point
position changes its units from those of length to those of angle). Unit conversion functions such as
deg2km and km2deg also convert coordinates between angles and lengths, but do not transform the
space they inhabit. You cannot use them to project or unproject coordinate data.

Projection Distortions
All map projections introduce distortions compared to maps on globes. Distortions are inherent in
flattening the sphere, and can take several forms:

8 Using Map Projections and Coordinate Systems

8-2

• Areas — Relative size of objects (such as continents)
• Directions — Azimuths (angles between points and the poles)
• Distances — Relative separations of points (such as a set of cities)
• Shapes — Relative lengths and angles of intersection

Some classes of map projections maintain areas, and others preserve local shapes, distances, or
directions. No projection, however, can preserve all these characteristics. Choosing a projection thus
always requires compromising accuracy in some way, and that is one reason why so many different
map projections have been developed. For any given projection, however, the smaller the area being
mapped, the less distortion it introduces if properly centered. Mapping Toolbox tools help you to
quantify and visualize projection distortions.

References
[1] Snyder, J. P. "Map Projections – A working manual." U.S. Geological Survey Professional Paper

1395. Washington, D.C.: U.S. Government Printing Office, 1987. doi:10.3133/pp1395

[2] Maling, D. H. Coordinate Systems and Map Projections. 2nd ed. New York: Pergamon Press, 1992.

[3] Snyder, J. P., and P. M. Voxland. "An album of map projections." U.S. Geological Survey Professional
Paper 1453. Washington, D.C.; U.S. Government Printing Office, 1989. doi:10.3133/pp1453

[4] Snyder, J. P. Flattening the Earth – 2000 Years of Map Projections. Chicago, IL: University of
Chicago Press, 1993.

See Also

More About
• “Quantitative Properties of Map Projections” on page 8-4
• “Projection Parameters” on page 8-16

 Map Projections and Distortions

8-3

Quantitative Properties of Map Projections
A sphere, unlike a polyhedron, cone, or cylinder, cannot be reformed into a plane. In order to portray
the surface of a round body on a two-dimensional flat plane, you must first define a developable
surface (i.e., one that can be cut and flattened onto a plane without stretching or creasing) and devise
rules for systematically representing all or part of the spherical surface on the plane. Any such
process inevitably leads to distortions of one kind or another. Five essential characteristic properties
of map projections are subject to distortion: shape, distance, direction, scale, and area. No projection
can retain more than one of these properties over a large portion of the Earth. This is not because a
sufficiently clever projection has yet to be devised; the task is physically impossible. The technical
meanings of these terms are described below.

• Shape (also called conformality)

Shape is preserved locally (within "small" areas) when the scale of a map at any point on the map
is the same in any direction. Projections with this property are called conformal. In them,
meridians (lines of longitude) and parallels (lines of latitude) intersect at right angles. An older
term for conformal is orthomorphic (from the Greek orthos, straight, and morphe, shape).

• Distance (also called equidistance)

A map projection can preserve distances from the center of the projection to all other places on
the map (but from the center only). Such a map projection is called equidistant. Maps are also
described as equidistant when the separation between parallels is uniform (e.g., distances along
meridians are maintained). No map projection maintains distance proportionality in all directions
from any arbitrary point.

• Direction

A map projection preserves direction when azimuths (angles from the central point or from a point
on a line to another point) are portrayed correctly in all directions. Many azimuthal projections
have this property.

• Scale

Scale is the ratio between a distance portrayed on a map and the same extent on the Earth. No
projection faithfully maintains constant scale over large areas, but some are able to limit scale
variation to one or two percent.

• Area (also called equivalence)

A map can portray areas across it in proportional relationship to the areas on the Earth that they
represent. Such a map projection is called equal-area or equivalent. Two older terms for equal-
area are homolographic or homalographic (from the Greek homalos or homos, same, and graphos,
write), and authalic (from the Greek autos, same, and ailos, area), and equireal. Note that no map
can be both equal-area and conformal.

For a complete description of the properties that specific map projections maintain, see “Summary
and Guide to Projections” on page 8-49.

8 Using Map Projections and Coordinate Systems

8-4

The Three Main Families of Map Projections
In this section...
“Unwrapping the Sphere to a Plane” on page 8-5
“Cylindrical Projections” on page 8-5
“Conic Projections” on page 8-6
“Azimuthal Projections” on page 8-7

Unwrapping the Sphere to a Plane
Mapmakers have developed hundreds of map projections, over several thousand years. Three large
families of map projection, plus several smaller ones, are generally acknowledged. These are based
on the types of geometric shapes that are used to transfer features from a sphere or spheroid to a
plane. Map projections are based on developable surfaces, and the three traditional families consist
of cylinders, cones, and planes. They are used to classify the majority of projections, including some
that are not analytically (geometrically) constructed. In addition, a number of map projections are
based on polyhedra. While polyhedral projections have interesting and useful properties, they are not
described in this guide.

Which developable surface to use for a projection depends on what region is to be mapped, its
geographical extent, and the geometric properties that areas, boundaries, and routes need to have,
given the purpose of the map. The following sections describe and illustrate how the cylindrical,
conic, and azimuthal families of map projections are constructed and provides some examples of
projections that are based on them.

Cylindrical Projections
A cylindrical projection is produced by wrapping a cylinder around a globe representing the Earth.
The map projection is the image of the globe projected onto the cylindrical surface, which is then
unwrapped into a flat surface. When the cylinder aligns with the polar axis, parallels appear as
horizontal lines and meridians as vertical lines. Cylindrical projections can be either equal-area,
conformal, or equidistant. The following figure shows a regular cylindrical or normal aspect
orientation in which the cylinder is tangent to the Earth along the Equator and the projection radiates
horizontally from the axis of rotation. The projection method is diagrammed on the left, and an
example is given on the right (equal-area cylindrical projection, normal/equatorial aspect).

 The Three Main Families of Map Projections

8-5

For a description of projection aspect, see “Projection Aspect” on page 8-9.

Some widely used cylindrical map projections are

• Equal-area cylindrical projection
• Equidistant cylindrical projection
• Mercator projection
• Miller projection
• Plate Carrée projection
• Universal transverse Mercator projection

Pseudocylindrical Map Projections

All cylindrical projections fill a rectangular plane. Pseudocylindrical projection outlines tend to be
barrel-shaped rather than rectangular. However, they do resemble cylindrical projections, with
straight and parallel latitude lines, and can have equally spaced meridians, but meridians are curves,
not straight lines. Pseudocylindrical projections can be equal-area, but are not conformal or
equidistant.

Some widely-used pseudocylindrical map projections are

• Eckert projections (I-VI)
• Goode homolosine projection
• Mollweide projection
• Quartic authalic projection
• Robinson projection
• Sinusoidal projection

Conic Projections
A conic projection is derived from the projection of the globe onto a cone placed over it. For the
normal aspect, the apex of the cone lies on the polar axis of the Earth. If the cone touches the Earth
at just one particular parallel of latitude, it is called tangent. If made smaller, the cone will intersect
the Earth twice, in which case it is called secant. Conic projections often achieve less distortion at
mid- and high latitudes than cylindrical projections. A further elaboration is the polyconic projection,
which deploys a family of tangent or secant cones to bracket a succession of bands of parallels to
yield even less scale distortion. The following figure illustrates conic projection, diagramming its
construction on the left, with an example on the right (Albers equal-area projection, polar aspect).

8 Using Map Projections and Coordinate Systems

8-6

Some widely-used conic projections are

• Albers Equal-area projection
• Equidistant projection
• Lambert conformal projection
• Polyconic projection

Azimuthal Projections
An azimuthal projection is a projection of the globe onto a plane. In polar aspect, an azimuthal
projection maps to a plane tangent to the Earth at one of the poles, with meridians projected as
straight lines radiating from the pole, and parallels shown as complete circles centered at the pole.
Azimuthal projections (especially the orthographic) can have equatorial or oblique aspects. The
projection is centered on a point, that is either on the surface, at the center of the Earth, at the
antipode, some distance beyond the Earth, or at infinity. Most azimuthal projections are not suitable
for displaying the entire Earth in one view, but give a sense of the globe. The following figure
illustrates azimuthal projection, diagramming it on the left, with an example on the right
(orthographic projection, polar aspect).

 The Three Main Families of Map Projections

8-7

Some widely used azimuthal projections are

• Equidistant azimuthal projection
• Gnomonic projection
• Lambert equal-area azimuthal projection
• Orthographic projection
• Stereographic projection
• Universal polar stereographic projection

8 Using Map Projections and Coordinate Systems

8-8

Projection Aspect
A map projection's aspect is its orientation on the page or display screen. If north or south is straight
up, the aspect is said to be equatorial; for most projections this is the normal aspect. When the
central axis of the developable surface is oriented east-west, the projection's aspect is transverse.
Projections centered on the North Pole or the South Pole have a polar aspect, regardless of what
meridian is up. All other orientations have an oblique aspect. So far, the examples and discussions of
map displays have focused on the normal aspect, by far the most commonly used. This section
discusses the use of transverse, oblique, and skew-oblique aspects. For an example, see “Control the
Map Projection Aspect with an Orientation Vector” on page 8-11.

Projection aspect is primarily of interest in the display of maps. However, this section also discusses
how the idea of projection aspect as a coordinate system transformation can be applied to map
variables for analytical purposes.

Note The projection aspect discussed in this section is different from the map axes Aspect property.
The map axes Aspect property controls the orientation of the figure axes. For instance, if a map is in
a normal setting with a landscape orientation, a switch to a transverse aspect rotates the axes by
90°, resulting in a portrait orientation. To display a map in the transverse aspect, combine the
transverse aspect property with a -90° skew angle. The skew angle is the last element of the
Origin parameter. For example, a [0 0 -90] vector would produce a transverse map.

The Orientation Vector
A map axes Origin property is a vector describing the geometry of the displayed projection. This
Mapping Toolbox property is called an orientation vector (prior versions called it the origin vector).
The vector takes this form:

orientvec = [latitude longitude orientation]

The latitude and longitude represent the geographic coordinates of the center point of the display
from which the projection is calculated. The orientation refers to the clockwise angle from straight up
at which the North Pole points from this center point. The default orientation vector is [0 0 0]; that is,
the projection is centered on the geographic point (0°,0°) and the North Pole is straight up from this
point. Such a display is in a normal aspect. Changes to only the longitude value of the orientation
vector do not change the aspect; thus, a normal aspect is one centered on the Equator in latitude with
an orientation of 0°.

Both of these Miller projections have normal aspects, despite having different orientation vectors:

 Projection Aspect

8-9

This makes sense if you think about a simple, true cylindrical projection. This is the projection of the
globe onto a cylinder wrapped around it. For normal aspects, this cylinder is tangent to the globe at
the Equator, and changing the origin longitude simply corresponds to rotating the sphere about the
longitudinal axis of the cylinder. If you continue with the wrapped-cylinder model, you can understand
the other aspects as well.

Following this description, a transverse projection can be thought of as a cylinder wrapped around
the globe tangent at the poles and along a meridian and its antipodal meridian. Finally, when such a
cylinder is tangent along any great circle other than a meridian, the result is an oblique projection.

Here are diagrams of the four cylindrical map orientations, or aspects:

8 Using Map Projections and Coordinate Systems

8-10

Of course, few projections are true cylindrical projections, but the concept of the wrapped cylinder is
nonetheless a convenient way to describe aspect.

For an example that uses the orientation vector, see “Control the Map Projection Aspect with an
Orientation Vector” on page 8-11.

Control the Map Projection Aspect with an Orientation Vector
The best way to gain an understanding of projection aspect is to experiment with orientation vectors.
The following example uses a pseudocylindrical projection, the sinusoidal.

Create a default map axes in a sinusoidal projection, turn on the graticule, and display the coast data
set as filled polygons. The continents and graticule appear in normal aspect.

figure
axesm sinusoid
framem on
gridm on
tightmap tight
load coastlines
patchm(coastlat,coastlon,'g')
title('Normal aspect: orientation vector = [0 0 0]')

 Projection Aspect

8-11

Inspect the orientation vector from the map axes. By default, the origin is set at (0°E, 0°N), oriented
0° from vertical.

getm(gca,'Origin')

ans = 1×3

 0 0 0

In the normal aspect, the North Pole is at the top of the image. To create a transverse aspect, imagine
pulling the North Pole down to the center of the display, which was originally occupied by the point
(0°,0°). Do this by setting the first element of Origin parameter to a latitude of 90°N. The shape of
the frame is unaffected. This is still a sinusoidal projection.

setm(gca,'Origin',[90 0 0])
title('Transverse aspect: orientation vector = [90 0 0]')

8 Using Map Projections and Coordinate Systems

8-12

The normal and transverse aspects can be thought of as limiting conditions. Anything else is an
oblique aspect. Conceptually, if you push the North Pole halfway back to its original position, that is,
to the position originally occupied by the point (45°N, 0°E) in the normal aspect, the result is a simple
oblique aspect. You can think of this as pulling the new origin (45°N, 0°) to the center of the image,
the place that (0°,0°) occupied in the normal aspect.

setm(gca,'Origin',[45 0 0])
title('Oblique aspect: orientation vector = [45 0 0]')

 Projection Aspect

8-13

The previous examples of projection aspect kept the aspect orientation at 0°. If you alter the
orientation, an oblique aspect becomes a skew-oblique orientation. Imagine the previous example
with an orientation of 45°. Think of this as pulling the new origin (45°N,0°E), down to the center of
the projection and then rotating the projection until the North Pole lies at an angle of 45° clockwise
from straight up with respect to the new origin. As in the previous example, the location (45°N,0°E)
still occupies the center of the map.

setm(gca,'Origin',[45 0 45])
title('Skew-Oblique aspect: orientation vector = [45 0 45]')

8 Using Map Projections and Coordinate Systems

8-14

The base projection can be thought of as a standard coordinate system, and the normal aspect
conforms to it. The features of a projection are maintained in any aspect, relative to the base
projection. As the preceding illustrations show, the outline (frame) does not change. Nondirectional
projection characteristics also do not change. For example, the sinusoidal projection is equal-area, no
matter what its aspect. Directional characteristics must be considered carefully, however. In the
normal aspect of the sinusoidal projection, scale is true along every parallel and the central meridian.
This is not the case for the skew-oblique aspect; however, scale is true along the paths of the
transformed parallels and meridian.

Any projection can be viewed in alternate aspects and this can often be quite useful. For example, the
transverse aspect of the Mercator projection is widely used in cartography, especially for mapping
regions with predominantly north-south extent. One candidate for such handling might be Chile.
Oblique Mercator projections might be used to map long regions that run neither north and south nor
east and west, such as New Zealand.

 Projection Aspect

8-15

Projection Parameters
Every projection has at least one parameter that controls how it transforms geographic coordinates
into planar coordinates. Some projections are rather fixed, and aside from the orientation vector and
nominal scale factor, have no parameters that the user should vary, as to do so would violate the
definition of the projection. For example, the Robinson projection has one standard parallel that is
fixed by definition at 38° North and South; the Cassini and Wetch projections cannot be constructed
in other than Normal aspect. In general, however, projections have several variable parameters. The
following section discusses map projection parameters and provides guidance for setting them.

Projection Characteristics Maps Can Have
In addition to the name of the projection itself, the parameters that a map projection can have are

• Aspect — Orientation of the projection on the display surface
• Center or Origin — Latitude and longitude of the midpoint of the display
• Scale Factor — Ratio of distance on the map to distance on the ground
• Standard Parallel(s) — Chosen latitude(s) where scale distortion is zero
• False Northing — Planar offset for coordinates on the vertical map axis
• False Easting — Planar offset for coordinates on the horizontal map axis
• Zone — Designated latitude-longitude quadrangle used to systematically partition the planet for

certain classes of projections

While not all projections require all these parameters, there will always be a projection aspect, origin,
and scale.

Other parameters are associated with the graphic expression of a projection, but do not define its
mathematical outcome. These include

• Map latitude and longitude limits
• Frame latitude and longitude limits

However, as certain projections are unable to map an entire planet, or become very distorted over
large regions, these limits are sometimes a necessary part of setting up a projection.

Determining Projection Parameters

In the following exercise, you define a map axes and examine default parameters for a cylindrical, a
conic, and an azimuthal projection.

1 Set up a default Mercator projection (which is cylindrical) and pass its handle to the getm
function to query projection parameters:

figure;
h=axesm('Mapprojection','mercator','Grid','on','Frame','on',...
'MlabelParallel',0,'PlabelMeridian',0,'mlabellocation',60,...
'meridianlabel','on','parallellabel','on')

The graticule and frame for the default map projection are shown below.

8 Using Map Projections and Coordinate Systems

8-16

2 Query the map axes handle using getm to inspect the properties that pertain to map projection
parameters. The principal ones are aspect, origin, scalefactor, nparallels,
mapparallels, falsenorthing, falseeasting, zone, maplatlimit, maplonlimit,
rlatlimit, and flonlimit:

getm(h,'aspect')

ans =
 normal

getm(h,'origin')

ans =
 0 0 0

getm(h,'scalefactor')

ans =
 1

getm(h,'nparallels')

ans =
 1

getm(h,'mapparallels')

ans =
 0

getm(h,'falsenorthing')

ans =

 Projection Parameters

8-17

 0

getm(h,'falseeasting')

ans =
 0

getm(h,'zone')

ans =
 []

getm(h,'maplatlimit')

ans =
 -86 86

getm(h,'maplonlimit')

ans =
 -180 180

getm(h,'Flatlimit')

ans =
 -86 86

getm(h,'Flonlimit')

ans =
 -180 180

For more information on these and other map axes properties, see the reference page for axesm.
3 Reset the projection type to equal-area conic ('eqaconic'). The figure is redrawn to reflect the

change. Determine the parameters that the toolbox changes in response:

setm(h,'Mapprojection', 'eqaconic')
getm(h,'aspect')

ans =
normal

getm(h,'origin')

ans =
 0 0 0

getm(h,'scalefactor')

ans =
 1

getm(h,'nparallels')

ans =
 2

8 Using Map Projections and Coordinate Systems

8-18

getm(h,'mapparallels')

ans =
 15 75

getm(h,'falsenorthing')

ans =
 0

getm(h,'falseeasting')

ans =
 0

getm(h,'zone')

ans =
 []

getm(h,'maplatlimit')

ans =
 -86 86

getm(h,'maplonlimit')

ans =
 -135 135

getm(h,'Flatlimit')

ans =
 -86 86

getm(h,'Flonlimit')

ans =
 -135 135

The eqaconic projection has two standard parallels, at 15° and 75°. It also has reduced
longitude limits (covering 270° rather than 360°). The resulting eqaconic graticule is shown
below.

4 Now set the projection type to Stereographic ('stereo') and examine the same properties as
you did for the previous projections:

 Projection Parameters

8-19

setm(h,'Mapprojection','stereo')
setm(gca,'MLabelParallel',0,'PLabelMeridian',0)
getm(h,'aspect')

ans =
normal

getm(h,'origin')

ans =
 0 0 0

getm(h,'scalefactor')

ans =
 1

getm(h,'nparallels')

ans =
 0

getm(h,'mapparallels')

ans =
 []

getm(h,'falsenorthing')

ans =
 0

getm(h,'falseeasting')

ans =
 0

getm(h,'zone')

ans =
 []

getm(h,'maplatlimit')

ans =
 -90 90

getm(h,'maplonlimit')

ans =
 -180 180

getm(h,'Flatlimit')

ans =
 -Inf 90

getm(h,'Flonlimit')

8 Using Map Projections and Coordinate Systems

8-20

ans =
 -180 180

The stereographic projection, being azimuthal, does not have standard parallels, so none are
indicated. The map limits do not change from the previous projection. The map figure is shown
below.

 Projection Parameters

8-21

Visualize Spatial Error Using Tissot Indicatrices
A standard method of visualizing the distortions introduced by the map projection is to display small
circles at regular intervals across the globe. After projection, the small circles appear as ellipses of
various sizes, elongations, and orientations. The sizes and shapes of the ellipses reflect the projection
distortions. Conformal projections have circular ellipses, while equal-area projections have ellipses of
the same area. This method was invented by Nicolas Tissot in the 19th century, and the ellipses are
called Tissot indicatrices in his honor. The measure is a tensor function of location that varies from
place to place, and reflects the fact that, unless a map is conformal, map scale is different in every
direction at a location.

Visualize Projection Distortions using Tissot Indicatrices
This example shows how to add Tissot indicatrices to a map display.

Set up a Sinusoidal projection in a skewed aspect, plotting the graticule.

figure
axesm sinusoid
gridm on
framem on
setm(gca,'Origin',[20 30 45])

Load the coast data set and plot it as green patches.

8 Using Map Projections and Coordinate Systems

8-22

load coastlines
patchm(coastlat,coastlon,'g')

Plot the default Tissot diagram. Notice that the circles vary considerably in shape. This indicates that
the Sinusoidal projection is not conformal. Despite the distortions, however the circles all cover equal
amounts of area on the map because the projection has the equal-area property. Default Tissot
diagrams are drawn with blue unfilled 100-point circles spaced 30 degrees apart in both directions.
The default circle radius is 1/10 of the current radius of the reference ellipsoid (by default that radius
is 1).

tissot

 Visualize Spatial Error Using Tissot Indicatrices

8-23

Clear the Tissot diagram, rotate the projection to a polar aspect, and plot a new Tissot diagram using
circles paced 20 degrees apart, half as big as before, drawn with 20 points, and drawn in red. In the
result, note that the circles are drawn faster because fewer points are computed for each one. Also
note that the distortions are still smallest close to the map origin, and still greatest near the map
frame.

clmo tissot
setm(gca,'Origin',[90 0 45])
tissot([20 20 .05 20],'Color','r')

8 Using Map Projections and Coordinate Systems

8-24

See Also
distortcalc | mdistort | tissot

More About
• “Quantitative Properties of Map Projections” on page 8-4
• “Visualize Projection Distortions Using Isolines” on page 8-26

 Visualize Spatial Error Using Tissot Indicatrices

8-25

Visualize Projection Distortions Using Isolines
This example shows how to visualize map projection distortions using isolines (contour lines). Since
distortions are rather orderly and vary continuously, they are well-suited for isolines. The mdistort
function can plot variations in angles, areas, maximum and minimum scale, and scale along parallels
and meridians, in units of percent deviation (except for angles for which degrees are used).

Create a Hammer projection map axes in normal aspect and plot a graticule and frame.

figure
axesm('MapProjection','hammer','Grid','on','Frame','on')

Load the coast data set and plot it as green patches.

load coastlines
patchm(coastlat,coastlon,'g')

8 Using Map Projections and Coordinate Systems

8-26

Plot contours of minimum-to-maximum scale ratios, using mdistort . Notice that the region of
minimum distortion is centered around (0,0).

mdistort('scaleratio')

 Visualize Projection Distortions Using Isolines

8-27

Repeat this diagram with a Bonne projection in a new figure window. Notice that the region of
minimum distortion is centered around (30,0) which is where the single standard parallel is. You can
toggle the isolines by typing mdistort or mdistort off .

figure
axesm('MapProjection','bonne','Grid','on','Frame','on')
patchm(coastlat,coastlon,'g')
mdistort('scaleratio')

8 Using Map Projections and Coordinate Systems

8-28

 Visualize Projection Distortions Using Isolines

8-29

Quantify Map Distortions at Point Locations
The tissot and mdistort functions provide synoptic visual overviews of different forms of map
projection error. Sometimes, however, you need numerical estimates of error at specific locations in
order to quantify or correct for map distortions. This is useful, for example, if you are sampling
environmental data on a uniform basis across a map, and want to know precisely how much area is
associated with each sample point, a statistic that will vary by location and be projection dependent.
Once you have this information, you can adjust environmental density and other statistics you collect
for areal variations induced by the map projection.

A Mapping Toolbox function returns location-specific map error statistics from the current projection
or an mstruct. The distortcalc function computes the same distortion statistics as mdistort
does, but for specified locations provided as arguments. You provide the latitude-longitude locations
one at a time or in vectors. The general form is

[areascale,angdef,maxscale,minscale,merscale,parscale] = ...
 distortcalc(mstruct,lat,long)

However, if you are evaluating the current map figure, omit the mstruct. You need not specify any
return values following the last one of interest to you.

Use distortcalc to Determine Map Projection Geometric Distortions
The following exercise uses distortcalc to compute the maximum area distortion for a map of
Argentina from the land areas data set.

1 Read the North and South America polygon:

Americas = shaperead('landareas','UseGeoCoords',true, ...
 'Selector', {@(name) ...
 strcmpi(name,{'north and south america'}),'Name'});

2 Set the spatial extent (map limits) to contain the southern part of South America and also include
an area closer to the South Pole:

mlatlim = [-72.0 -20.0];
mlonlim = [-75.0 -50.0];
[alat, alon] = maptriml([Americas.Lat], ...
 [Americas.Lon], mlatlim, mlonlim);

3 Create a Mercator cylindrical conformal projection using these limits, specify a five-degree
graticule, and then plot the outline for reference:

figure;
axesm('MapProjection','mercator','grid','on', ...
 'MapLatLimit',mlatlim,'MapLonLimit',mlonlim,...
 'MLineLocation',5, 'PLineLocation',5)
plotm(alat,alon,'b')

The map looks like this:

8 Using Map Projections and Coordinate Systems

8-30

4 Sample every tenth point of the patch outline for analysis:

alats = alat(1:10:numel(alat));
alons = alon(1:10:numel(alat));

5 Compute the area distortions (the first value returned by distortcalc) at the sample points:

adistort = distortcalc(alats, alons);
6 Find the range of area distortion across Argentina (percent of a unit area on, in this case, the

equator):

adistortmm = [min(adistort) max(adistort)]

adistortmm =
 1.1790 2.7716

As Argentina occupies mid southern latitudes, its area on a Mercator map is overstated, and the
errors vary noticeably from north to south.

7 Remove any NaNs from the coordinate arrays and plot symbols to represent the relative
distortions as proportional circles, using scatterm:

nanIndex = isnan(adistort);
alats(nanIndex) = [];
alons(nanIndex) = [];
adistort(nanIndex) = [];
scatterm(alats,alons,20*adistort,'red','filled')

The resulting map is shown below:

 Quantify Map Distortions at Point Locations

8-31

8 The degree of area overstatement would be considerably larger if it extended farther toward the
pole. To see how much larger, get the area distortion for 50°S, 60°S, and 70°S:

a=distortcalc(-50,-60)

a =
 2.4203

a=distortcalc(-60,-60)

a =
 4

>> a=distortcalc(-70,-60)

a =
 8.5485

Note You can only use distortcalc to query locations that are within the current map frame
or mstruct limits. Outside points yield NaN as a result.

9 Using this technique, you can write a simple script that lets you query a map repeatedly to
determine distortion at any desired location. You can select locations with the graphic cursor
using inputm. For example,

[plat plon] = inputm(1)

plat =
 -62.225
plon =
 -72.301

8 Using Map Projections and Coordinate Systems

8-32

>> a=distortcalc(plat,plon)

a =
 4.6048

Naturally the answer you get will vary depending on what point you pick. Using this technique,
you can write a simple script that lets you query a map repeatedly to determine any distortion
statistic at any desired location.

Try changing the map projection or even the orientation vector to see how the choice of projection
affects map distortion. For further information, see the reference page for distortcalc.

 Quantify Map Distortions at Point Locations

8-33

Rotational Transformations on the Globe
In “The Orientation Vector” on page 8-9, you explored the concept of altering the aspect of a map
projection in terms of pushing the North Pole to new locations. Another way to think about this is to
redefine the coordinate system, and then to compute a normal aspect projection based on the new
system. For example, you might redefine a spherical coordinate system so that your home town
occupies the origin. If you calculated a map projection in a normal aspect with respect to this
transformed coordinate system, the resulting display would look like an oblique aspect of the true
coordinate system of latitudes and longitudes.

This transformation of coordinate systems can be useful independent of map displays. If you
transform the coordinate system so that your home town is the new North Pole, then the transformed
coordinates of all other points will provide interesting information.

Note The types of coordinate transformations described here are appropriate for the spherical case
only. Attempts to perform them on an ellipsoid will produce incorrect answers on the order of several
to tens of meters.

When you place your home town at a pole, the spherical distance of each point from your hometown
becomes 90° minus its transformed latitude (also known as a colatitude). The point antipodal to your
town would become the South Pole, at -90°. Its distance from your hometown is 90°-(-90°), or 180°, as
expected. Points 90° distant from your hometown all have a transformed latitude of 0°, and thus make
up the transformed equator. Transformed longitudes correspond to their respective great circle
azimuths from your home town.

Reorient Vector Data with rotatem
The rotatem function uses an orientation vector to transform latitudes and longitudes into a new
coordinate system. The orientation vector can be produced by the newpole or putpole functions, or
can be specified manually.

As an example of transforming a coordinate system, suppose you live in Midland, Texas, at
(32°N,102°W). You have a brother in Tulsa (36.2°N,96°W) and a sister in New Orleans (30°N,90°W).

1 Define the three locations:

midl_lat = 32; midl_lon = -102;
tuls_lat = 36.2; tuls_lon = -96;
newo_lat = 30; newo_lon = -90;

2 Use the distance function to determine great circle distances and azimuths of Tulsa and New
Orleans from Midland:

[dist2tuls az2tuls] = distance(midl_lat,midl_lon,...
 tuls_lat,tuls_lon)

dist2tuls =
 6.5032

az2tuls =
 48.1386

[dist2neworl az2neworl] = distance(midl_lat,midl_lon,...

8 Using Map Projections and Coordinate Systems

8-34

 newo_lat,newo_lon)

dist2neworl =
 10.4727

az2neworl =
 97.8644

Tulsa is about 6.5 degrees distant, New Orleans about 10.5 degrees distant.
3 Compute the absolute difference in azimuth, a fact you will use later.

azdif = abs(az2tuls-az2neworl)

azdif =
 49.7258

4 Today, you feel on top of the world, so make Midland, Texas, the north pole of a transformed
coordinate system. To do this, first determine the origin required to put Midland at the pole using
newpole:

origin = newpole(midl_lat,midl_lon)

origin =
 58 78 0

The origin of the new coordinate system is (58°N, 78°E). Midland is now at a new latitude of 90°.
5 Determine the transformed coordinates of Tulsa and New Orleans using the rotatem command.

Because its units default to radians, be sure to include the degrees keyword:

[tuls_lat1,tuls_lon1] = rotatem(tuls_lat,tuls_lon,...
 origin,'forward','degrees')

tuls_lat1 =
 83.4968
tuls_lon1 =
 -48.1386

[newo_lat1,newo_lon1] = rotatem(newo_lat,newo_lon,...
 origin,'forward','degrees')

newo_lat1 =
 79.5273
newo_lon1 =
 -97.8644

6 Show that the new colatitudes of Tulsa and New Orleans equal their distances from Midland
computed in step 2 above:

tuls_colat1 = 90-tuls_lat1

tuls_colat1 =
 6.5032

newo_colat1 = 90-newo_lat1

newo_colat1 =
 10.4727

 Rotational Transformations on the Globe

8-35

7 Recall from step 4 that the absolute difference in the azimuths of the two cities from Midland was
49.7258°. Verify that this equals the difference in their new longitudes:

tuls_lon1-newo_lon1

ans =
 49.7258

You might note small numerical differences in the results (on the order of 10-6), due to round-off
error and trigonometric functions.

For further information, see the reference pages for rotatem, newpole, putpole, neworig, and
org2pol.

Reorient Gridded Data
This example shows how to transform a regular data grid into a new one with its data rearranged to
correspond to a new coordinate system using the neworig function. You can transform coordinate
systems of data grids as well as vector data. When regular data grids are manipulated in this manner,
distance and azimuth calculations with the map variable become row and column operations.

Load elevation raster data and a geographic cells reference object. Transform the data set to a new
coordinate system in which a point in Sri Lanka is the north pole. Reorient the data grid by using the
neworig function. Note that the result, [Z,lat,lon], is a geolocated data grid, not a regular data
grid like the original data.

load topo60c
origin = newpole(7,80);
[Z,lat,lon] = neworig(topo60c,topo60cR,origin);

Display the new map, in normal aspect, as its orientation vector shows. Note that every cell in the
first row of the new grid is 0 to 1 degrees distant from the point new origin. Every cell in its second
row is 1 to 2 degrees distant, and so on. In addition, every cell in a particular column has the same
great circle azimuth from the new origin.

axesm miller
lat = linspace(-90,90,90);
lon = linspace(-180,180,180);
surfm(lat,lon,Z);
demcmap(topo60c)

8 Using Map Projections and Coordinate Systems

8-36

mstruct = getm(gca);
mstruct.origin

ans = 1×3

 0 0 0

 Rotational Transformations on the Globe

8-37

Create a UTM Map
The Universal Transverse Mercator (UTM) system divides the world into a regular, nonoverlapping
grid of quadrangles called zones. Each zone is 8-by-6 degrees in extent and uses a transverse
Mercator projection that is designed to limit distortion. UTM zones are identified using a grid
reference in the form of a number followed by a letter, for example 31T. Each UTM zone has a false
northing and a false easting. These are offsets that enable each zone to have positive coordinates in
both directions. All UTM zones have a false easting of 500,000 meters. All zones in the northern
hemisphere have a false northing of 0 meters, and all zones in the southern hemisphere have a false
northing of 10,000,000 meters.

The UTM system is defined between 80 degrees south and 84 degrees north. Beyond these limits, use
the Universal Polar Stereographic (UPS) system instead. The UPS system has two zones, north and
south. Both UPS zones have a false northing and false easting of 2,000,000 m.

Create a UTM Map
You can create UTM maps with axesm , just like any other projection. However, unlike other
projections, the map frame is limited to an 8-by-6 degree map window (the UTM zone).

Create a UTM map axes.

axesm utm

Get the map axes properties and inspect them in the Command Window or with the Variables editor.
Note that the default zone is 31N. This is selected because the map origin defaults to [0 3 0] ,

8 Using Map Projections and Coordinate Systems

8-38

which is on the equator and at a longitude of 3° E. This is the center longitude of zone 31N, which has
a latitude limit of [0 8] , and a longitude limit of [0 6].

h = getm(gca);
h.zone

ans =
'31N'

Change the zone to 32N, one zone to the east of the default, and inspect the other parameters again.
Note that the map origin and limits are adjusted for zone 32N.

setm(gca,'zone','32n')

h = getm(gca);

Draw the map grid and label it.

setm(gca,'grid','on','meridianlabel','on','parallellabel','on')

 Create a UTM Map

8-39

Load and plot the coastline data set to see a close-up of the Gulf of Guinea and Bioko Island in UTM.

load coastlines
plotm(coastlat,coastlon)

8 Using Map Projections and Coordinate Systems

8-40

See Also
ups | utm

 Create a UTM Map

8-41

Set UTM Parameters Interactively
The easiest way to use the UTM projection is through a graphical user interface. You can create or
modify a UTM area of interest with the axesmui projection control panel, and get further assistance
form the utmzoneui control panel.

1 You can Shift+click in a map axes window, or type axesmui to display the projection control
panel. Here you start from scratch:

figure
axesm utm
axesmui

The Map Projection field is set to cyln: Universal Transverse Mercator (UTM).

Note For UTM and UPS maps, the Aspect field is set to normal and cannot be changed. If you
attempt to specify transverse, an error results.

2 Click the Zone button to open the utmzoneui panel. Click the map near your area of interest to
pick the zone:

Note that while you can open the utmzoneui control panel from the command line, you then
have to manually update the figure with the zone name it returns with a setm command:

setm(gca,'zone',ans)
3 Click the Accept button.

The utmzoneui panel closes, and the zone field is set to the one you picked. The map limits are
updated accordingly, and the geoid parameters are automatically set to an appropriate ellipsoid

8 Using Map Projections and Coordinate Systems

8-42

definition for that zone. You can override the default choice by selecting another ellipsoid from
the list or by typing the parameters in the Geoid field.

4 Click Apply to close the projection control panel.

The projection is then ready for projection calculations or map display commands.
5 Now view a choropleth base map from the usstatehi shapefile for the area within the zone that

you just selected:

states = shaperead('usastatehi', 'UseGeoCoords', true);
framem
faceColors = makesymbolspec('Polygon',...
 {'INDEX', [1 numel(states)],...
 'FaceColor', polcmap(numel(states))});
geoshow(states,'DisplayType', 'polygon',...
 'SymbolSpec', faceColors)

 Set UTM Parameters Interactively

8-43

What you see depends on the zone you selected. The preceding display is for zone 18T, which
contains portions of New England and the Middle Atlantic states.

You can also calculate projected UTM grid coordinates from latitudes and longitudes:

[latlim, lonlim] = utmzone('15S')

latlim =

 32 40

lonlim =

 -96 -90

mstruct = gcm;
[x,y] = projfwd(mstruct, latlim, lonlim)

x =

 1.0e+06 *

 -1.5029 -0.7829

y =

 1.0e+06 *

 3.7403 4.5369

8 Using Map Projections and Coordinate Systems

8-44

Work in UTM Without a Displayed Map
You can set up UTM to calculate coordinates without generating a map display, using the defaultm
function. The utmzone and utmgeoid functions help you select a zone and an appropriate ellipsoid.
In this example, you generate UTM coordinate data for a location in New York City, using that point to
define the projection itself.

Define a location in New York City. Obtain the UTM zone for this point.

lat = 40.7;
lon = -74.0;
z = utmzone(lat,lon)

z =
'18T'

Get the suggested ellipsoid vector and name for this zone.

[ellipsoid,estr] = utmgeoid(z)

ellipsoid = 1×2
106 ×

 6.3782 0.0000

estr =
'clarke66'

Set up the UTM coordinate system based on this information.

utmstruct = defaultm('utm');
utmstruct.zone = z;
utmstruct.geoid = ellipsoid;
utmstruct = defaultm(utmstruct);

Transform the coordinates, without a map display.

[x,y] = projfwd(utmstruct,lat,lon)

x = 5.8448e+05

y = 4.5057e+06

Compute the zone limits (latitude and longitude limits) for a specified zone by using the utmzone
function. You can also call utmzone recursively to obtain the limits of the UTM zone within which a
point location falls.

utmzone('18T')

ans = 1×4

 40 48 -78 -72

[zonelats,zonelons] = utmzone(utmzone(40.7,-74.0))

zonelats = 1×2

 Work in UTM Without a Displayed Map

8-45

 40 48

zonelons = 1×2

 -78 -72

Alternatively, set up a UTM coordinate system using a projcrs object. To create the object, specify
an EPSG code. For information about EPSG codes, see the EPSG registry. Verify that the projcrs
object has the correct name and ellipsoid. Then, transform the coordinates.

p = projcrs(26718);
p.Name

ans =
"NAD27 / UTM zone 18N"

p.GeographicCRS.Spheroid.Name

ans =
'Clarke 1866'

[xp,yp] = projfwd(p,lat,lon)

xp = 5.8448e+05

yp = 4.5057e+06

See Also
defaultm | projcrs | projfwd | utmgeoid | utmzone

8 Using Map Projections and Coordinate Systems

8-46

https://epsg.org/home.html

Use the Transverse Aspect to Map Across UTM Zones
To display areas that extend across more than one UTM zone, use the Mercator projection in a
transverse aspect. UTM is a zone-based coordinate system and is designed to be used like a map
series, selecting from the appropriate sheet. While it is possible to extend one zone's coordinates into
a neighboring zone's territory, this is not normally done. This example shows a transverse Mercator
projection appropriate to Chile. In the example, note how the projection's line of zero distortion is
aligned with the predominantly north-south axis of the country. Of course, you do not obtain
coordinates in meters that would match those of a UTM projection, but the results will be nearly as
accurate. To place the zero distortion line exactly on the midline of the country, use better estimates
of the orientation vector's central meridian and orientation angle.

Setup a map axes with a transverse aspect and display a map of Chile. Calculate the map distortion.

figure;
latlim = [-60 -15];
centralMeridian = -70;
width = 20;
axesm('mercator',...
 'Origin',[0 centralMeridian -90],...
 'Flatlimit',[-width/2 width/2],...
 'Flonlimit',sort(-latlim),...
 'Aspect','transverse');
land = shaperead('landareas.shp', 'UseGeoCoords', true);
geoshow([land.Lat], [land.Lon]);
framem
gridm;
setm(gca,'plinefill',1000)
tightmap
mdistort scale

 Use the Transverse Aspect to Map Across UTM Zones

8-47

You might receive warnings about points from landareas.shp falling outside the valid projection
region. You can ignore such warnings.

8 Using Map Projections and Coordinate Systems

8-48

Summary and Guide to Projections
Use projections to display latitude-longitude coordinate data on maps. Choose a projection method by
considering these criteria:

• Family – Choose a cylindrical, conic, or azimuthal projection based on your purpose and region of
interest. For more information, see “The Three Main Families of Map Projections” on page 8-5.

• Properties – Choose a projection based on the properties you want to preserve, such as shape,
distance, direction, scale, and area. For more information, see “Quantitative Properties of Map
Projections” on page 8-4.

• Distortion – Choose a projection based on the distortion you want to minimize or eliminate. For
more information, see “Map Projections and Distortions” on page 8-2.

These tables show the map projections you can use with map projection structures and map axes. For
more information about map projection structures, see defaultm. For more information about map
axes, see axesm.

Note Most projection IDs are also functions on the MATLAB search path. These functions are only
used in the implementation of functions such as defaultm and axesm, and therefore their syntaxes
are not documented.

Cylindrical Projections
Projection Name Projection

ID
Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Balthasart balthsrt ✔ x x —

Behrmann behrmann ✔ x x —

Bolshoi Sovietskii Atlas
Mira

bsam x x x —

 Summary and Guide to Projections

8-49

Projection Name Projection
ID

Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Braun Perspective braun x x x —

Cassini cassini x x ✔ —

Cassini – Standard cassinistd x x x —

Central ccylin x x x —

Equal-Area Cylindrical eqacylin ✔ x x —

Equidistant Cylindrical eqdcylin x x ✔ —

8 Using Map Projections and Coordinate Systems

8-50

Projection Name Projection
ID

Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Gall Isographic giso x x ✔ —

Gall Orthographic gortho ✔ x x —

Gall Stereographic gstereo x x x —

Lambert Equal-Area
Cylindrical

lambcyln ✔ x x —

Mercator mercator x ✔ x Rhumb lines
are straight.

Miller miller x x x —

 Summary and Guide to Projections

8-51

Projection Name Projection
ID

Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Plate Carrée pcarree x x ✔ —

Transverse Mercator tranmerc x ✔ x —

Trystan Edwards trystan ✔ x x —

Universal Transverse
Mercator (UTM)

utm x ✔ x — —

Wetch wetch x x x —

Pseudocylindrical Projections
Projection Name Projection

ID
Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Apianus II apianus x x x —

8 Using Map Projections and Coordinate Systems

8-52

Projection Name Projection
ID

Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Collignon collig ✔ x x —

Craster Parabolic craster ✔ x x —

Eckert I eckert1 x x x —

Eckert II eckert2 ✔ x x —

Eckert III eckert3 x x x —

Eckert IV eckert4 ✔ x x —

Eckert V eckert5 x x x —

Eckert VI eckert6 ✔ x x —

Fournier fournier ✔ x x —

 Summary and Guide to Projections

8-53

Projection Name Projection
ID

Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Goode Homolosine goode ✔ x x —

Hatano Asymmetrical
Equal-Area

hatano ✔ x x —

Kavraisky V kavrsky5 ✔ x x —

Kavraisky VI kavrsky6 ✔ x x —

Loximuthal loximuth x x x Rhumb lines
from the
central point
are straight,
true to scale,
and correct
in azimuth.

McBryde-Thomas Flat-
Polar Parabolic

flatplrp ✔ x x —

McBryde-Thomas Flat-
Polar Quartic

flatplrq ✔ x x —

McBryde-Thomas Flat-
Polar Sinusoidal

flatplrs ✔ x x —

8 Using Map Projections and Coordinate Systems

8-54

Projection Name Projection
ID

Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Mollweide mollweid ✔ x x —

Putnins P5 putnins5 x x x —

Quartic Authalic quartic ✔ x x —

Robinson robinson x x x —

Sinusoidal sinusoid ✔ x x —

Tissot Modified Sinusoidal modsine ✔ x x —

Wagner IV wagner4 ✔ x x —

Winkel 1 winkel x x x —

 Summary and Guide to Projections

8-55

Conic Projections
Projection Name Projection

ID
Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Albers Equal-Area Conic eqaconic ✔ x x —

Albers Equal-Area Conic –
Standard

eqaconicst
d

✔ x x —

Equidistant Conic eqdconic x x ✔ —

Equidistant Conic –
Standard

eqdconicst
d

x x ✔ —

Lambert Conformal Conic lambert x ✔ x —

8 Using Map Projections and Coordinate Systems

8-56

Projection Name Projection
ID

Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Lambert Conformal Conic
– Standard

lambertstd x ✔ x —

Murdoch I Conic murdoch1 x x ✔ The total
area is
correct.

Murdoch III Minimum
Error Conic

murdoch3 x x ✔ The total
area is
correct.

Pseudoconic Projections
Projection Name Projection

ID
Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Bonne bonne ✔ x x —

 Summary and Guide to Projections

8-57

Projection Name Projection
ID

Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Werner werner ✔ x x —

Polyconic Projections
Projection Name Projection

ID
Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Polyconic polycon x x x —

Polyconic – Standard polyconstd x x x —

Van Der Grinten I vgrint1 x x x —

8 Using Map Projections and Coordinate Systems

8-58

Azimuthal Projections
Projection Name Projection

ID
Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Breusing Harmonic Mean breusing x x x —

Equidistant Azimuthal eqdazim x x ✔ —

Gnomonic gnomonic x x x Great circles
appear as
straight
lines.

Lambert Azimuthal Equal-
Area

eqaazim ✔ x x —

 Summary and Guide to Projections

8-59

Projection Name Projection
ID

Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Orthographic ortho x x x —

Stereographic stereo x ✔ x Great and
small circles
appear as
either
straight lines
or circular
arcs.

Universal Polar
Stereographic (UPS)

ups x ✔ x Great and
small circles
appear as
either
straight lines
or circular
arcs.

—

Vertical Perspective
Azimuthal

vperspec x x x —

8 Using Map Projections and Coordinate Systems

8-60

Pseudoazimuthal Projections
Projection Name Projection

ID
Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Wiechel wiechel ✔ x x —

Modified Azimuthal Projections
Projection Name Projection

ID
Equa
l-
Area

Conf
orma
l

Equi
dista
nt

Special
Features

Example

Aitoff aitoff x x x —

Briesemeister bries ✔ x x —

Hammer hammer ✔ x x —

See Also
axesm | defaultm | geoshow

 Summary and Guide to Projections

8-61

Transform Coordinates to a Different Projected CRS
If you directly compare data sets with different projected coordinate reference systems (CRSs), then
the results are inaccurate. Therefore, before comparing data sets, first verify that the CRSs are the
same. If different projected CRSs have the same underlying geographic CRS, then you can transform
the coordinates from one projected CRS to the other. Once the data sets are referenced to the same
projected CRS, you can compare them.

To transform projected x-y coordinates to a different projected CRS, first unproject the x-y
coordinates to latitude-longitude coordinates by using the projinv function. Then, project the
latitude-longitude coordinates to x-y coordinates in a different projected CRS by using the projfwd
function.

For example, import a shapefile containing the x- and y-coordinates of roads in Boston. Also import
information about the shapefile as a structure. Find the projected CRS for the coordinates by
accessing the CoordinateReferenceSystem field of that structure.

s = shaperead('boston_roads.shp');
x1 = [s.X];
y1 = [s.Y];
info = shapeinfo('boston_roads.shp');
p1 = info.CoordinateReferenceSystem;

Unproject the x-y coordinates and return latitude-longitude coordinates.

[lat,lon] = projinv(p1,x1,y1);

Select a new projected CRS for the target projection. For this example, create a projcrs object for
UTM zone 19N. Verify that both projected CRSs have the same geographic CRS. If the geographic
CRSs are different, then the projected coordinates may be inaccurate. You can find the geographic
CRS by querying the GeographicCRS property of the projcrs object.

p2 = projcrs(26919);
p2.GeographicCRS.Name

ans =
"NAD83"

p1.GeographicCRS.Name

ans =
"NAD83"

Project the latitude-longitude coordinates to x-y coordinates by specifying the projcrs object you
created.

[x2,y2] = projfwd(p2,lat,lon);

Compare the original x-y coordinates with the new x-y coordinates by displaying them. Add labels and
a title to each figure.

figure
mapshow(x1,y1)
xlabel('x (meters)')
ylabel('y (meters)')
title(p1.Name)

8 Using Map Projections and Coordinate Systems

8-62

figure
mapshow(x2,y2)
xlabel('x (meters)')
ylabel('y (meters)')
title(p2.Name)

 Transform Coordinates to a Different Projected CRS

8-63

The visualizations are similar, but the coordinates displayed along the axis rulers correspond to
different projected CRSs.

See Also
geocrs | projcrs | projfwd | projinv | shaperead

More About
• “Project and Display Raster Data” on page 8-65

8 Using Map Projections and Coordinate Systems

8-64

Project and Display Raster Data
To project or unproject regularly-spaced raster data that is associated with a geographic or map
reference object, you must first create a coordinate grid that matches the size of the raster. Use
different grid creation functions depending on which way you are projecting. When you project
latitude-longitude coordinates to x-y coordinates, create a grid using the geographicGrid function.
When you unproject x-y coordinates to latitude-longitude coordinates, create a grid using the
worldGrid function.

After transforming the raster data, you can display it on a map using visualization functions such as
mapshow and geoshow. Use mapshow for projected x-y coordinates and geoshow for unprojected
latitude-longitude coordinates.

Project Raster Data
To project data that is associated with a geographic raster reference object, first create a grid of
latitude-longitude coordinates for each point in the raster. Then, project the geographic coordinates
to x-y map coordinates.

For example, import elevation raster data as an array and a geographic cells reference object. Get the
latitude-longitude coordinates for each point in the raster by using the geographicGrid function.

[Z,R] = readgeoraster('n39_w106_3arc_v2.dt1');
[lat,lon] = geographicGrid(R);

Now that you have your grid, select a map projection to use when projecting the coordinates. For this
example, create a projcrs object for UTM zone 13 in the northern hemisphere. Then, project the
latitude-longitude coordinates to x-y coordinates.

p = projcrs(32613);
[x,y] = projfwd(p,lat,lon);

Display the projected raster as a surface by calling mapshow and specifying the x-y coordinates and
elevation array. Add axis labels and apply a colormap appropriate for elevation data.

figure
mapshow(x,y,Z,'DisplayType','surface')
xlabel('x (meters)')
ylabel('y (meters)')
demcmap(Z)

 Project and Display Raster Data

8-65

If the geographic CRS of the latitude-longitude coordinates does not match the geographic CRS of the
projected CRS, then the projected coordinates may be inaccurate. You can find the geographic CRS of
a projcrs object or a geographic raster reference object by querying their GeographicCRS
properties.

p.GeographicCRS.Name

ans =
"WGS 84"

R.GeographicCRS.Name

ans =
"WGS 84"

The DTED file used in this example is courtesy of the US Geological Survey.

Unproject Raster Data
To unproject data that is associated with a map raster reference object, first create a grid of x-y
coordinates for each point in the raster. Then, unproject the x-y map coordinates to geographic
coordinates.

For example, import an image of Boston as an array and a map cells reference object. Get information
about the map projection as a projcrs object by querying the ProjectedCRS property of the
reference object.

8 Using Map Projections and Coordinate Systems

8-66

[Z,R] = readgeoraster('boston.tif');
p = R.ProjectedCRS;

Get the x-y coordinates for each point in the raster by using the worldGrid function.

[x,y] = worldGrid(R);

Unproject the x-y coordinates to latitude-longitude coordinates by using the projinv function and
specifying the projcrs object and coordinate grid.

[lat,lon] = projinv(p,x,y);

Display the unprojected image by calling geoshow and specifying the latitude-longitude coordinates
and image array. By default, geoshow displays coordinates using a Plate Carrée projection. Then, add
axis labels.

figure
geoshow(lat,lon,Z)
xlabel('Longitude (degrees)')
ylabel('Latitude (degrees)')

See Also
Functions
intrinsicToWorld | meshgrid | projfwd | projinv | worldGrid

 Project and Display Raster Data

8-67

Objects
GeographicCellsReference | MapCellsReference

8 Using Map Projections and Coordinate Systems

8-68

Creating Web Map Service Maps

• “Basic WMS Terminology” on page 9-2
• “Basic Workflow for Creating WMS Maps” on page 9-3
• “Search the WMS Database” on page 9-5
• “Refine Your Search” on page 9-7
• “Update Your Layer” on page 9-8
• “Retrieve Your Map” on page 9-10
• “Modify Your Map Request” on page 9-24
• “Overlay Multiple Layers” on page 9-27
• “Animate Data Layers” on page 9-33
• “Display Animation of Radar Images over GOES Backdrop” on page 9-39
• “Retrieve Data from Web Map Server” on page 9-41
• “Save Your Favorite Servers” on page 9-49
• “Explore Other Layers using a Capabilities Document” on page 9-50
• “Write WMS Images to a KML File” on page 9-53
• “Search for Layers Outside the Database” on page 9-55
• “Troubleshoot WMS Servers” on page 9-56
• “Troubleshoot Access to the Hosted WMS Database” on page 9-61
• “Introduction to Web Map Display” on page 9-62
• “Basic Workflow for Displaying Web Maps” on page 9-65
• “Display a Web Map” on page 9-66
• “Select a Base Layer Map” on page 9-67
• “Specify a Custom Base Layer” on page 9-69
• “Specify a WMS Layer as a Base Layer” on page 9-71
• “Add an Overlay Layer to the Map” on page 9-73
• “Add Line, Polygon, and Marker Overlay Layers to Web Maps” on page 9-75
• “Remove Overlay Layers on a Web Map” on page 9-81
• “Navigate a Web Map” on page 9-85
• “Close a Web Map” on page 9-87
• “Annotate a Web Map with Measurement Information” on page 9-88
• “Compositing and Animating Web Map Service (WMS) Meteorological Layers” on page 9-92
• “Troubleshoot Common Problems with Web Maps” on page 9-107

9

Basic WMS Terminology
• Open Geospatial Consortium, Inc. (OGC) — An organization comprising companies,

government agencies, and universities that defines specifications for providers of geospatial data
and developers of software designed to access that data. The specifications ensure that providers
and clients can talk to each other and thus promote the sharing of geospatial data worldwide. You
can access the Web Map Server Implementation Specification at the OGC website.

• Web Map Service — The OGC® defines a Web Map Service (WMS) as an entity that "produces
maps of spatially referenced data dynamically from geographic information."

• WMS server— A server that follows the guidelines of the OGC to render maps and return them to
clients.

• georeferenced — Tied to a specific location on the Earth.
• raster data — Data represented as a matrix in which each element corresponds to a specific

rectangular or quadrangular geographic area.
• map — The OGC defines a map as "a portrayal of geographic information as a digital image file

suitable for display on a computer screen."
• raster map — Geographically referenced information stored as a regular array of cells.
• layer — A data set containing a specific type of geographic information. Information can include

temperature, elevation, weather, orthoimagery, boundaries, demographics, topography,
transportation, environmental measurements, or various data from satellites.

• capabilities document — An XML document containing metadata describing the geographic
content offered by a server.

See Also

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3

9 Creating Web Map Service Maps

9-2

https://www.ogc.org/standards/wms

Basic Workflow for Creating WMS Maps
Workflow Summary
1 Search the WMS Database on page 9-5 for layers and servers that are of interest to you.
2 Refine your search on page 9-7 to include only servers or layers with specified field values.
3 Update your layer on page 9-8 to synchronize your selected layer with the server.
4 Modify your WMS request on page 9-24 to set properties like geographic limits, image

dimensions, or background color of the map.
5 Retrieve your map on page 9-10 as a raster image from the server.
6 Display the map.

Create a Map of Elevation in Europe
Follow the example to learn the basic steps in creating a WMS map.

1 Search the WMS Database. on page 9-5 Mapping Toolbox software simplifies the process of
WMS map creation by using a stored database of WMS servers. You can search the database for
layers and servers that are of interest to you. WMS servers store map data in units called layers.
For this example, search for layers that contain the phrase 'etopo1 hillshade'.

elevationLayer = wmsfind('etopo1 hillshade');
2 Refine your search. on page 9-7 In this example, the wmsfind function returns only one layer.

As a result, you do not need to refine your search.
3 Update your layer. on page 9-8 Contact the web server identified in the database search to get

the most up-to-date information. The wmsupdate function accomplishes two tasks:

• Updates your WMSLayer object to include the most recent data
• Fills in its Details, CoordRefSysCodes, and Abstract fields

elevationLayer = wmsupdate(elevationLayer);
4 Modify your WMS request. on page 9-24 Create map axes with geographic limits appropriate

for Europe. Then, get the map axes map structure (mstruct), which contains the settings for all
the current map axes properties. You can use this mstruct to modify your WMS request. For
example, you can set geographic limits, image dimensions, background color, and other
properties of the map.

figure
worldmap europe
mstruct = gcm;

5 Retrieve your map. on page 9-10 Read the layer using the wmsread function. Set the longitude
and latitude limit parameters to the current map axes limits.

[elevationImage,R] = wmsread(elevationLayer,'Latlim', ...
 mstruct.maplatlimit,'Lonlim',mstruct.maplonlimit);

The wmsread function returns a map called elevationImage and a raster reference object R,
which ties the map to a specific location on Earth.

6 Display the map on the map axes and add a title.

geoshow(elevationImage,R)
title({'Europe','Elevation'})

 Basic Workflow for Creating WMS Maps

9-3

See Also
wmsfind | wmsread | wmsupdate

More About
• “Basic WMS Terminology” on page 9-2

9 Creating Web Map Service Maps

9-4

Search the WMS Database
Introduction to the WMS Database
The Mapping Toolbox contains a database of over 1,000 stored WMS servers and over 100,000 layers.
MathWorks creates this database, called the WMS Database, by conducting a series of Internet
searches and qualifying the search results.

Note MathWorks cannot guarantee the stability and accuracy of WMS data, as the servers listed in
the WMS Database are located on the Internet and are independent from MathWorks. Occasionally,
you may receive error messages from servers experiencing difficulties. Servers can go down or
become unavailable.

wmsfind is the only WMS function that accesses the stored WMS Database. By default, wmsfind
searches the WMS database installed with the product. Using the Version parameter, you can also
search a version of the WMS database hosted on the MathWorks website or a WMS database from a
previous release. The information found in the database installed with the product is static and is not
automatically updated—it was validated at the time of the software release. The web-hosted database
is updated regularly.

Note Searching the web-hosted version of the WMS database requires a connection to the Internet.
If you encounter problems, refer to “Troubleshoot Access to the Hosted WMS Database” on page 9-
61 for tips.

The WMS Database contains the following fields.

Field Name Data Type Field Content
ServerTitle Character vector Title of the WMS server, descriptive information about

the server
ServerURL Character vector URL of the WMS server
LayerTitle Character vector Title of the layer, descriptive information about the layer
LayerName Character vector Name of the layer, keyword the server uses to retrieve

the layer
Latlim Two-element vector Southern and northern latitude limits of the layer
Lonlim Two-element vector Western and eastern longitude limits of the layer

The LayerTitle and LayerName fields sometimes have the same values. The LayerName indicates
a code used by the servers, such as '29:2', while the LayerTitle provides more descriptive
information. For instance, 'Elevation and Rivers with Backdrop' is a LayerTitle.

For an example of searching the WMS database, see “Find Temperature Data in the WMS Database”
on page 9-5.

Find Temperature Data in the WMS Database
For this example, assume that you work as a research scientist and study the relationship between
global warming and plankton growth. Increased plankton growth leads to increased carbon dioxide

 Search the WMS Database

9-5

absorption and reduced global warming. The sea surface temperature is already rising, however,
which may reduce plankton growth in some areas. You begin investigating this complex relationship
by mapping sea surface temperature.

1 Search the WMS Database for temperature data. By default, wmsfind searches the WMS
database installed with the product. You can also search a version of the WMS database hosted
on the MathWorks website, or a database from a previous release. Searching the web-hosted
database requires a connection to the Internet.

layers = wmsfind('temperature');

By default, wmsfind searches both the LayerName and LayerTitle fields of the WMS
Database for partial matches. The function returns an array of WMSLayer objects, which contains
one object for each layer whose name or title partially matches 'temperature'.

2 Click layers in the Workspace browser and then click one of the objects labeled <1x1
WMSLayer>.

 ServerTitle: 'NASA SVS Image Server'
 ServerURL: 'http://svs.gsfc.nasa.gov/cgi-bin/wms?'
 LayerTitle: 'Background Image for Global Sea Surface
 Temperature from June, 2002 to September,
 2003 (WMS)'
 LayerName: '2905_17492_bg'
 Latlim: [-90.0000 90.0000]
 Lonlim: [-180.0000 180.0000]
 Abstract: '<Update using WMSUPDATE>'
CoordRefSysCodes: '<Update using WMSUPDATE>'
 Details: '<Update using WMSUPDATE>'

A WMSLayer object contains three fields that do not appear in the WMS Database—Abstract,
CoordRefSysCodes, and Details. (By default, these fields do not display in the command
window if they are not populated with wmsupdate. For more information, see “Update Your
Layer” on page 9-8 in the Mapping Toolbox User's Guide.)

Note WMSLayer is one of several objects related to WMS. If you are new to object-oriented
programming, you can learn more about objects, methods, and properties in “Classes”.

See Also
wmsfind | wmsread | wmsupdate

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3

9 Creating Web Map Service Maps

9-6

Refine Your Search

Refine Search by Text
Your initial search may return hundreds or even thousands of layers. Scanning all these layers to find
the most relevant one could take a long time. You need to refine your search.

1 Refine your search to receive only layers that include sea surface temperature.

layers = wmsfind('temperature');
sst = layers.refine('sea surface');

2 Refine the search again to include only layers that contain the term "global."

global_sst = sst.refine('global');

Refine Search by Geographic Limits
You can search for layers in a specific geographic area.

1 First, find hurricane layers.

layers = wmsfind('hurricane');
2 Refine your search by selecting layers that are in the western hemisphere.

western_hemisphere = layers.refineLimits ...
 ('Latlim',[-90 90], 'Lonlim', [-180 0]);

3 Refine again to include only layers in the western hemisphere that include temperature data.

temp_and_west = western_hemisphere.refine('temperature');

See Also
wmsfind | wmsread | wmsupdate

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3

 Refine Your Search

9-7

Update Your Layer
After you find your specific layer of interest, you can leave the WMS Database and work with a WMS
server. In this section, you learn how to synchronize your layer with the WMS source server.

Note When working with the Internet, you may have to wait several minutes for information to
download, or servers can become unavailable. If you encounter problems, refer to “Troubleshoot
WMS Servers” on page 9-56 for tips.

Use the wmsupdate function to synchronize a WMSLayer object with the corresponding WMS server.
This synchronization populates the Abstract, CoordRefSysCodes, and Details fields.

1 Find all layers in the WMS Database with the title "Global Sea Surface Temperature."

global_sst = wmsfind ('Global Sea Surface Temperature', ...
 'SearchField','LayerTitle');

2 Use the WMSLayer.servers method to determine the number of unique servers.

global_sst.servers
3 If your search returns more than one server, consider setting the wmsupdate

'AllowMultipleServers' property to true. (However, be aware that if you have many
servers, updating them could take a long time.)

global_sst = wmsupdate(global_sst,'AllowMultipleServers',true);
4 Now that you have updated all the fields in your WMSLayer objects, you can search by the

Abstract field. View the abstract of the first layer.

el_nino = global_sst.refine ('El Nino','SearchField', ...
 'abstract');

el_nino(1).Abstract

The temperature of the surface of the world's oceans provides
a clear indication of the state of the Earth's climate and
weather....In this visualization of the anomaly covering the
period from June, 2002, to September, 2003, the most obvious
effects are a successive warming and cooling along the equator
to the west of Peru, the signature of an El Nino/La Nina cycle....

5 View the coordinate reference system codes associated with this layer. For more information, see
“Understand Coordinate Reference System Codes” on page 9-10.

el_nino(1).CoordRefSysCodes
6 View the contents of the Details field.

el_nino(1).Details

ans =

 MetadataURL: 'http://svs.gsfc.nasa.gov/vis/a000000/a002900...
 /a002906/a002906.fgdc'
 Attributes: [1x1 struct]
 BoundingBox: [1x1 struct]
 Dimension: [1x1 struct]
 ImageFormats: {'image/png'}
 ScaleLimits: [1x1 struct]

9 Creating Web Map Service Maps

9-8

 Style: [1x2 struct]
 Version: '1.1.1'

The Style field covers a wide range of information, such as the line styles used to render vector
data, the background color, the numeric format of data, the month of data collection, or the
dimensional units.

See Also
wmsfind | wmsread | wmsupdate

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3

 Update Your Layer

9-9

Retrieve Your Map
In this section...
“Map Retrieval Methods” on page 9-10
“Understand Coordinate Reference System Codes” on page 9-10
“Retrieve Your Map with wmsread” on page 9-11
“Use wmsread with Optional Parameters” on page 9-12
“Add a Legend to Your Map” on page 9-12
“Retrieve Your Map with WebMapServer.getMap” on page 9-19

Map Retrieval Methods
To retrieve a map from a WMS server, use the function wmsread or, in a few specific situations, the
WebMapServer.getMap method. Use the getMap method when:

• Working with non-EPSG:4326 reference systems
• Creating an animation of a specific geographic area over time
• Retrieving multiple layers from a WMS server

In most cases, use wmsread to retrieve your map. To use wmsread, specify either a WMSLayer object
or a map request URL. Obtain a WMSLayer object by using wmsfind to search the WMS Database.
Obtain a map request URL from:

• The output of wmsread
• The RequestURL property of a WMSMapRequest object
• An Internet search

The map request URL character vector is composed of a WMS server URL with additional WMS
parameters. The map request URL can be inserted into a browser to make a request to a server,
which then returns a raster map.

Understand Coordinate Reference System Codes
When using wmsread, request a map that uses the EPSG:4326 coordinate reference system. EPSG
stands for European Petroleum Survey Group. This group, an organization of specialists working in
the field of oil exploration, developed a database of coordinate reference systems. Coordinate
reference systems identify position unambiguously. Coordinate reference system codes are numbers
that stand for specific coordinate reference systems.

EPSG:4326 is based on the 1984 World Geodetic System (WGS84) datum and the latitude and
longitude coordinate system, with angles in degrees and Greenwich as the central meridian. All
servers in the WMS Database, and presumably all WMS servers in general, use the EPSG:4326
reference system. This system is a requirement of the OGC WMS specification. If a layer does not use
EPSG:4326, Mapping Toolbox software uses the next available coordinate reference system code. The
Mapping Toolbox does not support automatic coordinate reference systems (systems in which the
user chooses the center of projection). For more information about coordinate reference system
codes, please see the Spatial Reference website.

9 Creating Web Map Service Maps

9-10

https://spatialreference.org

Retrieve Your Map with wmsread
NASA's Blue Marble Next Generation layer shows the Earth's surface for each month of 2004 at high
resolution (500 meters/pixel). Read and display the Blue Marble Next Generation layer.

1 Search the WMS Database for all layers with 'nasa' in the ServerURL field.

nasa = wmsfind('nasa','SearchField','serverurl');
2 Use the WMSLayer.refine method to refine your search to include only those layers with the

phrase 'bluemarbleng' in the LayerName field. This syntax creates an exact search.

layer = nasa.refine('bluemarbleng', 'SearchField','layername', ...
 'MatchType','exact');

3 Use the wmsread function to retrieve the first Blue Marble Next Generation layer.

[A,R] = wmsread(layer(1));

The wmsread function returns A, a geographically referenced raster map, and R, a raster
reference object that ties A to the EPSG:4326 geographic coordinate system. The geographic
limits of A span the full latitude and longitude extent of layer.

4 Open a figure window, set up your map axes, and display your map.

figure
axesm globe
axis off
geoshow(A,R)
title('Blue Marble: Next Generation')

 Retrieve Your Map

9-11

The layer used in this example is courtesy of NASA/JPL-Caltech.

Use wmsread with Optional Parameters
The wmsread function allows you to set many optional parameters, such as image height and width
and background color. This example demonstrates how to view an elevation map in 0.5-degree
resolution by changing the cell size, and how to display the ocean in light blue by setting the
background color. For a complete list of parameters, see wmsread.

1 Search the WMS database for layers that contain foundation.gtopo30 in the LayerName
field. GTOPO30, a digital elevation model developed by the United States Geological Survey
(USGS), has a horizontal grid spacing of 30 arc seconds.

gtopo30Layer = wmsfind('foundation.gtopo30');
2 Define a background color, specifying red, green, and blue levels.

oceanColor = [0 170 255];
3 Use the BackgroundColor and CellSize parameters of the wmsread function to set the

background color and cell size of your retrieved map.

cellSize = 0.5;
[A,R] = wmsread(gtopo30Layer,'BackgroundColor',oceanColor, ...
 'CellSize', cellSize);

4 Open a figure window and set up a world map axes. Display your map with a title.

figure
worldmap world
geoshow(A,R)
title({'GTOPO30 Elevation Model',gtopo30Layer.LayerTitle})

Add a Legend to Your Map
A WMS server renders a layer as an image. Without a corresponding legend, interpreting the pixel
colors can be difficult. Some WMS servers provide access to a legend image for a particular layer via

9 Creating Web Map Service Maps

9-12

a URL that appears in the layer's Details.Style.LegendURL field. (See the WMSLayer.Details
reference page for more information.)

Although a legend provides valuable information to help interpret image pixel colors, only about 45%
of the servers in the WMS database contain at least one layer with an available legend. Less than
10% of the layers in the WMS database contain a legend, but nearly 80% of the layers in the database
are on the columbo.nrlssci.navy.mil server. This server always has empty LegendURL fields.
You cannot use wmsfind to search only for layers with legends because the database does not store
this level of detail. You must update a layer from the server before you can access the LegendURL
field.

This example demonstrates how to create a map of surface temperature, and then obtain and display
the associated legend image:

1 Search for layers from the NASA Goddard Space Flight SVS Image Server. This server contains
layers that have legend images. You can tell that legend images are available because the layers
have content in the LegendURL field.

layers = wmsfind('svs.gsfc.nasa.gov','SearchField','serverurl');
serverURL = layers(1).ServerURL;
gsfc = wmsinfo(serverURL);

2 Find the layer containing urban temperature signatures and display the abstract:

urban_temperature = gsfc.Layer.refine('urban*temperature');
disp(urban_temperature.Abstract)

Big cities influence the environment around them. For example,
urban areas are typically warmer than their surroundings.
Cities are strikingly visible in computer models that simulate
the Earth's land surface. This visualization shows average
surface temperature predicted by the Land Information System (LIS)
for a day in June 2001. Only part of the global computation
is shown, focusing on the highly urbanized northeast corridor
in the United States, including the cities of Boston, New York,
Philadelphia, Baltimore, and Washington.

Additional Credit:
NASA GSFC Land Information System (http://lis.gsfc.nasa.gov/)

3 Read and display the layer. The map appears with different colors in different regions, but
without a legend it is not clear what these colors represent.

[A,R] = wmsread(urban_temperature);
figure
usamap(A,R)
geoshow(A,R)
title('Urban Temperature Signatures')
axis off

 Retrieve Your Map

9-13

4 Investigate the Details field of the urban_temperature layer. This layer has only one
structure in the Style field. The Style field determines how the server renders the layer.

urban_temperature.Details

ans =

 struct with fields:

 MetadataURL: 'http://svs.gsfc.nasa.gov/vis/a000000/a003100/a003152/a003152.fgdc'
 Attributes: [1x1 struct]
 BoundingBox: [1x1 struct]
 Dimension: [1x1 struct]
 ImageFormats: {'image/png'}
 ScaleLimits: [1x1 struct]
 Style: [1x1 struct]
 Version: '1.3.0'

Display the Style field in the Command Window:

urban_temperature.Details.Style

ans =

 Title: 'Opaque'
 Name: 'opaque'
 Abstract: [1x319 char]
 LegendURL: [1x1 struct]

9 Creating Web Map Service Maps

9-14

Each Style element has only one LegendURL. Investigate the LegendURL:

urban_temperature.Details.Style.LegendURL

ans =

 OnlineResource: [1x65 char]
 Format: 'image/png'
 Height: 90
 Width: 320

5 Download the legend URL:

url = urban_temperature.Details.Style.LegendURL.OnlineResource

The URL appears in the command window:

url =

http://svs.gsfc.nasa.gov/vis/a000000/a003100/a003152/temp_bar.png
6 Display the legend image using the image command and set properties, such that the image

displays with one-to-one, screen-to-pixel resolution. This legend is simply an image of a colorbar,
not the legend in MATLAB graphics.

temperatureLegend = webread(url);
figure('Color','white')
axis off image
set(gca,'units','pixels','position',...
[0 0 size(temperatureLegend,2) size(temperatureLegend,1)]);
pos = get(gcf,'position');
set(gcf,'position',...
[pos(1) pos(2) size(temperatureLegend,2) size(temperatureLegend,1)]);
image(temperatureLegend)

Now the map makes more sense. The regions toward the red end of the spectrum are warmer.
7 Steps 7–10 demonstrate how to capture the output from a map frame and append the legend. By

appending the legend in this fashion, you avoid warping text in the legend image. (Legend text
warps if you display the image with geoshow.)

First set your latitude and longitude limits to match the limits of your map and read in a shapefile
with world city data:

latlim = R.LatitudeLimits;
lonlim = R.LongitudeLimits;
S = shaperead('worldcities','UseGeoCoords',true,...
 'BoundingBox',[lonlim(1) latlim(1);lonlim(2) latlim(2)]);

8 Determine the position of the current figure window. Vary the pos(1) and pos(2) 'Position'
parameters as necessary based on the resolution of your screen.

colValue = [1 1 1];
dimension = size(A,1)/2;

 Retrieve Your Map

9-15

figure
set(gcf,'Color',[1,1,1])
pos = get(gcf, 'Position');
set(gcf, 'Position', [pos(1) pos(2) dimension dimension])

9 Display the map and add city markers, state boundaries, meridian and parallel labels, a title, and
a North arrow:

usamap(A,R)
geoshow(A,R)
geoshow(S, 'MarkerEdgeColor', colValue, 'Color', colValue)

geoshow('usastatehi.shp', 'FaceColor', 'none',...
 'EdgeColor','black')
mlabel('FontWeight','bold')
plabel('FontWeight','bold')
axis off
title('Urban Temperature Signatures', 'FontWeight', 'bold')

for k=1:numel(S)
 textm(S(k).Lat, S(k).Lon, S(k).Name, 'Color', colValue,...
 'FontWeight','bold')
end

lat = 36.249;
lon = -71.173;
northarrow('Facecolor', colValue, 'EdgeColor', colValue,...
 'Latitude', lat, 'Longitude', lon);

9 Creating Web Map Service Maps

9-16

10 Display the map and legend as a single, combined image:

f = getframe(gcf);
legendImg = uint8(255*ones(size(temperatureLegend,1),size(f.cdata,2),3));
offset = dimension/2;
halfSize = size(temperatureLegend, 2)/2;
legendImg(:,offset-halfSize:offset+halfSize-1,:) = temperatureLegend;
combined = [f.cdata; legendImg];
figure
pos = get(gcf,'position');
set(gcf,'position',[10 100 size(combined,2) size(combined,1)])
set(gca,'units','normalized','position', ...
 [0 0 1 1]);
image(combined)
axis off image

 Retrieve Your Map

9-17

11 Another way to display the map and legend together is to burn the legend into the map at a
specified location. To view the image, use the image command, setting the position parameters
such that there is a one-to-one pixel-to-screen resolution. (Legend text warps if the image is
displayed with geoshow.)

A_legend = A;
A_legend(end-size(temperatureLegend,1):end-1,...
 end-size(temperatureLegend,2):end-1,:) = temperatureLegend;
figure
image(A_legend)
axis off image
set(gca,'Units','normalized','position',...
 [0 0 1 1]);
set(gcf,'Position',[10 100 size(A_legend,2) size(A_legend,1)]);
title('Urban Temperature Signatures', 'FontWeight', 'bold')

9 Creating Web Map Service Maps

9-18

12 Combine the map and legend in one file, and then publish it to the Web. First write the images to
a file:

mkdir('html')
imwrite(A_legend, 'html/wms_legend.png')
imwrite(combined, 'html/combined.png')

Open the MATLAB Editor, and paste in this code:

%%
% <<wms_legend.png>>

%%
% <<combined.png>>

Add any other text you want to include in your published document. Then select one of the cells
and choose File > Save File and Publish from the menu.

Retrieve Your Map with WebMapServer.getMap
The WebMapServer.getMap method allows you to retrieve maps in any properly defined EPSG
coordinate reference system. If you want to retrieve a map in the EPSG:4326 reference system, you
can use wmsread. If you want to retrieve a layer whose coordinates are not in the EPSG:4326
reference system, however, you must use the WMSMapRequest object to construct the request URL
and the WebMapServer.getMap method to retrieve the map. This example demonstrates how to
create maps in "Web Mercator" coordinates, also known as "WGS 84/Pseudo-Mercator" coordinates,
using the WMSMapRequest and WebMapServer objects. The Web Mercator coordinate system is
commonly used by web applications.

The USGS National Map provides ortho-imagery and topography maps from various regions of the
United States. The server provides the data in both EPSG:4326 and in Web Mercator coordinates, as
defined by EPSG codes EPSG:102113, EPSG:3857. For more information about these codes, see the
Spatial Reference website.

1 Obtain geographic coordinates that are coincidental with the image in the file boston.tif.

filename = 'boston.tif';
info = georasterinfo(filename);
R = info.RasterReference;
proj = R.ProjectedCRS;
[latlim,lonlim] = projinv(proj, ...
 R.XWorldLimits,R.YWorldLimits);

2 Convert the geographic limits to Web Mercator. To do this, first create a projcrs object by
specifying the EPSG:3857 coordinate system. Then, project the coordinates using projfwd. To
obtain the imagery in this coordinate reference system, you need to use WMSMapRequest and
WebMapServer since wmsread only requests data in the EPSG:4326 system.

p = projcrs(3857);
[x,y] = projfwd(p,latlim,lonlim);
xlimits = [min(x) max(x)];
ylimits = [min(y) max(y)];

3 Calculate image height and width values for a sample size of 5 meters.

metersPerSample = 5;
imageHeight = round(diff(ylimits)/metersPerSample);
imageWidth = round(diff(xlimits)/metersPerSample);

 Retrieve Your Map

9-19

https://www.spatialreference.org

4 Re-compute the new limits.

yLim = [ylimits(1), ylimits(1) + imageHeight*metersPerSample];
xLim = [xlimits(1), xlimits(1) + imageWidth*metersPerSample];

5 Find the USGS National Map from the WMS database and select the Digital Ortho-Quadrangle
layer.

doqLayer = wmsfind('usgsnaipplus','SearchField','serverurl');
doqLayer = wmsupdate(refine(doqLayer,'image'));
doqLayer = refine(doqLayer,'USGSNaip','SearchField','abstract');

6 Create WebMapServer and WMSMapRequest objects.

server = WebMapServer(doqLayer.ServerURL);
numberOfAttempts = 50;
attempt = 0;
request = [];
while(isempty(request))
 try
 request = WMSMapRequest(doqLayer, server);
 catch e
 attempt = attempt + 1;
 fprintf('%d\n', attempt)
 if attempt > numberOfAttempts
 throw(e)
 end
 end
end

7 Use WMSMapRequest properties to modify different aspects of your map request, such as map
limits, image size, and coordinate reference system code. Set the map limits to cover the same
region as found in the boston.tif file.

request.CoordRefSysCode = 'EPSG:3857';
request.ImageHeight = imageHeight;
request.ImageWidth = imageWidth;
request.XLim = xLim;
request.YLim = yLim;

8 Request a map of the ortho-imagery in Web Mercator coordinates.

A_PCS = getMap(server, request.RequestURL);
R_PCS = request.RasterReference;

9 Obtain a map for the same region, but in EPSG:4326 coordinates.

request.CoordRefSysCode = 'EPSG:4326';
request.Latlim = latlim;
request.Lonlim = lonlim;
A_Geo = getMap(server, request.RequestURL);
R_Geo = request.RasterReference;

10 Read in Boston place names from a shapefile and overlay them on top of the maps. Convert the
coordinates of the features to Web Mercator and geographic coordinates. The point coordinates
in the shapefile are in meters and Massachusetts State Plane coordinates, but the GeoTIFF
projection is defined in survey feet.

S = shaperead('boston_placenames');
x = [S.X]*unitsratio('sf','meter');
y = [S.Y]*unitsratio('sf','meter');
names = {S.NAME};
[lat, lon] = projinv(proj, x, y);
[xPCS, yPCS] = projfwd(p, lat, lon);

9 Creating Web Map Service Maps

9-20

11 Project and display the ortho-imagery obtained in EPSG:4326 coordinates using geoshow.

figure
axesm('mercator','MapLatLimit',latlim,'MapLonLimit',lonlim)
geoshow(A_Geo,R_Geo)
textm(lat, lon, names, 'Color',[0 0 0], ...
 'BackgroundColor',[0.9 0.9 0],'FontSize',6);
axis tight
title({'USGS Digital Ortho-Quadrangle - Boston', ...
 'Geographic Layer'})

12 Display the ortho-imagery obtained in Web Mercator coordinates.

figure
mapshow(A_PCS, R_PCS);
text(xPCS, yPCS, names, 'Color',[0 0 0], ...
 'BackgroundColor',[0.9 0.9 0],'FontSize',6,'Clipping','on');
axis tight
title({'USGS Digital Ortho-Quadrangle - Boston', 'Web Mercator Layer'})

 Retrieve Your Map

9-21

13 Display the image from boston.tif for comparison.

figure
mapshow(filename)
text(x, y, names, 'Color',[0 0 0], ...
 'BackgroundColor',[0.9 0.9 0],'FontSize',6,'Clipping','on');
axis tight
title({filename, proj.Name})

9 Creating Web Map Service Maps

9-22

See Also
wmsfind | wmsread | wmsupdate

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3

 Retrieve Your Map

9-23

Modify Your Map Request
In this section...
“Set Map Request Geographic Limits and Time” on page 9-24
“Edit Web Map Request URL Manually” on page 9-25

Set Map Request Geographic Limits and Time
A WMSMapRequest object contains properties to modify the geographic extent and time of the
requested map. This example demonstrates how to modify your map request to map sea surface
temperature for the ocean surrounding the southern tip of Africa. For a complete list of properties,
see WMSMapRequest.

1 Search the WMS Database for all layers on NASA's Earth Observations (NEO) WMS server.

neowms = wmsfind('neowms', 'SearchField', 'serverurl');
2 Refine your search to include only layers with 'sea surface temperature' in the layer title

or layer name fields of the WMS database.

sst = neowms.refine('sea surface temperature');
3 Refine your search to include only layers with monthly values from the MODIS sensor on the

Aqua satellite.

sst = sst.refine('month*modis');
4 Construct a WebMapServer object from the server URL stored in the ServerURL property of the

WMSLayer object sst.

server = WebMapServer(sst(1).ServerURL);
5 Construct a WebMapRequest object from a WMSLayer array and a WebMapServer object.

mapRequest = WMSMapRequest(sst, server);
6 Use the Latlim and Lonlim properties of WMSMapRequest to set the latitude and longitude

limits.

mapRequest.Latlim = [-45 -25];
mapRequest.Lonlim = [15 35];

7 Set the time request to March 1, 2009.

mapRequest.Time = '2009-03-01';
8 Send your request to the server with the WebMapServer.getMap method. Pass in a

WMSMapRequest.RequestURL.

sstImage = server.getMap(mapRequest.RequestURL);
9 Set up empty map axes with the specified geographic limits.

figure
worldmap(mapRequest.Latlim, mapRequest.Lonlim);
setm(gca, 'mlabelparallel', -45)

10 Project and display an image georeferenced to latitude and longitude. Use the raster reference
object provided by the RasterReference property of the WMSMapRequest object.

geoshow(sstImage, mapRequest.RasterReference);
title({'South Africa', sst.LayerTitle}, ...
 'FontWeight', 'bold', 'Interpreter', 'none')

9 Creating Web Map Service Maps

9-24

Edit Web Map Request URL Manually
You can modify a map request URL manually.

1 Obtain the map request URL.

nasa = wmsfind('nasa', 'SearchField', 'serverurl');
layer = nasa.refine('bluemarbleng', 'SearchField', 'layername', ...
 'MatchType', 'exact');
layer = layer(1);
mapRequest = WMSMapRequest(layer);

2 Set the map request URL to a variable.

mapURL = mapRequest.RequestURL;
3 Modify the bounding box to include the southern hemisphere. To do this, create a new variable

called modifiedURL by copying and pasting the contents of mapURL. Then, change the bounding
box section of the URL to:

&BBOX=-180.0,-90.0,180.0,0.0

Enter the URL as one continuous character vector.
4 Display the modified map.

[A, R] = wmsread(modifiedURL);
figure

 Modify Your Map Request

9-25

axesm globe
axis off
geoshow(A, R)
title('Blue Marble: Southern Hemisphere Edition')

The image is courtesy of NASA/JPL-Caltech.

See Also
wmsfind | wmsread | wmsupdate

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3

9 Creating Web Map Service Maps

9-26

Overlay Multiple Layers
In this section...
“Create Composite Map of Multiple Layers from One Server” on page 9-27
“Combine Layers from One Server with Data from Other Sources” on page 9-28
“Drape Orthoimagery Over DEM” on page 9-29

Create Composite Map of Multiple Layers from One Server
The WMS specification allows the server to merge multiple layers into a single raster map. The
MetaCarta VMAP0 server contains many data layers, such as coastlines, national boundaries, ocean,
and ground. Read and display a composite of multiple layers from the VMAP0 server. The rendered
map has a spatial resolution of 0.5 degrees per cell.

1 Find and update the VMAP0 layers.

vmap0 = wmsfind('vmap0.tiles', 'SearchField', 'serverurl');
vmap0 = wmsupdate(vmap0);

2 Create an array of multiple layers that include ground and ocean, coastlines and national
boundaries.

layers = [refine(vmap0, 'coastline_01'); ...
 refine(vmap0, 'country_01'); ...
 refine(vmap0, 'ground_01'); ...
 refine(vmap0, 'inwater'); ...
 refine(vmap0, 'ocean')];

3 Retrieve the composite map. Request a cell size of .5 degrees by setting the image height and
image width parameters. Set 'Transparent' to true so that all pixels not representing features or
data values in a layer are set to a transparent value in the resulting image, making it possible to
produce a composite map.

[overlayImage, R] = wmsread(layers, 'Transparent', true, ...
 'ImageHeight', 360, 'ImageWidth', 720);

4 Display your composite map.

figure
worldmap('world')
geoshow(overlayImage, R);
title('Composite of VMAP0 Layers')

 Overlay Multiple Layers

9-27

Combine Layers from One Server with Data from Other Sources
This example illustrates how you can merge a boundaries raster map with vector data.

1 Layout a global raster with 1/2-degree cells by using the georefcells function. Specify
columns running north-to-south, for consistency with wmsread. The result R is a geographic
raster reference object.

latlim = [-90 90];
lonlim = [-180 180];
cellExtent = 1/2;
R = georefcells(latlim,lonlim, ...
 cellExtent,cellExtent,'ColumnsStartFrom','north');

2 Read the landareas polygon shapefile and convert it to a raster map.

land = shaperead('landareas.shp', 'UseGeoCoords', true);
lat = [land.Lat];
lon = [land.Lon];
land = vec2mtx(lat, lon, zeros(R.RasterSize),R, 'filled');

3 Read the worldrivers polyline shapefile and convert it to a raster map.

riverLines = shaperead('worldrivers.shp','UseGeoCoords',true);
rivers = vec2mtx([riverLines.Lat], [riverLines.Lon], land, R);

4 Merge the rivers with the land.

merged = land;
merged(rivers == 1) = 3;

5 Get coordinate reference system information from the landareas shapefile using the
shapeinfo function. The worldrivers shapefile uses the same coordinate reference system.
Set the GeographicCRS property of the reference object.

info = shapeinfo('landareas.shp');
R.GeographicCRS = info.CoordinateReferenceSystem;

9 Creating Web Map Service Maps

9-28

6 Obtain the boundaries image from the VMAP0 server.

vmap0 = wmsfind('vmap0.tiles', 'SearchField', 'serverurl');
vmap0 = wmsupdate(vmap0);
layer = refine(vmap0, 'country_01');
height = R.RasterSize(1);
width = R.RasterSize(2);
[boundaries,boundariesR] = wmsread(layer, 'ImageFormat', 'image/png', ...
 'ImageHeight', height, 'ImageWidth', width);

7 Confirm that the boundaries and merged rasters are coincident.

isequal(boundariesR,R)

ans =

 logical

 1
8 Merge the rivers and land with the boundaries.

index = boundaries(:,:,1) ~= 255 ...
 & boundaries(:,:,2) ~= 255 ...
 & boundaries(:,:,3) ~= 255;
merged(index) = 1;

9 Display the result.

figure
worldmap(merged, R)
geoshow(merged, R, 'DisplayType', 'texturemap')
colormap([.45 .60 .30; 0 0 0; 0 0.5 1; 0 0 1])

Drape Orthoimagery Over DEM
Read elevation data and a geographic postings reference for an area around South Boulder Peak in
Colorado. Then, crop the elevation data to a smaller area using geocrop.

[fullZ,fullR] = readgeoraster('n39_w106_3arc_v2.dt1','OutputType','double');

 Overlay Multiple Layers

9-29

latlim = [39.25 40.0];
lonlim = [-106 -105.5];
[Z,R] = geocrop(fullZ,fullR,latlim,lonlim);

Display the elevation data. To do this, create a set of map axes for the United States, plot the data as
a surface, and apply an appropriate colormap. View the map in 3-D by adjusting the camera position
and target. Set the vertical exaggeration using daspectm.

figure
usamap(R.LatitudeLimits, R.LongitudeLimits)
geoshow(Z,R,'DisplayType','surface')
demcmap(Z)
title('Elevation');

cameraPosition = [218100 4367600 183700];
cameraTarget = [0 4754200 2500];
set(gca,'CameraPosition', cameraPosition, ...
 'CameraTarget', cameraTarget)
daspectm('m',3)

Drape an orthoimage over the elevation data. To do this, first get the names of high-resolution
orthoimagery layers from the USGS National Map using wmsinfo. In this case, the orthoimagery
layer is the only layer from the server. Use multiple attempts to connect to the server in case it is
busy.

numberOfAttempts = 5;
attempt = 0;

9 Creating Web Map Service Maps

9-30

info = [];
serverURL = ...
 'http://basemap.nationalmap.gov/ArcGIS/services/USGSImageryOnly/MapServer/WMSServer?';
while(isempty(info))
 try
 info = wmsinfo(serverURL);
 orthoLayer = info.Layer(1);
 catch e
 attempt = attempt + 1;
 if attempt > numberOfAttempts
 throw(e);
 else
 fprintf('Attempting to connect to server:\n"%s"\n', serverURL)
 end
 end
end

Request a map of the orthoimagery layer using wmsread. To display the orthoimagery, use geoshow
and set the CData property to the layer.

imageHeight = size(Z,1);
imageWidth = size(Z,2);

orthoImage = wmsread(orthoLayer,'Latlim',R.LatitudeLimits, ...
 'Lonlim',R.LongitudeLimits,'ImageHeight', imageHeight, ...
 'ImageWidth', imageWidth);

figure
usamap(R.LatitudeLimits,R.LongitudeLimits)
geoshow(Z,R,'DisplayType','surface','CData',orthoImage);
title('Orthoimage Draped Over Elevation');
set(gca,'CameraPosition', cameraPosition, ...
 'CameraTarget', cameraTarget)
daspectm('m',3)

 Overlay Multiple Layers

9-31

The DTED file used in this example is courtesy of the US Geological Survey.

See Also
wmsfind | wmsread | wmsupdate

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3

9 Creating Web Map Service Maps

9-32

Animate Data Layers
In this section...
“Create Movie of Terra/MODIS Maps” on page 9-33
“Create Animated GIF File of WMS Maps” on page 9-34
“Animate Time-Lapse Radar Observations” on page 9-36

Create Movie of Terra/MODIS Maps
You can create maps of the same geographic region at different times and view them as a movie. For
a period of seven days, read and display a daily composite of visual images from NASA's Moderate
Resolution Imaging Spectroradiometer (MODIS) scenes captured during the month of December
2010.

1 Search the WMS Database for the MODIS layer.

neo = wmsfind('neowms*nasa', 'SearchField', 'serverurl');
modis = neo.refine('true*color*terra*modis');
modis = wmsupdate(modis);

2 Construct a WebMapServer object.

server = WebMapServer(modis.ServerURL);
3 Construct a WMSMapRequest object.

mapRequest = WMSMapRequest(modis, server);
4 The Extent field provides the information about how to retrieve individual frames. You can

request a single day since the extent is defined by day ('/P1D'). Note that for December 2010,
the frames for December 8 and December 31 are not available.

modis.Details.Dimension.Extent
5 Create an array indicating the first seven days.

days = 1:7;
6 Set the value of startTime to December 01, 2010 and use a serial date number.

time = '2010-12-01';
startTime = datenum(time);

7 Open a figure window with axes appropriate for the region specified by the modis layer.

hFig = figure('Color', 'white');
worldmap(mapRequest.Latlim, mapRequest.Lonlim);

8 Save each frame into a video file.

videoFilename = 'modis_dec.avi';
writer = VideoWriter(videoFilename);
writer.FrameRate = 1;
writer.Quality = 100;
writer.open;

9 Retrieve a map of the modis layer for each requested day. Set the Time property to the day
number. When obtaining the data from the server, use a try/catch statement to ignore either
data not found on the server or any error issued by the server. Set startTime to one day less for
correct indexing.

startTime = startTime - 1;
for k = days

 Animate Data Layers

9-33

 try
 mapRequest.Time = startTime + k;
 timeStr = datestr(mapRequest.Time);
 dailyImage = server.getMap(mapRequest.RequestURL);
 geoshow(dailyImage, mapRequest.RasterReference);
 title({mapRequest.Layer.LayerTitle, timeStr}, ...
 'Interpreter', 'none', 'FontWeight', 'bold')
 shg
 frame = getframe(hFig);
 writer.writeVideo(frame);
 catch e
 fprintf(['Server error: %s.\n', ...
 'Ignoring frame number %d on day %s.\n'], ...
 e.message, k, timeStr)
 end
 drawnow
 shg
end
writer.close

10 Read in all video frames.

v = VideoReader(videoFilename);
vidFrames = read(v);
numFrames = get(v, 'NumberOfFrames');

11 Create a MATLAB movie structure from the video frames.

frames = struct('cdata', [], 'colormap', []);
frames(numFrames) = frames(1);
for k = 1 : numFrames
 frames(k).cdata = vidFrames(:,:,:,k);
 frames(k).colormap = [];
end

12 Playback movie once at the video's frame rate.

movie(hFig, frames, 1, v.FrameRate)

Create Animated GIF File of WMS Maps
Read and display an animation of the Larsen Ice Shelf experiencing a dramatic collapse between
January 31 and March 7, 2002.

1 Search the WMS Database for the phrase "Larsen Ice Shelf."

iceLayer = wmsfind('Larsen Ice Shelf');

Try the first layer.
2 Construct a WebMapServer object.

server = WebMapServer(iceLayer(1).ServerURL);
3 Use the WebMapServer.updateLayers method to synchronize the layer with the WMS source

server. Retrieve the most recent data and fill in the Abstract, CoordRefSysCodes, and
Details fields.

iceLayer = server.updateLayers(iceLayer(1));
4 View the abstract.

fprintf('%s\n', iceLayer(1).Abstract)

9 Creating Web Map Service Maps

9-34

5 Create the WMSMapRequest object.

request = WMSMapRequest(iceLayer(1), server);
6 Because you have updated your layer, the Details field now has content. Click Details in the

MATLAB Variables editor. Then, click Dimension. The name of the dimension is 'time'. Click
Extent. The Extent field provides the available values for a dimension, in this case time. Save
this information by entering the following at the command line:

extent = [',' iceLayer.Details.Dimension.Extent, ','];
7 Calculate the number of required frames. (The extent contains a comma before the first frame

and after the last frame. To obtain the number of frames, subtract 1.)

frameIndex = strfind(extent, ',');
numFrames = numel(frameIndex) - 1;

8 Open a figure window and set up a map axes with appropriate geographic limits.

h = figure;
worldmap(request.Latlim, request.Lonlim)

9 Set the map axes properties. MLineLocation establishes the interval between displayed grid
meridians. MLabelParallel determines the parallel where the labels appear.

setm(gca,'MLineLocation', 1, 'MLabelLocation', 1, ...
 'MLabelParallel',-67.5, 'LabelRotation', 'off');

10 Initialize the value of animated to 0.

animated(1,1,1,numFrames) = 0;
11 Display the image of the Larsen Ice Shelf on different days.

for k=1:numFrames
 request.Time = extent(frameIndex(k)+1:frameIndex(k+1)-1);
 iceImage = server.getMap(request.RequestURL);
 geoshow(iceImage, request.RasterReference)
 title(request.Time, 'Interpreter', 'none')
 drawnow
 shg
 frame = getframe(h);
 if k == 1
 [animated, cmap] = rgb2ind(frame.cdata, 256, 'nodither');
 else
 animated(:,:,1,k) = rgb2ind(frame.cdata, cmap, 'nodither');
 end
end

12 Save and then view the animated GIF file.

filename = 'wmsanimated.gif';
imwrite(animated, cmap, filename, 'DelayTime', 1.5, ...
 'LoopCount', inf);
web(filename)

 Animate Data Layers

9-35

Snapshot from Animation of Larsen Ice Shelf

Courtesy NASA/Goddard Space Flight Center Scientific Visualization Studio

Animate Time-Lapse Radar Observations
Display Next-Generation Radar (NEXRAD) images for the United States using data from the Iowa
Environmental Mesonet (IEM) Web map server. The server stores layers covering the past 50 minutes
up to the present time in increments of 5 minutes. Read and display the merged layers.

1 Find layers in the WMS Database that include 'mesonet' and 'nexrad' in their ServerURL
fields.

mesonet = wmsfind('mesonet*nexrad', 'SearchField', 'serverurl');
2 NEXRAD Base Reflect Current ('nexrad-n0r') measures the intensity of precipitation. Refine

your search to include only layers with this phrase in one of the search fields.

nexrad = mesonet.refine('nexrad-n0r', 'SearchField', 'any');
3 Remove the 900913 layers because they are intended for Google Maps overlay. Also remove the

WMST layer because it contains data for different times.

layers_900913 = nexrad.refine('900913', 'SearchField', ...
 'layername');
layer_wmst = nexrad.refine('wmst', 'SearchField', 'layername');
rmLayerNames = {layers_900913.LayerName layer_wmst.LayerName};
index = ismember({nexrad.LayerName}, rmLayerNames);
nexrad = nexrad(~index);

9 Creating Web Map Service Maps

9-36

4 Update your nexrad layer to fill in all fields and obtain most recent data.

nexrad = wmsupdate(nexrad, 'AllowMultipleServers', true);
5 'conus' represents the conterminous 48 U.S. states (all except Hawaii and Alaska). Use the

usamap function to construct a map axes for the conterminous states. Read in the nexrad layers.

region = 'conus';
figure
usamap(region)
mstruct = gcm;
latlim = mstruct.maplatlimit;
lonlim = mstruct.maplonlimit;
[A, R] = wmsread(nexrad, 'Latlim', latlim, 'Lonlim', lonlim);

6 Display the NEXRAD merged layers map. Overlay with United States state boundary polygons.

geoshow(A, R);
geoshow('usastatehi.shp', 'FaceColor', 'none');
title({'NEXRAD Radar Map', 'Merged Layers'});

7 Loop through the sequence of time-lapse radar observations.

hfig = figure;
usamap(region)
hstates = geoshow('usastatehi.shp', 'FaceColor', 'none');
numFrames = numel(nexrad);
frames = struct('cdata', [], 'colormap', []);
frames(numFrames) = frames;
hmap = [];
frameIndex = 0;
for k = numFrames:-1:1
 frameIndex = frameIndex + 1;

 Animate Data Layers

9-37

 delete(hmap)
 [A, R] = wmsread(nexrad(k), 'Latlim', latlim, 'Lonlim', lonlim);
 hmap = geoshow(A, R);
 uistack(hstates,'top')
 title(nexrad(k).LayerName)
 drawnow
 frames(frameIndex) = getframe(hfig);
end

8 Create an array to write out as an animated GIF file.

animated(1,1,1,numFrames) = 0;
for k=1:numFrames
 if k == 1
 [animated, cmap] = rgb2ind(frames(k).cdata, 256, 'nodither');
 else
 animated(:,:,1,k) = ...
 rgb2ind(frames(k).cdata, cmap, 'nodither');
 end
end

9 View the animated GIF file.

filename = 'wmsnexrad.gif';
imwrite(animated, cmap, filename, 'DelayTime', 1.5, ...
 'LoopCount', inf);
web(filename)

See Also
wmsfind | wmsread | wmsupdate

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3

9 Creating Web Map Service Maps

9-38

Display Animation of Radar Images over GOES Backdrop
This example shows how to display NEXRAD radar images. The images cover the past 24 hours,
sampled at one-hour intervals, for the United States using data from the IEM WMS server. Use the
JPL Daily Planet layer as the backdrop.

Find the 'nexrad-n0r-wmst' layer and update it.

wmst = wmsfind('nexrad-n0r-wmst', 'SearchField', 'layername');
wmst = wmsupdate(wmst);

Find a generated CONUS composite of GOES IR imagery and update it.

goes = wmsfind('goes*conus*ir', 'SearchField', 'layername');
goes = wmsupdate(goes);

Create a figure with the desired geographic extent.

hfig = figure;
region = 'conus';
usamap(region)
mstruct = gcm;
latlim = mstruct.maplatlimit;
lonlim = mstruct.maplonlimit;

Read the GOES layer as a backdrop image.

cellsize = .1;
[backdrop, R] = wmsread(goes, 'ImageFormat', 'image/png', ...
 'Latlim', latlim, 'Lonlim', lonlim, 'Cellsize', cellsize);

Calculate current time minus 24 hours and set up frames to hold the data from getframe.

now_m24 = datestr(now-1);
hour_m24 = [now_m24(1:end-5) '00:00'];
hour = datenum(hour_m24);
hmap = [];
numFrames = 24;
frames = struct('cdata', [], 'colormap', []);
frames(numFrames) = frames;

For each hour, obtain the hourly NEXRAD map data and combine it with a copy of the backdrop.
Because of how this Web server handles PNG format, the resulting map data has an image with class
double. Thus, you must convert it to uint8 before merging.

borders = geoshow('usastatehi.shp', 'FaceColor', 'none');
black = [0,0,0];
threshold = 0;
for k=1:numFrames
 time = datestr(hour);
 [A, R] = wmsread(wmst, 'Latlim', latlim, 'Lonlim', lonlim, ...
 'Time', time, 'CellSize', cellsize, ...
 'BackgroundColor', black, 'ImageFormat', 'image/png');
 delete(hmap)
 index = any(A > threshold, 3);
 combination = backdrop;
 index = cat(3,index,index,index);
 combination(index) = uint8(255*A(index));

 Display Animation of Radar Images over GOES Backdrop

9-39

 hmap = geoshow(combination, R);
 uistack(borders,'top')
 title({wmst.LayerName, time})
 drawnow
 frames(k) = getframe(hfig);
 hour = hour + 1/24;
end

View the movie loop.

numTimes = 10;
fps = 1.5;
movie(hfig, frames, numTimes, fps);

See Also
wmsfind | wmsread | wmsupdate

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3

9 Creating Web Map Service Maps

9-40

Retrieve Data from Web Map Server
In this section...
“Merge Elevation Data with Rasterized Vector Data” on page 9-42
“Display Merged Elevation and Bathymetry Layer (SRTM30 Plus)” on page 9-44
“Drape WMS Imagery onto Elevation Data” on page 9-46

Typically, a WMS server returns a pictorial representation of a layer (or layers) back to a requester
rather than the actual data. However, in some rare cases, you can request actual data from specific
WMS servers, by using a certain option with wmsread.

A WMS server renders one or more layers and stores the results in a file, which is streamed to the
requester. The wmsread function, or the getMap method of the WebMapServer object, makes the
request on your behalf, captures the stream in a temporary file, and imports the file content into a
variable in your MATLAB workspace. The format of the file may be a standard graphics format, such
as JPEG, PNG, or GIF, or it may be the band-interleaved by line (BIL) format, which is popular in
remote sensing. Almost all WMS servers support use of the JPEG format, and many support more
than one standard graphics format. Only a very few WMS servers support the BIL format, although it
is very useful.

The choice of format can affect the quality of your results. For example, PNG format avoids the tile-
related artifacts that are common with JPEG. Format choice also determines whether you will get a
pictorial representation, which is the case with any of the standard graphics formats, or an absolutely
quantitative data grid (possibly including negative as well as positive values). Quantitative data sets
are provided via the BIL format.

Note To request actual data, most often you need to create either a Web Coverage Service (WCS)
request, for raster data, or a Web Feature Service (WFS) request, for vector data. The Mapping
Toolbox does not support WCS and WFS requests.

With a server that supports multiple formats, you can control which format is used by specifying an
ImageFormat name-value pair when calling wmsread. For example, if the server supports the PNG
format you would choose PNG by specifying 'ImageFormat','image/png', thus avoiding the
possibility of JPEG artifacts.

With a server that supports it, you can obtain an absolutely quantitative data grid by specifying BIL
format when calling wmsread. To do this, use the name-value pair 'ImageFormat','image/bil'.
Although a BIL file typically contains multiple, co-registered bands (channels), the BIL files returned
by a WMS server include only a single band. In this case, the output of wmsread enters the MATLAB
workspace as a 2-D array.

For example, you can obtain signed, quantitative elevation data, rather than an RGB image, from the
NASA WorldWind WMS server (the only server in the Mapping Toolbox WMS database known to
support the 'image/bil' option). See the output from the command:

wmsinfo('https://data.worldwind.arc.nasa.gov/elev?')

In fact, because the NASA WorldWind WMS server returns rendered layers only in the 'image/bil'
format, you do not need to provide an 'ImageFormat' name-value pair when using this server.
However, it is good practice to specify the image format, in case the server is ever updated to provide
rendered layers in other image formats.

 Retrieve Data from Web Map Server

9-41

After retrieving data using the 'ImageFormat','image/bil' option, display it as a surface or a
texture-mapped surface, rather than as an image, as shown in the examples below.

Merge Elevation Data with Rasterized Vector Data
The NASA WorldWind WMS server contains a wide selection of layers containing elevation data.
Follow this example to merge elevation data with a raster map containing national boundaries.

1 Find the layers from the NASA WorldWind server.

layers = wmsfind('data.worldwind*elev', 'SearchField', 'serverurl');
layers = wmsupdate(layers);

2 Select the 'EarthAsterElevations30m' layer containing SRTM30 data merged with global
ASTER data.

aster = layers.refine('EarthAsterElevations30m', ...
 'SearchField', 'layername');

3 Define the region surrounding Afghanistan.

latlim = [25 40];
lonlim = [55 80];

4 Obtain the data at a 1-minute sampling interval.

cellSize = dms2degrees([0,1,0]);
[ZA, RA] = wmsread(aster, 'Latlim', latlim, 'Lonlim', lonlim, ...
 'CellSize', cellSize, 'ImageFormat', 'image/bil');

5 Display the elevation data as a texture map.

figure
worldmap('Afghanistan')
geoshow(ZA, RA, 'DisplayType', 'texturemap')
demcmap(double(ZA))
title({'Afghanistan and Surrounding Region', aster.LayerTitle});

9 Creating Web Map Service Maps

9-42

6 Embed national boundaries from the VMAP0 WMS server into the elevation map.

vmap0 = wmsfind('vmap0.tiles', 'SearchField', 'serverurl');
boundaries = refine(vmap0, 'country_02');
B = wmsread(boundaries, 'Latlim', latlim, ...
 'Lonlim', lonlim, 'CellSize', cellSize, 'ImageFormat','image/png');
ZB = ZA;
ZB(B(:,:,1) < 250) = min(ZA(:));
figure
worldmap('Afghanistan')
demcmap(double(ZA))
geoshow(ZB, RA, 'DisplayType', 'texturemap')
title({'Afghanistan and Country Boundaries', aster.LayerTitle});

 Retrieve Data from Web Map Server

9-43

Display Merged Elevation and Bathymetry Layer (SRTM30 Plus)
The Shuttle Radar Topography Mission (SRTM) is a project led by the U.S. National Geospatial-
Intelligence Agency (NGA) and NASA. SRTM has created a high-resolution, digital, topographic
database of Earth. The SRTM30 Plus data set combines GTOPO30, SRTM-derived land elevation and
Sandwell bathymetry data from the University of California at San Diego.

Follow this example to read and display the SRTM30 Plus layer for the Gulf of Maine at a 30 arc-
second sampling interval using data from the WorldWind server.

1 Find and update the 'srtm30' layer in the WMS Database. The 'srtm30' layer name from
NASA WorldWind is the name for the SRTM30 Plus data set.

wldwind = wmsfind('data.worldwind*elev', 'SearchField', 'serverurl');
wldwind = wmsupdate(wldwind);
srtmplus = wldwind.refine('srtm30', 'SearchField', 'layername');

2 Set the desired geographic limits.

latlim = [40 46];
lonlim = [-71 -65];

3 Set the sampling interval to 30 arc-seconds.

samplesPerInterval = dms2degrees([0 0 30]);
4 Set the ImageFormat to image/bil.

imageFormat = 'image/bil';

9 Creating Web Map Service Maps

9-44

5 Request the map from the NASA server.

[Z1, R1] = wmsread(srtmplus, 'Latlim', latlim, ...
 'Lonlim', lonlim, 'ImageFormat', imageFormat, ...
 'CellSize', samplesPerInterval);

6 Open a figure window and set up a map axes with geographic limits that match the desired
limits. The raster reference object R1 ties the intrinsic coordinates of the raster map to the
EPSG:4326 geographic coordinate system. Create a colormap appropriate for elevation data.
Then, display and contour the map at sea level (0 m).

figure
worldmap(Z1, R1)
geoshow(Z1, R1, 'DisplayType', 'texturemap')
demcmap(double(Z1))
contourm(double(Z1), R1, [0 0], 'Color', 'black')
colorbar
title ({'Gulf of Maine', srtmplus.LayerTitle}, 'Interpreter','none')

7 Compare the NASA WorldWind SRTM30 Plus layer with the SRTM30 with Bathymetry (900m)
merged with SRTM3 V4.1 (90m) and USGS NED (30m) (mergedSrtm) layer.

mergedSrtm = wldwind.refine('mergedSrtm');
8 Request the map from the NASA WorldWind server.

[Z2, R2] = wmsread(mergedSrtm, 'Latlim', latlim, 'Lonlim', lonlim, ...
 'CellSize', samplesPerInterval, 'ImageFormat', 'image/bil');

9 Display the data.

figure
worldmap(Z2, R2)
geoshow(Z2, R2, 'DisplayType', 'texturemap')
demcmap(double(Z2))
contourm(double(Z2), R2, [0 0], 'Color', 'black')
colorbar
title ({'Gulf of Maine', mergedSrtm.LayerTitle})

 Retrieve Data from Web Map Server

9-45

10 Compare the results.

disp(newline + "SRTM30 Plus - " + srtmplus.LayerName ...
+ newline + "Minimum value: " + min(Z1(:))...
+ newline + "Maximum value: " + max(Z1(:)))
disp(newline + "SRTM30 Plus Merged - " + mergedSrtm.LayerName ...
+ newline + "Minimum value: " + min(Z2(:))...
+ newline + "Maximum value: " + max(Z2(:)))

11 The output appears as follows:

SRTM30 Plus - srtm30
Minimum value: -4543
Maximum value: 1463

Merged SRTM30 Plus - mergedSrtm
Minimum value: -4543
Maximum value: 1463

Drape WMS Imagery onto Elevation Data
This example shows how to drape WMS imagery onto elevation data from the USGS National
Elevation Dataset (NED).

1 Obtain the layers of interest.

ortho = wmsfind('/USGSImageryTopo/','SearchField','serverurl');

layers = wmsfind('data.worldwind', 'SearchField', 'serverurl');
us_ned = layers.refine('usgs ned 30');

2 Assign geographic extent and image size.

latlim = [36 36.23];
lonlim = [-113.36 -113.13];
imageHeight = 575;
imageWidth = 575;

9 Creating Web Map Service Maps

9-46

3 Read the ortho layer.

A = wmsread(ortho, 'Latlim', latlim, 'Lonlim', lonlim, ...
 'ImageHeight', imageHeight, 'ImageWidth', imageWidth);

4 Read the USGS us_ned layer.

[Z, R] = wmsread(us_ned, 'ImageFormat', 'image/bil', ...
 'Latlim', latlim, 'Lonlim', lonlim, ...
 'ImageHeight', imageHeight, 'ImageWidth', imageWidth);

5 Drape the ortho image onto the elevation data.

figure
usamap(latlim, lonlim)
framem off; mlabel off; plabel off; gridm off
geoshow(double(Z), R, 'DisplayType', 'surface', 'CData', A);
daspectm('m',1)
title({'Grand Canyon', 'USGS NED and Ortho Image'}, ...
 'FontSize',8);
axis vis3d

6 Assign camera parameters.

cameraPosition = [96431 4.2956e+06 -72027];
cameraTarget = [-82.211 4.2805e+06 3054.6];
cameraViewAngle = 8.1561;
cameraUpVector = [3.8362e+06 5.9871e+05 5.05123e+006];

7 Set camera and light parameters.

 Retrieve Data from Web Map Server

9-47

set(gca,'CameraPosition', cameraPosition, ...
 'CameraTarget', cameraTarget, ...
 'CameraViewAngle', cameraViewAngle, ...
 'CameraUpVector', cameraUpVector);
lightHandle = camlight;
camLightPosition = [7169.3 1.4081e+06 -4.1188e+006];
set(lightHandle, 'Position', camLightPosition);

See Also
wmsfind | wmsread | wmsupdate

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3

9 Creating Web Map Service Maps

9-48

Save Your Favorite Servers
You can save your favorite layers for easy access in the future. Use wmsupdate to fill in the
Abstract, CoordRefSysCodes, and Details fields, and then save the layers. The next example
demonstrates how to make a mini-database from the NASA, WHOI, and ESA servers.

1 Find the servers and update all fields.

nasa = wmsfind('nasa','SearchField','serverurl');
favoriteLayers = nasa;
favoriteLayers = wmsupdate(favoriteLayers, ...
 'AllowMultipleServers', true);
favoriteServers = favoriteLayers.servers;

2 Save your favorite layers in a MAT-file.

save favorites favoriteLayers
3 Search within your favorite layers for 'wind speed'. You have updated all fields, so you can

search within any field, including the Abstract.

windSpeed = favoriteLayers.refine('wind speed','SearchFields','any')

See Also
wmsfind | wmsread | wmsupdate

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3

 Save Your Favorite Servers

9-49

Explore Other Layers using a Capabilities Document
You may find a layer you like in the WMS Database and then want to find other layers on the same
server.

1 Use the wmsinfo function to return the contents of the capabilities document as a
WMSCapabilities object. A capabilities document is an XML document containing metadata
describing the geographic content offered by a server.

serverURL = 'http://svs.gsfc.nasa.gov/cgi-bin/wms?';
capabilities = wmsinfo(serverURL)

capabilities =

 WMSCapabilities

 Properties:
 ServerTitle: 'NASA SVS Image Server'
 ServerURL: 'http://svs.gsfc.nasa.gov/cgi-bin/wms?'
 ServiceName: 'WMS'
 Version: '1.3.0'
 Abstract: 'Web Map Server maintained by the
 Scientific Visualization
 Studio at NASA's Goddard Space Flight Center'
 OnlineResource: 'http://svs.gsfc.nasa.gov/'
 ContactInformation: [1x1 struct]
 AccessConstraints: 'none'
 Fees: 'none'
 KeywordList: {}
 ImageFormats: {'image/png'}
 LayerNames: {326x1 cell}
 Layer: [326x1 WMSLayer]
 AccessDate: '09-Jan-2017'

 Methods
2 View the layer names and layer titles.

capabilities.LayerNames;

layerTitles = {capabilities.Layer.LayerTitle}';
3 Read the layer containing tropospheric ozone impacts.

layerTitle = 'Tropospheric Ozone Impacts Global Climate Warming';
layer = refine(capabilities.Layer, layerTitle);
[A, R] = wmsread(layer);

4 Display the map.

figure
worldmap(A,R)
geoshow(A,R)
title(layer.LayerTitle)

9 Creating Web Map Service Maps

9-50

5 This layer contains data from different years. You can examine the available data by viewing the
layer.Details.Dimension structure.

layer.Details.Dimension
6 Display the map for the year 1884 and compare it with the map for 1994, the default year

(displayed previously).

year = '1884';
[A2,R] = wmsread(layer,'Time',year);
figure
worldmap(A2,R)
geoshow(A2,R)
title({layer.LayerTitle, year})

 Explore Other Layers using a Capabilities Document

9-51

See Also
wmsfind | wmsread | wmsupdate

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3

9 Creating Web Map Service Maps

9-52

Write WMS Images to a KML File
Some WMS server implementations, such as GeoServer, can render their maps in a non-image
format, such as KML. KML is an XML dialect used by Google Earth and Google Maps browsers. The
WebMapServer.getMap method and the wmsread function do not allow you to use the KML format
because they import only standard graphics image formats. Work around this limitation by using the
WMSMapRequest.RequestURL property.

1 Search the WMS Database for layers on any GeoServer. Refine to include only the layers from the
MassGIS server. Refine that list to return a FEMA Flood Zone layer.

geoserver = wmsfind('geoserver', 'SearchField', 'any');
massgis = geoserver.refine('massgis*wms', 'SearchField', ...
 'serverurl');
massgis = wmsupdate(massgis);
floodzone = massgis.refine('FEMA Flood Zones', 'SearchField', ...
 'LayerTitle');
floodzone = floodzone(1);

2 Set geographic limits for a region around Boston, Massachusetts.

latlim = [42.305 42.417];
lonlim = [-71.131 -70.99];

3 Create a WMSMapRequest object and set the geographic limits.

request = WMSMapRequest(floodzone);
request.Latlim = latlim;
request.Lonlim = lonlim;

4 Obtain the graphics image from the server.

[A, R] = wmsread(request.RequestURL);
5 Display the image in a figure window.

figure
usamap(A, R)
geoshow(A, R)

 Write WMS Images to a KML File

9-53

6 Request an image format that opens in Google Earth.

request.ImageFormat = 'application/vnd.google-earth.kml+xml';
7 Use the urlwrite function to write out a KML file.

filename = 'floodzone.kml';
websave(filename,request.RequestURL);

8 Open the file with Google Earth to view. On Windows® platforms, display the KML file with:

winopen(filename)

For UNIX® and Mac users, display the KML file with:

cmd = 'googleearth ';
fullfilename = fullfile(pwd, filename);
system([cmd fullfilename])

See Also
wmsfind | wmsread | wmsupdate

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3

9 Creating Web Map Service Maps

9-54

Search for Layers Outside the Database
You can search for layers by using your Web browser rather than by using the WMS Database.

1 To search for layers outside the WMS Database, use your favorite search engine. If you are using
Google®, select Images and enter the following in the search box: getmap wms.

2 View the images to choose a map. Click the map link and find the WMS GetCapabilities
request somewhere on the page. If you cannot find a GetCapabilities request, try another
map.

For this example, the syntax for the URL of the WMS GetCapabilities request appears as
follows:

url = ['http://sampleserver1.arcgisonline.com/' ...
 'ArcGIS/services/Specialty/ESRI_StatesCitiesRivers_USA/' ...
 'MapServer/WMSServer?service=WMS&request=GetCapabilities' ...
 '&version=1.3.0'];

3 After you obtain the URL, you can use wmsinfo to return the capabilities document.

c = wmsinfo(url);
4 Next, read in a layer and display it as a map.

[A,R] = wmsread(c.Layer(1), ...
 'BackgroundColor', [0,0,255], 'ImageFormat', 'image/png');
figure
usamap(c.Layer(1).Latlim, c.Layer(1).Lonlim)
geoshow(A,R)

See Also
wmsfind | wmsread | wmsupdate

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3

 Search for Layers Outside the Database

9-55

Troubleshoot WMS Servers
In this section...
“Connection Errors” on page 9-56
“Wrong Scale” on page 9-57
“Problems with Geographic Limits” on page 9-58
“Problems with Server Changing LayerName” on page 9-58
“Non-EPSG:4326 Coordinate Reference Systems” on page 9-58
“Map Not Returned” on page 9-59
“Unsupported WMS Version” on page 9-60
“Other Unrecoverable Server Errors” on page 9-60

Connection Errors
One of the challenges of working with WMS is that sometimes you can have trouble connecting to a
server.

Time-Out Error

A server may issue a time-out error such as:

Connection timed out: connect

Or

Read timed out

Workaround: Try setting the 'TimeoutInSeconds' parameter to a larger value. The time-out
setting defaults to 60 seconds. (The functions wmsread, wmsinfo, and wmsupdate all have
'TimeoutInSeconds' parameters.)

Server No Longer Provides Full WMS Services

The NASA Jet Propulsion Laboratory (JPL) server may issue the following error message:

This server no longer provides full WMS services!

The DataFed server, http://webapps.datafed.net/OnEarth_JPL.ogc?, cascades layers from
the JPL server and may issue the following error message:

Error in Execution. Cannot fetch url.

Workaround: Use a TiledWMS URL or find a different server.

The JPL Global Imagery Service server, http://onearth.jpl.nasa.gov/wms.cgi?, is no longer
providing full WMS services for any of the datasets. Any server (for example, http://
webapps.datafed.net/OnEarth_JPL.ogc?) that cascades data from this server is also affected
by the change.

A small subset of the data can be accessed using a non-standard TiledWMS request. The available
tiled patterns can be found at:

9 Creating Web Map Service Maps

9-56

http://pat.jpl.nasa.gov/wms.cgi?request=GetTileService

The WMS parameters must be in the exact order. If you wish to obtain a tile, you can prepend the
prefix, 'http://onearth.jpl.nasa.gov/wms.cgi?/SERVICE=WMS&' in front of the request
found in the CDATA section of the GetTileService request.

For example:

url = ['http://onearth.jpl.nasa.gov/wms.cgi?/SERVICE=WMS&Version=1.1.1&' ...
'request=GetMap&layers=global_mosaic&srs=EPSG:4326&' ...
'format=image/jpeg&styles=visual&width=512&height=512&' ...
'bbox=-180,58,-148,90'];
[A, R] = wmsread(url);

Elevation layers from onearth.jpl.nasa.gov can be replaced with layers from the NASA
WorldWind server (https://data.worldwind.arc.nasa.gov/elev?). The Blue Marble layer can
be replaced with a Blue Marble layer from the NASA Goddard Space Flight Center WMS SVS Image
Server (http://svs.gsfc.nasa.gov/cgi-bin/wms?) or the Blue Marble: Next Generation layer
from the NASA Earth Observations (NEO) WMS Server (http://
neowms.sci.gsfc.nasa.gov/wms/wms?).

The Daily Planet layer can be replaced with the 'True Color (1 day - Terra/MODIS Rapid
Response)' layer from the NASA Earth Observations (NEO) WMS server.

HTTP Response Code 500

In some cases, the server becomes temporarily unavailable or the WMS server application
experiences some type of issue. The server issues an HTTP response code of 500, such as:

Server returned HTTP response code: 500 for URL: http://xyz.com ...

Workaround: Try again later. Also try setting a different 'ImageFormat' parameter.

WMSServlet Removed

If the columbo.nrlssc.navy.mil server issues an error such as:

WebMapServer cannot communicate to the host columbo.nrlssc.navy.mil.
The host is unknown.

This message indicates that the server it is trying to access is no longer available.

Workaround: Choose a different layer.

Wrong Scale
The columbo.nrlssc.navy.mil server often throws this error message:

This layer is not visible for this scale. The maximum valid scale
is approximately X. Zoom in and try again if desired. The scale of
the image requested is Y.

X and Y represent specific values that vary from layer to layer.

Workaround: Some of the WMS sources this server accesses have map layers sensitive to the
requested scale. Zoom in (choose a smaller region of interest), or zoom out (choose a larger region of

 Troubleshoot WMS Servers

9-57

interest). Alternatively, you can select a larger output image size to view the layer at the appropriate
scale.

Problems with Geographic Limits
Some servers do not follow the guidelines of the OGC specification regarding latitude and longitude
limits.

Latlim and Lonlim in Descending Order

The OGC specification requires, and the WMS functions expect, that the limits are ascending. Some
sites, however, have descending limits. As a result, you may get this error message:

"??? Error using ==> WMSMapRequest>validateLimit at 1313
Expected the elements of 'Latlim' to be in ascending order."

Workaround: To address this problem, set the Latlim and Lonlim properties of WMSLayer:

layer = wmsfind('SampleServer.com', 'SearchField', 'serverurl');
layer = wmsupdate(layer);
latlim = [min(layer.Latlim), max(layer.Latlim)];
lonlim = [min(layer.Lonlim), max(layer.Lonlim)];
layer.Latlim = [max([-90, latlim(1)]), min([90, latlim(2)])];
layer.Lonlim = [max([-180, lonlim(1)]), min([180, lonlim(2)])];
[A,R] = wmsread(layer);

Update your layer before setting the limits. Otherwise, wmsread updates the limits from the server,
and you once again have descending limits.

Limits Exceed Bounds

Some servers have limits that exceed the bounds of [-180, 180] for longitude and [-90, 90] for
latitude.

Workaround: To address this problem, follow the same procedure outlined in “Latlim and Lonlim in
Descending Order” on page 9-58.

Problems with Server Changing LayerName
In most cases, the updated layer returned by wmsupdate should have ServerURL and LayerName
properties that match those of the layer you enter as input. In some cases when the layer is updated
from the columbo.nrlssc.navy.mil server, the server returns a layer with a different LayerName,
but the ServerURL and LayerTitle are the same. The layers from the
columbo.nrlssc.navy.mil server have names such as 'X:Y', where X and Y are ASCII numbers.
Since the time of your last update, a layer has been added to or removed from the server causing a
shift in the sequence of layers. Since the LayerName property is constructed with ASCII numbers
based on the layer's position in this sequence, the LayerName property has changed. For layers from
the columbo.nrlssci.navy.mil server, wmsupdate matches the LayerTitle property rather
than the LayerName property.

Non-EPSG:4326 Coordinate Reference Systems
Some layers are not defined in the EPSG:4326 or CRS:84 coordinate reference system. You cannot
read these layers with the wmsread function.

9 Creating Web Map Service Maps

9-58

Workaround: Use the WMSMapRequest object to construct a request URL and the
WebMapServer.getMap method to read the layer. See Understanding Coordinate Reference System
Codes on page 9-10 and Retrieving Your Map with WebMapServer.getMap on page 9-19 for more
information.

Map Not Returned
Sometimes you can connect to the WMS server, but you do not receive the map you are expecting.

Blank Map Returned

A server may return a blank map.

Workaround: You can change the scale of your map; either increase the image height and width or
change the geographic bounds. Another possibility is that your requested geographic extent lies
outside the extent of the layer, in which case you should change the extent of your request. A third
possibility is that you have the wrong image format selected; in this case, change the
'ImageFormat' parameter.

HTML File Returned

You may receive this error message:

The server returned an HTML file instead of an image file.

Workaround: Follow the directions in the error message. The following example, which uses a
sample URL, illustrates the type of error message you receive.

% Example command.
[A,R] = wmsread(['https://www.mathworks.com?',...
'&BBOX=-180,-90,180,90&CRS=EPSG:4326&VERSION=1.1.1']);

Sample error message:

Error using WebMapServer>issueReadGetMapError (line 974)
The server returned an HTML file instead of an image file.
You may view the complete error message by issuing the command,
 web('https://www.mathworks.com?&BBOX=-180,-90,180,90&CRS=EPSG:4326&VERSION=1.1.1')
 or
 urlread('https://www.mathworks.com?&BBOX=-180,-90,180,90&CRS=EPSG:4326&VERSION=1.1.1').

Error in WebMapServer>readImageFormat (line 874)
 issueReadGetMapError(filename, requestURL);

Error in WebMapServer>readGetMapFile (line 852)
 A = readImageFormat(filename, requestURL);

Error in WebMapServer/getMap (line 299)
 A = readGetMapFile(filename, h.RequestURL);

Error in wmsread (line 376)
A = server.getMap(mapRequestURL);

XML File Returned

The server issues a very long error message, beginning with the following phrase:

 Troubleshoot WMS Servers

9-59

An error occurred while attempting to get the map from the server.
The error returned is <?xml version="1.0" encoding="utf-8"?> ...

Workaround: This problem occurs because the server breaks with the requirements of the OGC
standard and returns the XML capabilities document rather than the requested map. Choose a
different layer or server.

Unsupported WMS Version
In rare cases, the server uses a different and unsupported WMS version. In this case, you receive an
error message such as:

The WMS version, '1.2.0', listed in layer.Details.Version is not
supported by the server. The supported versions are: '1.0.0' '1.1.0'
'1.1.1' '1.3.0' .

Workaround: Choose a different server.

Other Unrecoverable Server Errors
The server issues an error indicating that no correction or workaround exists. These cases result in
the following types of error messages:

Server redirected too many times (20)

An error occurred while attempting to parse the XML capabilities
document from the server.

Unexpected end of file from server

An error occurred while attempting to get the map from the server.
The server returned a map containing no data.

See Also
wmsfind | wmsread | wmsupdate

More About
• “Basic Workflow for Creating WMS Maps” on page 9-3

9 Creating Web Map Service Maps

9-60

Troubleshoot Access to the Hosted WMS Database
wmsfind can search a version of the WMS database hosted on the MathWorks website. The
information found in the web-hosted database is updated regularly.

If your network uses a firewall or another method of protection that restricts Internet access, provide
information about your proxy server to MATLAB. Be aware that:

• MATLAB supports non-authenticated, basic, digest, and NTLM proxy authentication types.
• You cannot specify the proxy server settings using a script.
• There is no automated way to provide the proxy server settings your system browser uses to

MATLAB.

To specify the proxy server settings:

1 On the Home tab, in the Environment section, click Preferences. Select MATLAB > Web.
2 Select the Use a proxy server to connect to the Internet check box.
3 Specify values for Proxy host and Proxy port. Examples of acceptable formats for the host are:

172.16.10.8 and ourproxy. For the port, enter an integer only, such as 22. If you do not know
the values for your proxy server, ask your system or network administrator for the information. If
your proxy server requires a user name and password, select the Use a proxy with
authentication check box. Then enter your proxy user name and password. MATLAB stores the
password without encryption in your matlab.prf file.

4 Ensure that your settings work by clicking the Test connection button. MATLAB attempts to
connect to https://www.mathworks.com. If MATLAB can access the Internet, Success!
appears next to the button. If MATLAB cannot access the Internet, Failed! appears next to the
button. Correct the values you entered and try again. If you still cannot connect, try using the
values you used when you authenticated your MATLAB license.

5 Click OK to accept the changes.

On Windows®, if no proxy is specified in MATLAB preferences, wmsfind uses the proxy set in the
Windows system preferences. To specify system proxy server settings, refer to your Windows
documentation for locating Internet Options. On the Connections tab, select LAN settings. The
proxy settings are in the Proxy server section. MATLAB does not take into account proxy exceptions
which you configure in Windows. Even if you have specified the correct credentials in the MATLAB
preference panel or in the Windows system proxy settings, the wmsfind function returns the error
Proxy Authentication Required if the proxy server in MATLAB preferences requires an
authentication method other than Basic. The proxy server in Windows system preferences requires
authentication of any type.

 Troubleshoot Access to the Hosted WMS Database

9-61

Introduction to Web Map Display
Web maps are interactive maps that are accessed through web pages. As a result, they require a live
Internet connection. Using Mapping Toolbox software, you can:

• Display web maps.
• Interactively or programmatically pan and zoom.
• Select the maps to display, called base layers or basemaps. The webmap function provides a set of

basemaps from which you can choose, for example 'Open Street Map'. You can also use WMS
Layers and define custom basemaps.

• Add vector data, called overlay layers, such as lines and markers.
• Share your results using printing capabilities or the MATLAB publish command.

Note To display a web map using the toolbox, you must have an Internet connection. MathWorks
cannot guarantee the stability and accuracy of web maps, as the servers are located on the Internet
and are independent from MathWorks. Occasionally, maps may be slow to display, display partially, or
fail to display, because web map servers can become unavailable for short periods of time.

The graphics in web maps are not part of MATLAB graphics.

For example, this image shows the default web map display, including the pan tool, zoom tool, scale
bar, Layer Manager expander arrow, and current pointer location.

9 Creating Web Map Service Maps

9-62

Open the Layer Manager by clicking the expander arrow in the web map toolbar. Use the Layer
Manager to select a basemap layer and display overlay layers.

 Introduction to Web Map Display

9-63

Web Map Coordinate Systems
When displaying named base layers, or a WMSLayer array in a coordinate reference system of
EPSG:900913, the projected coordinate system is "Web Mercator". Otherwise, when displaying a
WMSLayer array, the projected coordinate system is EPSG:4326. These projections include a
geographic quadrangle bounded north and south by parallels (which map to horizontal lines) and east
and west by meridians (which map to vertical lines).

See Also
addCustomBasemap | webmap | wmcenter | wmclose | wmlimits | wmzoom

More About
• “Basic Workflow for Displaying Web Maps” on page 9-65

9 Creating Web Map Service Maps

9-64

Basic Workflow for Displaying Web Maps

Workflow Summary
The web map display is an interactive capability, so there is no specific workflow required. The
following is one way to approach working with web map displays.

1 Display the default web map, using the webmap function. You can also specify a base layer (also
called a basemap) when you create the web map with the webmap function.

2 Select a base layer map from the Layer Manager. The toolbox supports over a dozen base layers
from popular web map providers. You can also add custom base layers.

3 Navigate around the web map, using the zoom tool and moving the map interactively (panning).
You can also specify the visible portion of the web map programmatically using the wmlimits,
wmzoom, and wmcenter functions.

4 Select additional layers to overlay on your web map from the overlay layers listed in the Layer
Manager. You can also create overlay layers using the wmline, wmmarker, and wmpolygon
functions. Use wmremove to remove layers that you’ve added.

5 Print the map, using the wmprint function.
6 Close the map, using the wmclose function.

See Also

More About
• “Introduction to Web Map Display” on page 9-62
• “Display a Web Map” on page 9-66
• “Select a Base Layer Map” on page 9-67
• “Specify a Custom Base Layer” on page 9-69

 Basic Workflow for Displaying Web Maps

9-65

Display a Web Map
To display web map data, use the webmap function. By default, webmap displays the World Street
Map, centered at latitude and longitude [0 0], but you select other base layers from the Layer
Manager. Web maps are interactive, which means you can navigate the map interactively by using the
pan and zoom controls, your mouse, or the arrow keys. By default, you can pan across the map
continuously, across the 180 meridian.

webmap

See Also
webmap

More About
• “Basic Workflow for Displaying Web Maps” on page 9-65
• “Select a Base Layer Map” on page 9-67

9 Creating Web Map Service Maps

9-66

Select a Base Layer Map
Once you open a web map, you can change the base layer (basemap) by using the Layer Manager. To
open the Layer Manager, select the expander arrow on the right side of the window. For example,
change the base map to Light Gray Canvas Map. This map is useful for displaying vector data.

Close the Layer Manager.

 Select a Base Layer Map

9-67

You can also specify the base layer programmatically when you open the web map, by including the
name of the layer as an argument to the webmap function. The following example opens the web map,
displaying the Light Gray Canvas Map. For a list of all the named base layers supported, see the
webmap function. The examples includes the optional parameter Wraparound that causes the map
display to be truncated at the -180 degree and +180 degree meridians. By default, maps are
continuous.

webmap('Light Gray Canvas Map','WrapAround',false)

See Also
webmap | wmsfind | wmsupdate

More About
• “Basic Workflow for Displaying Web Maps” on page 9-65

9 Creating Web Map Service Maps

9-68

Specify a Custom Base Layer
The webmap function provides a selection of over a dozen base layers (basemaps) which provide a
variety of geographic backdrops on which you can plot your data. See the webmap function for a
complete list. In some cases, you might want to plot your data over a map of your own choosing. To
do this, specify a custom base layer by using the addCustomBasemap function. The following
example shows how to specify a high-resolution topographical map as a custom base layer.

1 Specify the URL of the website that provides the map data. In this example, for better load
balancing, the web map provides three servers that you can use: a, b, or c.

url = 'a.tile.opentopomap.org';
2 Define the name that you will use to specify the custom base layer programmatically. For

example, you can use this name with the webmap command or, if you want to delete the custom
map, with the removeCustomBasemap function.

name = 'opentopomap';
3 Create an attribution to display on the map that gives credit to the provider of the map data. Web

map providers might define specific requirements for the attribution.

copyright = char(uint8(169));
attribution = [...
 "map data: " + copyright + "OpenStreetMap contributors,SRTM", ...
 "map style: " + copyright + "OpenTopoMap (CC-BY-SA)"];

4 Define the name that will appear in the Layer Manager to identify the custom base layer.

displayName = 'Open Topo Map';
5 Add the custom base layer to the list of base layers available through the Layer Manager. When

you add a custom base layer, the addition is persistent between MATLAB sessions.

addCustomBasemap(name,url,'Attribution',attribution, ...
 'DisplayName',displayName)

6 Open a web map. Expand the Layer Manager and find the listing for the custom base layer in the
list of base layers. To view the custom base layer, select the map in the Layer Manager. You can
also specify the name you assigned to the map as an argument to the webmap function.

webmap opentopomap

 Specify a Custom Base Layer

9-69

See Also
addCustomBasemap | removeCustomBasemap | webmap

More About
• “Basic Workflow for Displaying Web Maps” on page 9-65
• “Specify a WMS Layer as a Base Layer” on page 9-71

9 Creating Web Map Service Maps

9-70

Specify a WMS Layer as a Base Layer
Display a WMS layer in a web map by using the webmap function. The following example shows how
to use Web Map Service functions to connect with a Web server, retrieve a layer, and display it in a
web map. Change the view using your mouse.

info = wmsinfo('https://neo.sci.gsfc.nasa.gov/wms/wms?');
nasa = info.Layer;
baselayer = refine(nasa, 'bluemarbleng', ...
 'SearchField', 'layername', 'MatchType', 'exact');
baselayer = wmsupdate(baselayer);
webmap(baselayer)

See Also
webmap | wmsfind | wmsupdate

More About
• “Basic Workflow for Displaying Web Maps” on page 9-65

 Specify a WMS Layer as a Base Layer

9-71

• “Specify a Custom Base Layer” on page 9-69

9 Creating Web Map Service Maps

9-72

Add an Overlay Layer to the Map
Add a layer of vector data over the base layer map by using the Layer Manager. For example open a
web map by calling the webmap function and then open the Layer Manager by clicking the expander
arrow . Then, choose the Light Gray Canvas Map base layer and overlay the World Boundaries
(Dark Text) vector data.

Close the layer manager and then navigate the map using your mouse or arrow keys.

 Add an Overlay Layer to the Map

9-73

See Also
webmap | wmsfind | wmsupdate

More About
• “Basic Workflow for Displaying Web Maps” on page 9-65

9 Creating Web Map Service Maps

9-74

Add Line, Polygon, and Marker Overlay Layers to Web Maps
This example shows how to add line, polygon, and marker overlay layers to a web map. Overlay layers
can add information, such as, state borders and coast lines, to a base layer map. The toolbox includes
functions to draw lines, polygons, and web markers on a web map.

For example, to draw a multifaceted line or multiple lines on a map, use the wmline function. You use
latitude and longitude values to specify the points that define the line. Similarly, to draw a polygon,
use the wmpolygon function, specifying latitude and longitude values that define the vertices of the
polygon. You can also add markers, or map pins, to identify points of interest on a web map using the
wmmarker function.

The following example illustrates these capabilities.

1 Load latitude and longitude data. This creates two variables in the workspace: coastlat and
coastlon.

load coastlines
2 Use the latitude and longitude data to define a line overlay. wmline draws the overlay on the

current web map or, if none exists, it creates a new web map. The example includes several
optional parameters to specify the line width and the name you want associated with the line.

wmline(coastlat,coastlon,'LineWidth',3,'FeatureName','coastline')

 Add Line, Polygon, and Marker Overlay Layers to Web Maps

9-75

3 The wmline command adds the new overlay to the list of overlays in the Layer Manager. By
default, this layer is called Line Overlay 1.

9 Creating Web Map Service Maps

9-76

4 Use the same latitude and longitude data to define a polygon overlay. wmpolygon interprets the
latitudes and longitudes as the vertices of a polygon, and draws the overlay on the current web
map. The example includes several optional parameters to specify the line width and the name
you want associated with the line.

wmpolygon(coastlat,coastlon,'FeatureName','coastline','FaceColor','green')

 Add Line, Polygon, and Marker Overlay Layers to Web Maps

9-77

5 The wmpolygon command adds the polygon overlay to the list of overlays in the Layer Manager.
By default, this layer is called Polygon Overlay 2.

9 Creating Web Map Service Maps

9-78

6 Add a marker to the web map by using the wmmarker function. Display information about the
marker by clicking on it. The wmmarker function adds the marker overlay to the list of overlays
in the Layer Manager. By default, this layer is called Marker Overlay 3.

wmmarker(10.5000,-66.8992,'FeatureName','Caracas')

 Add Line, Polygon, and Marker Overlay Layers to Web Maps

9-79

See Also
webmap | wmline | wmmarker | wmpolygon | wmremove

More About
• “Basic Workflow for Displaying Web Maps” on page 9-65

9 Creating Web Map Service Maps

9-80

Remove Overlay Layers on a Web Map
To remove an overlay layer on a web map, use the wmremove function. When called without an
argument, wmremove deletes the most recently added overlay layer. You can also remove a particular
overlay by specifying the handle of the line or marker overlay. The following example illustrates this
capability.

1 Load latitude and longitude data. This command loads two variables into the workspace:
coastlat and coastlon.

load coastlines
2 Add a line overlay of the coastline data and set the overlay to a variable using the wmline

function. There is no current web map, so wmline creates one.

h = wmline(coastlat,coastlon,'Width',3,'FeatureName','coastline');

3 Add a marker overlay and set it to a variable using the wmmarker function. The marker
highlights the location of the city of Caracas. Note that the overlays are listed in the Layer
Manager as Line Overlay 1 and Marker Overlay 2.

h2 = wmmarker(10.5000,-66.8992,'FeatureName','Caracas');

 Remove Overlay Layers on a Web Map

9-81

4 Remove one of the overlays by using the wmremove function. When called without an argument,
wmremove deletes the most recent overlay. In this case, wmremove removes the marker overlay.
The wmremove function also removes the marker entry in the Layer Manager.

wmremove

9 Creating Web Map Service Maps

9-82

5 Remove a particular overlay by specifying it when you call wmremove. For example, remove the
line overlay.

wmremove(h)

 Remove Overlay Layers on a Web Map

9-83

See Also
webmap | wmline | wmmarker | wmpolygon | wmremove

More About
• “Basic Workflow for Displaying Web Maps” on page 9-65

9 Creating Web Map Service Maps

9-84

Navigate a Web Map
Web maps created using the webmap function are interactive. View a portion of the map in more
detail by using the zoom control or scroll wheel. Move the map in any direction by using the pan tool
or arrow keys, or clicking and dragging the mouse. Alternatively, you can position the map
programmatically using the wmzoom, wmlimits, and wmcenter functions.

For example, open a web map using the webmap function. By default, webmap displays the entire
map, scaled to fit the window and centered at latitude and longitude [0 0]. This image shows the
pan tool outlined in red and the zoom tool outlined in blue. Use the tools to center the map on Brazil.

webmap

You can perform the same navigation programmatically. For example, open a web map that is
centered on Brazil using the wmcenter function. Specify the latitude and longitude of the center
point and the zoom level as arguments.

wmcenter(-15.6000,-56.1003,4)

 Navigate a Web Map

9-85

You can also customize your view of a web map by specifying the latitude and longitude limits. For
example, retrieve the current latitude and longitude limits using the wmlimits function. Depending
on the size of the web map, your limits may be different.

[latlim,lonlim] = wmlimits

latlim =

 -36.5081 7.6476

lonlim =

 -88.7077 -23.4929

You can then open a new web map, specifying these latitude and longitude limits using the wmlimits
function.

wmlimits(latlim,lonlim)

The displayed limits may not match the specified limits because the zoom level is quantized to
discrete integer values and the longitude limits may be constrained.

See Also
webmap | wmcenter | wmsfind | wmsupdate

More About
• “Basic Workflow for Displaying Web Maps” on page 9-65

9 Creating Web Map Service Maps

9-86

Close a Web Map
To programmatically close a web map, use the wmclose function.

When called without an argument, wmclose closes the current web map. You can also specify which
web map to close by specifying a handle to the web map. To close all currently open web maps, call
wmclose specifying the 'all' argument.

The following example opens several web maps, closes a specific web map, and then closes all open
web maps.

1 Open several web maps, getting the handles to the web maps.

wm1 = webmap;
wm2 = webmap('Light Gray');
wm3 = webmap('Open Street');

2 Close a specific web map, using its handle.

wmclose(wm3)
3 Close all web maps that remain open. You can also use the command form: wmclose all.

wmclose('all')

See Also
webmap | wmclose

More About
• “Basic Workflow for Displaying Web Maps” on page 9-65

 Close a Web Map

9-87

Annotate a Web Map with Measurement Information
This example shows how to use a map to get information about a geographic feature. To illustrate,
this example measures the length of the Gross Reservoir and adds some markers and a line overlay
that act as annotations on the map.

Open a web map centered on the Gross Reservoir west of Boulder, Colorado. Use the USGS Shaded
Topographic Map to get the level of topographical detail required for this measurement.

webmap('usgsshadedtopographicmap')
lat = 39.9428;
lon = -105.3691;
zoom = 14;
wmcenter(lat,lon,zoom)

Identify two points at opposite ends of the lake and get the latitude and longitude of these points. To
get this information in a web map, move the mouse pointer over a location on the map. In the upper
right corner, the window displays the geographic coordinates of the point.

9 Creating Web Map Service Maps

9-88

Store the latitude and longitude information in a geoshape vector.

lat1 = 39.93504;
lon1 = -105.38069;
lat2 = 39.95226;
lon2 = -105.35892;
s = geoshape([lat1 lat2],[lon1 lon2])

s =

 1×1 geoshape vector with properties:

 Collection properties:
 Geometry: 'line'
 Metadata: [1×1 struct]
 Vertex properties:
 Latitude: [39.9350 39.9523]
 Longitude: [-105.3807 -105.3589]

Calculate the distance between the two points to get the length of the reservoir. Use the distance
function which calculates the distance between points on a sphere or ellipsoid.

 Annotate a Web Map with Measurement Information

9-89

d = distance(s.Latitude(1),s.Longitude(1),s.Latitude(2), ...
 s.Longitude(2),wgs84Ellipsoid)

d =

 2.6678e+03

Display a line between the two points. Include information about the length of the lake in the line’s
information balloon. Store the distance and information about units as two dynamic fields added to
the geoshape vector.

s.Distance = round(d);
s.Units = 'meters';

wmline(s,'Color','red','FeatureName','Length of Gross Reservoir', ...
 'Overlayname','Transect');

See Also
geoshape | webmap | wmline | wmmarker | wmpolygon | wmremove | wmsfind | wmsupdate

9 Creating Web Map Service Maps

9-90

More About
• “Basic Workflow for Displaying Web Maps” on page 9-65

 Annotate a Web Map with Measurement Information

9-91

Compositing and Animating Web Map Service (WMS)
Meteorological Layers

This example shows how to composite and animate data from multiple Web Map Service (WMS)
layers.

The base layer is from the NASA Goddard Space Flight Center's Scientific Visualization Studio (SVS)
Image Server. The data in this layer shows satellite cloud data during Hurricane Katrina from August
23 through August 30, 2005. The layer consists of cloud data extracted from GOES-12 imagery and
overlaid on a color image of the southeast United States.

Next-Generation Radar (NEXRAD) images, collected by the Iowa State University's Iowa
Environmental Mesonet (IEM) Web map server, are composited with the cloud data at regular
intervals of time.

In particular, this example will show you how to:

• Use the WMS database to find the Katrina and NEXRAD layers
• Retrieve the Katrina base map from a WMS server at a particular time-step
• Retrieve the NEXRAD map from a WMS server at the same time-step
• Composite the base map with the map containing the NEXRAD imagery
• View the composited map in a projected coordinate system
• Retrieve, composite, and animate multiple time sequences
• Create a video file and animated GIF file of the animation

Understanding Basic WMS Terminology

If you are new to WMS, several key concepts are important to understand and are listed here.

• Web Map Service --- The Open Geospatial Consortium (OGC) defines a Web Map Service (WMS) to
be an entity that "produces maps of spatially referenced data dynamically from geographic
information."

• WMS server --- A server that follows the guidelines of the OGC to render maps and return them to
clients

• map --- The OGC definition for map is "a portrayal of geographic information as a digital image file
suitable for display on a computer screen."

• layer --- A dataset of a specific type of geographic information, such as temperature, elevation,
weather, orthophotos, boundaries, demographics, topography, transportation, environmental
measurements, and various data from satellites

• capabilities document --- An XML document containing metadata describing the geographic
content offered by a server

Source Function

The code shown in this example can be found in this function:

function mapexwmsanimate(useInternet,datadir)

Internet Access

Since WMS servers are located on the Internet, this example can be set to access the Internet to
dynamically render and retrieve maps from WMS servers or it can be set to use data previously

9 Creating Web Map Service Maps

9-92

retrieved from the Internet using the WMS capabilities but now stored in local files. You can use a
variable, useInternet, to determine whether to read data from locally stored files, or retrieve the
data from the Internet.

If the useInternet flag is set to true, then an Internet connection must be established to run the
example. Note that the WMS servers may be unavailable, and several minutes may elapse before the
maps are returned. One of the challenges of working with WMS servers is that sometimes you will
encounter server errors. A function, such as wmsread, may time out if a server is unavailable. Often,
this is a temporary problem and you will be able to connect to the server if you try again later. For a
list of common problems and strategies for working around them, please see the Common Problems
with WMS Servers section in the Mapping Toolbox™ User's Guide.

You can store the data locally the first time you run the example and then set the useInternet flag
to false. If the useInternet flag is not defined, it is set to false.

if ~exist('useInternet', 'var')
 useInternet = false;
end

Setup: Define a Data Directory and Filename Utility Function

This example writes data to files if useInternet is true or reads data from files if useInternet is
false. It uses the variable datadir to denote the location of the folder containing the data files.

if ~exist('datadir','var')
 datadir = fullfile(matlabroot,'examples','map','data');
end
if ~exist(datadir,'dir')
 mkdir(datadir)
end

Define an anonymous function to prepend datadir to the input filename:

datafile = @(filename) fullfile(datadir,filename);

Step 1: Find Katrina Layers From Local Database

One of the more challenging aspects of using WMS is finding a WMS server and then finding the
layer that is of interest to you. The process of finding a server that contains the data you need and
constructing a specific and often complicated URL with all the relevant details can be very daunting.

The Mapping Toolbox™ simplifies the process of locating WMS servers and layers by providing a
local, installed, and pre-qualified WMS database, that is searchable, using the function wmsfind. You
can search the database for layers and servers that are of interest to you. Here is how you find layers
containing the term katrina in either the LayerName or LayerTitle field of the database:

katrina = wmsfind('katrina');
whos katrina

 Name Size Bytes Class Attributes

 katrina 34x1 16754 WMSLayer

The search for the term 'katrina' returned a WMSLayer array containing multiple layers. To
inspect information about an individual layer, simply display it like this:

 Compositing and Animating Web Map Service (WMS) Meteorological Layers

9-93

katrina(1)

ans =

 WMSLayer

 Properties:
 Index: 1
 ServerTitle: 'NASA SVS Image Server'
 ServerURL: 'https://svs.gsfc.nasa.gov/cgi-bin/wms?'
 LayerTitle: 'GOES-12 Imagery of Hurricane Katrina: Longwave Infrared Close-up (1024x1024 Animation)'
 LayerName: '3216_22510'
 Latlim: [15.0000 45.0000]
 Lonlim: [-100.0000 -70.0000]

If you type, katrina, in the command window, the entire contents of the array are displayed, with
each element's index number included in the output. This display makes it easy for you to examine
the entire array quickly, searching for a layer of interest. You can display only the LayerTitle
property for each element by executing the command:

disp(katrina,'Properties','layertitle','Index','off','Label','off');

As you've discovered, a search for the generic word 'katrina' returned results of many layers and
you need to select only one layer. In general, a search may even return thousands of layers, which
may be too large to review individually. Rather than searching the database again, you may refine
your search by using the refine method of the WMSLayer class. Using the refine method is more
efficient and returns results faster than wmsfind since the search has already been narrowed to a
smaller set. Supplying the query string, 'goes-12*katrina*visible*close*up*animation', to
the refine method returns a WMSLayer array whose elements contain a match of the query string in
either the LayerTitle or LayerName properties. The * character indicates a wild-card search. If
multiple entries are returned, select only the first one from the svs.gsfc.nasa.gov server.

katrina = refine(katrina,'goes-12*katrina*visible*close*up*animation');
katrina = refine(katrina,'svs.gsfc.nasa.gov','Searchfield','serverurl');
katrina = katrina(1);
whos katrina

 Name Size Bytes Class Attributes

 katrina 1x1 466 WMSLayer

Step 2: Synchronize WMSLayer Object with Server

The database only stores a subset of the layer information. For example, information from the layer's
abstract, details about the layer's attributes and style information, and the coordinate reference
system of the layer are not returned by wmsfind. To return all the information, you need to use the
wmsupdate function. wmsupdate synchronizes the layer from the database with the server, filling in
the missing properties of the layer.

Synchronize the first katrina layer with the server in order to obtain the abstract information. Since
this action requires access to the Internet, call wmsupdate only if the useInternet flag is true.

cachefile = datafile('katrina.mat');
if useInternet

9 Creating Web Map Service Maps

9-94

 katrina = wmsupdate(katrina);
 if ~exist(cachefile,'file')
 save(cachefile,'katrina')
 end
else
 cache = load(cachefile);
 katrina = cache.katrina;
end

Display the abstract information of the layer. Use isspace to help determine where to line wrap the
text.

abstract = katrina.Abstract;
endOfLine = find(isstrprop(abstract,'cntrl'),1);
abstract = abstract(1:endOfLine);
numSpaces = 60;
while(~isempty(abstract))
 k = find(isspace(abstract));
 n = find(k > numSpaces,1);
 if ~isempty(n)
 fprintf('%s\n',abstract(1:k(n)))
 abstract(1:k(n)) = [];
 else
 fprintf('%s\n',abstract)
 abstract = '';
 end
end

The GOES-12 satellite sits at 75 degrees west longitude at an
altitude of 36,000 kilometers over the equator, in geosynchronous
orbit. At this position its Imager instrument takes pictures
of cloud patterns in several wavelengths for all of North and
South America, a primary measurement used in weather forecasting.
 The Imager takes a pattern of pictures of parts of the Earth
in several wavelengths all day, measurements that are vital in
weather forecasting. This animation shows a daily sequence of
GOES-12 images in the visible wavelengths, from 0.52 to 0.72
microns, during the period that Hurricane Katrina passed through
the Gulf of Mexico. At one kilometer resolution, the visible
band measurement is the highest resolution data from the Imager,
which accounts for the very high level of detail in these images.
 For this animation, the cloud data was extracted from GOES image
and laid over a background color image of the southeast United
States.

Note that this abstract information, including any typographical issues and incomplete fragments,
was obtained directly from the server.

Step 3: Explore Katrina Layer Details

You can find out more information about the katrina layer by exploring the Details property of the
katrina layer. The Details.Attributes field informs you that the layer has fixed width and fixed
height attributes, thus the size of the requested map cannot be modified.

katrina.Details.Attributes

ans =

 Compositing and Animating Web Map Service (WMS) Meteorological Layers

9-95

 struct with fields:

 Queryable: 0
 Cascaded: 0
 Opaque: 1
 NoSubsets: 1
 FixedWidth: 1024
 FixedHeight: 1024

The Details.Dimension field informs you that the layer has a time dimension

katrina.Details.Dimension

ans =

 struct with fields:

 Name: 'time'
 Units: 'ISO8601'
 UnitSymbol: ''
 Default: '2005-08-30T17:45Z'
 MultipleValues: 0
 NearestValue: 0
 Current: 0
 Extent: '2005-08-23T17:45Z/2005-08-30T17:45Z/P1D'

with an extent from 2005-08-23T17:45Z to 2005-08-30T17:45Z with a period of P1D (one day),
as shown in the Details.Dimension.Extent field.

katrina.Details.Dimension.Extent

ans =

 '2005-08-23T17:45Z/2005-08-30T17:45Z/P1D'

Step 4: Retrieve Katrina Map from Server

Now that you have found a layer of interest, you can retrieve the raster map using the function
wmsread and display the map using the function geoshow. Since Time is not specified when reading
the layer, the default time, 2005-08-30T17:45Z, is retrieved as specified by the
Details.Dimension.Default field. If the useInternet flag is set to true, then cache the image
and referencing matrix in a GeoTIFF file.

cachefile = datafile('katrina.tif');
if useInternet
 [katrinaMap,R] = wmsread(katrina);
 if ~exist(cachefile,'file')
 geotiffwrite(cachefile,katrinaMap,R)
 end
else
 [katrinaMap,R] = readgeoraster(cachefile);
end

9 Creating Web Map Service Maps

9-96

Display the katrinaMap and overlay the data from the usastatehi.shp file.

states = shaperead('usastatehi.shp','UseGeoCoords',true);
figure
usamap(katrina.Latlim, katrina.Lonlim)
geoshow(katrinaMap,R)
geoshow(states,'FaceColor','none')
title({katrina.LayerTitle, katrina.Details.Dimension.Default}, ...
 'Interpreter','none')

Step 5: Find NEXRAD Radar Layer

NEXRAD radar images for the United States are stored on the Iowa State University's IEM Web map
server. The server conveniently stores NEXRAD images in five minute increments from 1995-01-01
to the present time. You can find the layer by first searching for the term IEM WMS Service in the
ServerTitle field of the WMS database, then refining the search by requesting the layer of interest,
nexrad-n0r-wmst.

iemLayers = wmsfind('IEM WMS Service','SearchField','servertitle');
nexrad = refine(iemLayers,'nexrad-n0r-wmst');

Synchronize the layer with the server.

cachefile = datafile('nexrad.mat');
if useInternet
 nexrad = wmsupdate(nexrad);
 if ~exist(cachefile,'file')
 save(cachefile,'nexrad')

 Compositing and Animating Web Map Service (WMS) Meteorological Layers

9-97

 end
else
 cache = load(cachefile);
 nexrad = cache.nexrad;
end

Step 6: Obtain Extent Parameters

To composite the nexrad layer with the katrina layer, you need to obtain the nexrad layer at
coincidental time periods, and concurrent geographic and image extents. The Details.Dimension
field informs you that the layer has a time dimension,

nexrad.Details.Dimension

ans =

 struct with fields:

 Name: 'time'
 Units: 'ISO8601'
 UnitSymbol: ''
 Default: '2006-06-23T03:10:00Z'
 MultipleValues: 0
 NearestValue: 0
 Current: 0
 Extent: '1995-01-01/2011-12-31/PT5M'

and the Details.Dimension.Default field informs you that the layer's time extent includes
seconds.

nexrad.Details.Dimension.Default

ans =

 '2006-06-23T03:10:00Z'

Obtain a time value coincidental with the katrina layer, and add seconds to the time specification.

nexradTime = [katrina.Details.Dimension.Default(1:end-1) ':00Z'];

Assign latlim and lonlim variables to specify the limits for the nexrad layer. Set the values to the
limits of the katrina layer so that the geographic areas match. Note that the nexrad layer's
southern latitude limit does not extend as far south as the katrina layer's southern latitude limit.
The values that lie outside the geographic bounding quadrangle of the nexrad layer are set to the
background color.

fprintf('%s%d\n','Southern latitude limit of NEXRAD layer: ',nexrad.Latlim(1))
fprintf('%s%d\n','Southern latitude limit of Katrina layer: ',katrina.Latlim(1))

Southern latitude limit of NEXRAD layer: 24
Southern latitude limit of Katrina layer: 10

latlim = katrina.Latlim;
lonlim = katrina.Lonlim;

9 Creating Web Map Service Maps

9-98

Assign imageHeight and imageWidth variables.

imageHeight = katrina.Details.Attributes.FixedHeight;
imageWidth = katrina.Details.Attributes.FixedWidth;

Step 7: Retrieve NEXRAD Radar Map from Server

You can retrieve the nexradMap from the server, specified at the same time as the katrinaMap and
for the same geographic and image extents, by supplying parameter/value pairs to the wmsread
function. To accurately retrieve the radar signal from the map, set the ImageFormat parameter to
the image/png format. In order to easily retrieve the signal from the background, set the
background color to black ([0 0 0]).

Retrieve the nexradMap.

black = [0 0 0];
cachefile = datafile('nexrad.tif');
if useInternet
 [nexradMap,R] = wmsread(nexrad, ...
 'Latlim',latlim,'Lonlim',lonlim,'Time',nexradTime, ...
 'BackgroundColor',black,'ImageFormat','image/png', ...
 'ImageHeight',imageHeight,'ImageWidth',imageWidth);
 if ~exist(cachefile, 'file')
 geotiffwrite(cachefile,nexradMap,R)
 end
else
 [nexradMap,R] = readgeoraster(cachefile);
end

Display the nexradMap.

figure
usamap(latlim,lonlim)
geoshow(nexradMap,R)
geoshow(states,'FaceColor','none','EdgeColor',[0.9 0.9 0.9])
title({nexrad.LayerTitle, nexradTime},'Interpreter','none');

 Compositing and Animating Web Map Service (WMS) Meteorological Layers

9-99

Step 8: Composite NEXRAD Radar Map with Katrina Map

To composite the nexradMap with a copy of the katrinaMap, you need to identify the non-
background pixels in the nexradMap. The nexradMap data is returned as an image with class
double, because of how this web map server handles PNG format, so you need convert it to uint8
before merging.

Identify the pixels of the nexradMap image that do not contain the background color.

threshold = 0;
index = any(nexradMap > threshold, 3);
index = repmat(index,[1 1 3]);

Composite the nexradMap with the katrinaMap.

combination = katrinaMap;
combination(index) = uint8(nexradMap(index)*255);

Display the composited map.

figure
usamap(latlim,lonlim)
geoshow(combination,R)
geoshow(states,'FaceColor','none')
title({'GOES 12 Imagery of Hurricane Katrina', ...
 'Composited with NEXRAD Radar',nexradTime})

9 Creating Web Map Service Maps

9-100

Step 9: Initialize Variables to Animate the Katrina and NEXRAD Maps

The next step is to initialize variables in order to animate the composited katrina and nexrad
maps.

Create variables that contain the time extent of the katrina layer.

extent = katrina.Details.Dimension.Extent;
slash = '/';
slashIndex = strfind(extent,slash);
startTime = extent(1:slashIndex(1)-1);
endTime = extent(slashIndex(1)+1:slashIndex(2)-1);

Calculate numeric values for the start and end days. Note that the time extent is in yyyy-mm-dd
format.

hyphen = '-';
hyphenIndex = strfind(startTime,hyphen);
dayIndex = [hyphenIndex(2) + 1, hyphenIndex(2) + 2];
startDay = str2double(startTime(dayIndex));
endDay = str2double(endTime(dayIndex));

Assign the initial katrinaTime.

katrinaTime = startTime;

Since multiple requests to a server are required for animation, it is more efficient to use the
WebMapServer and WMSMapRequest classes.

 Compositing and Animating Web Map Service (WMS) Meteorological Layers

9-101

Construct a WebMapServer object for each layer's server.

nasaServer = WebMapServer(katrina.ServerURL);
iemServer = WebMapServer(nexrad.ServerURL);

Create WMSMapRequest objects.

katrinaRequest = WMSMapRequest(katrina, nasaServer);
nexradRequest = WMSMapRequest(nexrad, iemServer);

Assign properties.

nexradRequest.Latlim = latlim;
nexradRequest.Lonlim = lonlim;
nexradRequest.BackgroundColor = black;
nexradRequest.ImageFormat = 'image/png';
nexradRequest.ImageHeight = imageHeight;
nexradRequest.ImageWidth = imageWidth;

Step 10: Create Animation Files

An animation can be viewed in the browser when the browser opens an animated GIF file or an AVI
video file. To create the animation frames of the WMS basemap and vector overlays, create a loop
through each day, from startDay to endDay, and obtain the katrinaMap and the nexradMap for
that day. Composite the maps into a single image, display the image, retrieve the frame, and store the
results into a frame of an AVI file and a frame of an animated GIF file.

To share with others or to post to web video services, create an AVI video file containing all the
frames using the VideoWriter class.

videoFilename = fullfile(pwd,'wmsanimated.avi');
if exist(videoFilename,'file')
 delete(videoFilename)
end
writer = VideoWriter(videoFilename);
writer.FrameRate = 1;
writer.Quality = 100;
open(writer)

The animation is viewed in a single map display. Outside the animation loop, create a map display.
Initialize hmap, used in the loop as the return handle from the function geoshow, so it can be deleted
on the first pass through the loop. Loop through each day, retrieve and display the WMS map, and
save the frame.

fig = figure;
usamap(latlim,lonlim)
hstates = geoshow(states,'FaceColor','none');
hmap = [];

for k = startDay:endDay

 % Update the time values and assign the Time property for each server.
 currentDay = num2str(k);
 katrinaTime(dayIndex) = currentDay;
 nexradTime = [katrinaTime(1:end-1) ':00Z'];
 katrinaRequest.Time = katrinaTime;
 nexradRequest.Time = nexradTime;

9 Creating Web Map Service Maps

9-102

 % Retrieve the WMS map of Katrina from the server (or file)
 % for this time period.
 cachefile = datafile(['katrina_' num2str(currentDay) '.tif']);
 if useInternet
 katrinaMap = getMap(nasaServer, katrinaRequest.RequestURL);
 if ~exist(cachefile, 'file')
 geotiffwrite(cachefile, katrinaMap, katrinaRequest.RasterRef)
 end
 else
 katrinaMap = readgeoraster(cachefile);
 end

 % Retrieve the WMS map of the NEXRAD imagery from the server (or file)
 % for this time period.
 cachefile = datafile(['nexrad_' num2str(currentDay) '.tif']);
 if useInternet
 nexradMap = getMap(iemServer, nexradRequest.RequestURL);
 if ~exist(cachefile, 'file')
 geotiffwrite(cachefile, nexradMap, nexradRequest.RasterRef)
 end
 else
 nexradMap = readgeoraster(cachefile);
 end

 % Identify the pixels of the nexradMap image that do not contain the
 % background color.
 index = any(nexradMap > threshold, 3);
 index = repmat(index,[1 1 3]);

 % Composite nexradMap with katrinaMap.
 combination = katrinaMap;
 combination(index) = uint8(nexradMap(index)*255);

 % Delete the old map and display the new composited map.
 delete(hmap)
 hmap = geoshow(combination, katrinaRequest.RasterRef);
 uistack(hstates,'top')
 title({'GOES 12 Imagery of Hurricane Katrina', ...
 'Composited with NEXRAD Radar',nexradTime})
 drawnow

 % Save the current frame as an RGB image.
 currentFrame = getframe(fig);
 RGB = currentFrame.cdata;

 % Create an indexed image for each RGB frame in order to display an
 % animated GIF.
 if k == startDay
 % The first time through the loop, convert the RGB image to
 % an indexed image and save the colormap into the
 % variable, cmap. Use cmap to convert later frames.
 [frame,cmap] = rgb2ind(RGB,256,'nodither');

 % Use the size of the first frame and the total
 % number of frames to initialize animated with
 % a size large enough to contain all the frames.
 frameSize = size(frame);
 numFrames = endDay - startDay + 1;

 Compositing and Animating Web Map Service (WMS) Meteorological Layers

9-103

 animated = zeros([frameSize 1 numFrames],'like',frame);
 else
 % Use the colormap from the first frame conversion and
 % convert this frame to an indexed image.
 frame = rgb2ind(RGB,cmap,'nodither');
 end

 % Store the frame into the animated array for the GIF file.
 frameCount = k - startDay + 1;
 animated(:,:,1,frameCount) = frame;

 % Write the RGB frame to the AVI file.
 writeVideo(writer,RGB);
end

Close the Figure window and the AVI file.

close(fig)
close(writer)

Write the animated GIF file.

filename = fullfile(pwd,'wmsanimated.gif');
if exist(filename,'file')
 delete(filename)
end
delayTime = 2.0;
loopCount = inf;

9 Creating Web Map Service Maps

9-104

imwrite(animated,cmap,filename, ...
 'DelayTime',delayTime,'LoopCount',loopCount);

Step 11: View Animated GIF File

An animation can be viewed in the browser when the browser opens an animated GIF file.

Credits

Katrina Layer

The Katrina layer used in the example is from the NASA Goddard Space Flight Center's SVS Image
Server and is maintained by the Scientific Visualization Studio.

For more information about this server, run:

 >> wmsinfo('http://svs.gsfc.nasa.gov/cgi-bin/wms?')

NEXRAD Layer

The NEXRAD layer used in the example is from the Iowa State University's IEM WMS server and is a
generated CONUS composite of National Weather Service (NWS) WSR-88D level III base reflectivity.

For more information about this server, run:

 Compositing and Animating Web Map Service (WMS) Meteorological Layers

9-105

>> wmsinfo('http://mesonet.agron.iastate.edu/cgi-bin/wms/nexrad/n0r-t.cgi?')

See Also
WMSMapRequest | WebMapServer | geoshow | refine | usamap | wmsfind | wmsread | wmsupdate

9 Creating Web Map Service Maps

9-106

Troubleshoot Common Problems with Web Maps

Why Does My Web Map Contain Empty Tiles?
If you create a web map and the display contains empty tiles, it can mean that the web map server is
temporarily off line. To display web maps, the Mapping toolbox must create connections to web map
providers over the Internet. Often, simply trying again after a few minutes solves the problem.

Why Does My Web Map Lose Detail When I Zoom In?
If you zoom in on a web map and certain details of the map disappear, it can mean that the map does
not support that particular zoom level.

See Also
webmap

More About
• “Basic Workflow for Displaying Web Maps” on page 9-65

 Troubleshoot Common Problems with Web Maps

9-107

Mapping Applications

This chapter describes several types of numerical applications for geospatial data, including
computing and spatial statistics, and calculating tracks, routes, and other information useful for
solving navigation problems.

• “Geographic Statistics for Point Locations on a Sphere” on page 10-2
• “Equal-Areas in Geographic Statistics” on page 10-6
• “Navigation” on page 10-9
• “Fix Position” on page 10-11
• “Plan the Shortest Path” on page 10-20
• “Display Navigational Tracks” on page 10-23
• “Dead Reckoning” on page 10-26
• “Drift Correction” on page 10-30
• “Time Zones” on page 10-32

10

Geographic Statistics for Point Locations on a Sphere
Certain Mapping Toolbox functions compute basic geographical measures for spatial analysis and for
filtering and conditioning data. Since MATLAB functions can compute statistics such as means,
medians, and variances, why not use those functions in the toolbox? First of all, classical statistical
formulas typically assume that data is one-dimensional (and, often, normally distributed). Because
this is not true for geospatial data, spatial analysts have developed statistical measures that extend
conventional statistics to higher dimensions.

Second, such formulas generally assume that data occupies a two-dimensional Cartesian coordinate
system. Computing statistics for geospatial data with geographic coordinates as if it were in a
Cartesian framework can give statistically inappropriate results. While this assumption can
sometimes yield reasonable numerical approximations within small geographic regions, for larger
areas it can lead to incorrect conclusions because of distance measures and area assumptions that
are inappropriate for spheres and spheroids. Mapping Toolbox functions appropriately compute
statistics for geospatial data, avoiding these potential pitfalls.

Geographic Means
Consider the problem of calculating the mean position of a collection of geographic points. Taking the
arithmetical mean of the latitudes and longitudes using the standard MATLAB mean function may
seem reasonable, but doing this could yield misleading results.

Take two points at the same latitude, 180° apart in longitude, for example (30°N,90°W) and
(30°N,90°E). The mean latitude is (30+30)/2=30, which seems right. Similarly, the mean longitude
must be (90+(-90))/2=0. However, as one can also express 90°W as 270°E, (90+270)/2=180 is also a
valid mean longitude. Thus there are two correct answers, the prime meridian and the dateline. This
demonstrates how the sphericity of the Earth introduces subtleties into spatial statistics.

This problem is further complicated when some points are at different latitudes. Because a degree of
longitude at the Arctic Circle covers a much smaller distance than a degree at the equator, distance
between points having a given difference in longitude varies by latitude.

Is in fact 30°N the right mean latitude in the first example? The mean position of two points should be
equidistant from those two points, and should also minimize the total distance. Does (30°N,0°) satisfy
these criteria?

dist1 = distance(30,90,30,0)
dist1 =
 75.5225
dist2 = distance(30,-90,30,0)
dist2 =
 75.5225

Consider a third point, (lat,lon), that is also equidistant from the above two points, but at a lesser
distance:

dist1 = distance(30,90,lat,lon)
dist1 =
 60.0000
dist2 = distance(30,-90,lat,lon)
dist2 =
 60.0000

10 Mapping Applications

10-2

What is this mystery point? The lat is 90°N, and any lon will do. The North Pole is the true
geographic mean of these two points. Note that the great circle containing both points runs through
the North Pole (a great circle represents the shortest path between two points on a sphere).

The Mapping Toolbox function meanm determines the geographic mean of any number of points. It
does this using three-dimensional vector addition of all the points. For example, try the following:

lats = [30 30];
longs = [-90 90];
[latbar,longbar] = meanm(lats,longs)
latbar =
 90
longbar =
 0

This is the answer you now expect. This geographic mean can result in one oddity; if the vectors all
cancel each other, the mean is the center of the planet. In this case, the returned mean point is
(NaN,NaN) and a warning is displayed. This phenomenon is highly improbable in real data, but can be
easily constructed. For example, it occurs when all the points are equally spaced along a great circle.
Try taking the geographic mean of (0°,0°), (0°,120°), and (0°,240°), which trisect the equator.

elats = [0 0 0];
elons = [60 120 240];
meanm(elats, elons)
ans =
 0 120.0000

Geographic Standard Deviation
As you might now expect, the Cartesian definition of standard deviation provided in the standard
MATLAB function std is also inappropriate for geographic data that is unprojected or covers a
significant portion of a planet. Depending upon your purpose, you might want to use the separate
geographic deviations for latitude and longitude provided by the function stdm, or the single
standard distance provided in stdist. Both methods measure the deviation of points from the mean
position calculated by meanm.

The Meaning of stdm

The stdm function handles the latitude and longitude deviations separately.

[latstd,lonstd] = stdm(lat,lon)

The function returns two deviations, one for latitudes and one for longitudes.

Latitude deviation is a straightforward standard deviation calculation from the mean latitude (mean
parallel) returned by meanm. This is a reasonable measure for most cases, since on a sphere at least,
a degree of latitude always has the same arc length.

Longitude deviation is another matter. Simple calculations based on sum-of-squares angular deviation
from the mean longitude (mean meridian) are misleading. The arc length represented by a degree of
longitude at extreme latitudes is significantly smaller than that at low latitudes.

The term departure is used to represent the arc length distance along a parallel of a point from a
given meridian. For example, assuming a spherical planet, the departure of a degree of longitude at
the Equator is a degree of arc length, but the departure of a degree of longitude at a latitude of 60° is

 Geographic Statistics for Point Locations on a Sphere

10-3

one-half a degree of arc length. The stdm function calculates a sum-of-squares departure deviation
from the mean meridian.

If you want to plot the one-sigma lines for stdm, the latitude sigma lines are parallels. However, the
longitude sigma lines are not meridians; they are lines of constant departure from the mean parallel.

This handling of deviation has its problems. For example, its dependence upon the logic of the
coordinate system can cause it to break down near the poles. For this reason, the standard distance
provided by stdist is often a better measure of deviation. The stdm handling is useful for many
applications, especially when the data is not global. For instance, these potential difficulties would
not be a danger for data points confined to the country of Mexico.

The Meaning of stdist

The standard distance of geographic data is a measure of the dispersion of the data in terms of its
distance from the geographic mean. Among its advantages are its applicability anywhere on the globe
and its single value:

dist = stdist(lat,lon)

In short, the standard distance is the average, norm, or cubic norm of the distances of the data points
in a great circle sense from the mean position. It is probably a superior measure to the two deviations
returned by stdm except when a particularly latitude- or longitude-dependent feature is under
examination.

10 Mapping Applications

10-4

See Also

More About
• “Equal-Areas in Geographic Statistics” on page 10-6

 Geographic Statistics for Point Locations on a Sphere

10-5

Equal-Areas in Geographic Statistics
A common error in applying two-dimensional statistics to geographic data lies in ignoring equal-area
treatment. It is often necessary to bin data to statistically analyze it. In a Cartesian plane, this is
easily done by dividing the space into equal x-y squares. The geographic equivalent of this is to bin up
the data in equal latitude-longitude squares. Since such squares at high latitudes cover smaller areas
than their low-latitude counterparts, the observations in these regions are underemphasized. The
result can be conclusions that are biased toward the equator.

Geographic Histograms
The geographic histogram function histr allows you to display binned-up geographic observations.
The histr function results in equirectangular binning. Each bin has the same angular measurement
in both latitude and longitude, with a default measurement of 1 degree. The center latitudes and
longitudes of the bins are returned, as well as the number of observations per bin:

[binlat,binlon,num] = histr(lats,lons)

As previously noted, these equirectangular bins result in counting bias toward the equator. Here is a
display of the one-degree-by-one-degree binning of approximately 5,000 random data points in
Russia. The relative size of the circles indicates the number of observations per bin:

This is a portion of the whole map, displayed in an equal-area Bonne projection. The first step in
creating data displays without area bias is to choose an equal-area projection. The proportionally
sized symbols are a result of the specialized display function scatterm.

You can eliminate the area bias by adding a fourth output argument to histr, that will be used to
weight each bin's observation by that bin's area:

[binlat,binlon,num,wnum] = histr(lats,lons)

The fourth output is the weighted observation count. Each bin's observation count is divided by its
normalized area. Therefore, a high-latitude bin will have a larger weighted number than a low-
latitude bin with the same number of actual observations. The same data and bins look much different
when they are area-weighted:

10 Mapping Applications

10-6

Notice that there are larger symbols to the north in this display. The previous display suggested that
the data was relatively uniformly distributed. When equal-area considerations are included, it is clear
that the data is skewed to the north. In fact, the data used is northerly skewed, but a simple
equirectangular handling failed to demonstrate this.

The histr function, therefore, does provide for the display of area-weighted data. However, the
actual bins used are of varying areas. Remember, the one-degree-by-one-degree bin near a pole is
much smaller than its counterpart near the equator.

The hista function provides for actual equal-area bins.

Converting to an Equal-Area Coordinate System
The actual data itself can be converted to an equal-area coordinate system for analysis with other
statistical functions. It is easy to convert a collection of geographic latitude-longitude points to an
equal-area x-y Cartesian coordinate system. The grn2eqa function applies the same transformation
used in calculating the Equal-Area Cylindrical projection:

[x,y] = grn2eqa(lat,lon)

For each geographic lat - lon pair, an equal-area x - y is returned. The variables x and y can then
be operated on under the equal-area assumption, using a variety of two-dimensional statistical
techniques. Tools for such analysis can be found in the Statistics and Machine Learning Toolbox™
software and elsewhere. The results can then be converted back to geographic coordinates using the
eqa2grn function:

[lat,lon] = eqa2grn(x, y)

Remember, when converting back and forth between systems, latitude corresponds to y and longitude
corresponds to x.

 Equal-Areas in Geographic Statistics

10-7

See Also

More About
• “Geographic Statistics for Point Locations on a Sphere” on page 10-2

10 Mapping Applications

10-8

Navigation

What Is Navigation?
Navigation is the process of planning, recording, and controlling the movement of a craft or vehicle
from one location to another. The word derives from the Latin roots navis ("ship") and agere ("to
move or direct"). Geographic information—usually in the form of latitudes and longitudes—is at the
core of navigation practice. The toolbox includes specialized functions for navigating across expanses
of the globe, for which projected coordinates are of limited use.

Navigating on land, over water, and through the air can involve a variety of tasks:

• Establishing position, using known, fixed landmarks (piloting)
• Using the stars, sun, and moon (celestial navigation)
• Using technology to fix positions (inertial guidance, radio beacons, and satellite navigation,

including GPS)
• Deducing net movement from a past known position (dead reckoning)

Another navigational task involves planning a voyage or flight, which includes determining an
efficient route (usually by great circle approximation), weather avoidance (optimal track routing), and
setting out a plan of intended movement (track laydown). Mapping Toolbox functions support these
navigational activities as well.

Conventions for Navigational Functions
Units

You can use and convert among several angular and distance measurement units. The navigational
support functions are

• dreckon
• gcwaypts
• legs
• navfix

To make these functions easy to use, and to conform to common navigational practice, for these
specific functions only, certain conventions are used:

• Angles are always in degrees.
• Distances are always in nautical miles.
• Speeds are always in knots (nautical miles per hour).

Related functions that do not carry this restriction include rhxrh, scxsc, gcxgc, gcxsc, track,
timezone, and crossfix, because of their potential for application outside navigation.

Navigational Track Format

Navigational track format requires column-vector variables for the latitudes and longitudes of track
waypoints. A waypoint is a point through which a track passes, usually corresponding to a course (or
speed) change. Navigational tracks are made up of the line segments connecting these waypoints,

 Navigation

10-9

which are called legs. In this format, therefore, n legs are described using n+1 waypoints, because an
endpoint for the final leg must be defined. Mapping Toolbox navigation functions always presume
angle units are always given in degrees.

Here, five track legs require six waypoints. In navigational track format, the waypoints are
represented by two 6-by-1 vectors, one for the latitudes and one for the longitudes.

See Also

More About
• “Fix Position” on page 10-11
• “Plan the Shortest Path” on page 10-20
• “Display Navigational Tracks” on page 10-23
• “Dead Reckoning” on page 10-26
• “Drift Correction” on page 10-30
• “Time Zones” on page 10-32

10 Mapping Applications

10-10

Fix Position
The fundamental objective of navigation is to determine at a given moment how to proceed to your
destination, avoiding hazards on the way. The first step in accomplishing this is to establish your
current position. Early sailors kept within sight of land to facilitate this. Today, navigation within sight
(or radar range) of land is called piloting. Positions are fixed by correlating the bearings and/or
ranges of landmarks. In real-life piloting, all sighting bearings are treated as rhumb lines, while in
fact they are actually great circles.

Over the distances involved with visual sightings (up to 20 or 30 nautical miles), this assumption
causes no measurable error and it provides the significant advantage of allowing the navigator to plot
all bearings as straight lines on a Mercator projection.

The Mercator was designed exactly for this purpose. Range circles, which might be determined with
a radar, are assumed to plot as true circles on a Mercator chart. This allows the navigator to manually
draw the range arc with a compass.

These assumptions also lead to computationally efficient methods for fixing positions with a computer.
The toolbox includes the navfix function, which mimics the manual plotting and fixing process using
these assumptions.

To obtain a good navigational fix, your relationship to at least three known points is considered
necessary. A questionable or poor fix can be obtained with two known points.

Some Possible Situations
In this imaginary coastal region, you take a visual bearing on the radio tower of 270°. At the same
time, Gilligan's Lighthouse bears 0°. If you plot a 90°-270° line through the radio tower and a 0°-180°
line through the lighthouse on your Mercator chart, the point at which the lines cross is a fix. Since
you have used only two lines, however, its quality is questionable.

But wait; your port lookout says he took a bearing on Cape Jones of 300°. If that line exactly crosses
the point of intersection of the first two lines, you will have a perfect fix.

 Fix Position

10-11

Whoops. What happened? Is your lookout in error? Possibly, but perhaps one or both of your bearings
was slightly in error. This happens all the time. Which point, 1, 2, or 3, is correct? As far as you know,
they are all equally valid.

In practice, the little triangle is plotted, and the fix position is taken as either the center of the
triangle or the vertex closest to a danger (like shoal water). If the triangle is large, the quality is
reported as poor, or even as no fix. If a fourth line of bearing is available, it can be plotted to try to
resolve the ambiguity. When all three lines appear to cross at exactly the same point, the quality is
reported as excellent or perfect.

Notice that three lines resulted in three intersection points. Four lines would return six intersection
points. This is a case of combinatorial counting. Each intersection corresponds to choosing two lines
to intersect from among n lines.

The next time you traverse these straits, it is a very foggy morning. You can't see any landmarks, but
luckily, your navigational radar is operating. Each of these landmarks has a good radar signature, so
you're not worried. You get a range from the radio tower of 14 nautical miles and a range from the
lighthouse of 15 nautical miles.

10 Mapping Applications

10-12

Now what? You took ranges from only two objects, and yet you have two possible positions. This
ambiguity arises from the fact that circles can intersect twice.

Luckily, your radar watch reports that he has Cape Jones at 18 nautical miles. This should resolve
everything.

You were lucky this time. The third range resolved the ambiguity and gave you an excellent fix. Three
intersections practically coincide. Sometimes the ambiguity is resolved, but the fix is still poor
because the three closest intersections form a sort of circular triangle.

Sometimes the third range only adds to the confusion, either by bisecting the original two choices, or
by failing to intersect one or both of the other arcs at all. In general, when n arcs are used, 2x(n-
choose-2) possible intersections result. In this example, it is easy to tell which ones are right.

 Fix Position

10-13

Bearing lines and arcs can be combined. If instead of reporting a third range, your radar watch had
reported a bearing from the radar tower of 20°, the ambiguity could also have been resolved. Note,
however, that in practice, lines of bearing for navigational fixing should only be taken visually, except
in desperation. A radar's beam width can be a degree or more, leading to uncertainty.

As you begin to wonder whether this manual plotting process could be automated, your first officer
shows up on the bridge with a laptop and Mapping Toolbox software.

Using navfix
The navfix function can be used to determine the points of intersection among any number of lines
and arcs. Be warned, however, that due to the combinatorial nature of this process, the computation
time grows rapidly with the number of objects. To illustrate this function, assign positions to the
landmarks. Point A, Cape Jones, is at (latA,lonA). Point B, the radio tower, is at (latB,lonB). Point
C, Gilligan's Lighthouse, is at (latC,lonC).

For the bearing-lines-only example, the syntax is:

[latfix,lonfix] = navfix([latA latB latC],[lonA lonB lonC],...
 [300 270 0])

This defines the three points and their bearings as taken from the ship. The outputs would look
something like this, with actual numbers, of course:

latfix =

 latfix1 NaN % A intersecting B
 latfix2 NaN % A intersecting C
 latfix3 NaN % B intersecting C

lonfix =

 lonfix1 NaN % A intersecting B
 lonfix2 NaN % A intersecting C
 lonfix3 NaN % B intersecting C

10 Mapping Applications

10-14

Notice that these are two-column matrices. The second column consists of NaNs because it is used
only for the two-intersection ambiguity associated with arcs.

For the range-arcs-only example, the syntax is

[latfix,lonfix] = navfix([latA latB latC],[lonA lonB lonC],...
 [16 14 15],[0 0 0])

This defines the three points and their ranges as taken from the ship. The final argument indicates
that the three cases are all ranges.

The outputs have the following form:

latfix =

 latfix11 latfix12 % A intersecting B
 latfix21 latfix22 % A intersecting C
 latfix31 latfix32 % B intersecting C

lonfix =

 lonfix11 lonfix12 % A intersecting B
 lonfix21 lonfix22 % A intersecting C
 lonfix31 lonfix32 % B intersecting C

Here, the second column is used, because each pair of arcs has two potential intersections.

For the bearings and ranges example, the syntax requires the final input to indicate which objects are
lines of bearing (indicated with a 1) and which are range arcs (indicated with a 0):

[latfix,lonfix] = navfix([latB latB latC],[lonB lonB lonC],...
 [20 14 15],[1 0 0])

The resulting output is mixed:

latfix =

 latfix11 NaN % Line B intersecting Arc B
 latfix21 latfix22 % Line B intersecting Arc C
 latfix31 latfix32 % Arc B intersecting Arc C

lonfix =

 lonfix11 NaN % Line B intersecting Arc B
 lonfix21 lonfix22 % Line B intersecting Arc C
 lonfix31 lonfix32 % Arc B intersecting Arc C

Only one intersection is returned for the line from B with the arc about B, since the line originates
inside the circle and intersects it once. The same line intersects the other circle twice, and hence it
returns two points. The two circles taken together also return two points.

Usually, you have an idea as to where you are before you take the fix. For example, you might have a
dead reckoning position for the time of the fix (see below). If you provide navfix with this estimated
position, it chooses from each pair of ambiguous intersections the point closest to the estimate.
Here's what it might look like:

[latfix,lonfix] = navfix([latB latB latC],[lonB lonB lonC],...
 [20 14 15],[1 0 0],drlat,drlon)

 Fix Position

10-15

latfix =

 latfix11 % the only point
 latfix21 % the closer point
 latfix31 % the closer point

lonfix =

 lonfix11 % the only point
 lonfix21 % the closer point
 lonfix31 % the closer point

A Numerical Example of Using navfix
1 Define some specific points in the middle of the Atlantic Ocean. These are strictly arbitrary;

perhaps they correspond to points in Atlantis:

lata = 3.1; lona = -56.2;
latb = 2.95; lonb = -55.9;
latc = 3.15; lonc = -55.95;

2 Plot them on a Mercator projection:

axesm('MapProjection','mercator','Frame','on',...
 'MapLatLimit',[2.8 3.3],'MapLonLimit',[-56.3 -55.8])
plotm([lata latb latc],[lona lonb lonc],...
 'LineStyle','none','Marker','pentagram',...
 'MarkerEdgeColor','b','MarkerFaceColor','b',...
 'MarkerSize',12)

Here is what it looks like (with labeling and imaginary coastlines added after the fact for
illustration):

10 Mapping Applications

10-16

3 Take three visual bearings: Point A bears 289°, Point B bears 135°, and Point C bears 026.5°.
Calculate the intersections:

[newlat,newlong] = navfix([lata latb latc],[lona lonb lonc],...
 [289 135 26.5],[1 1 1])

newlat =

 3.0214 NaN
 3.0340 NaN
 3.0499 NaN

newlong =

 -55.9715 NaN
 -56.0079 NaN
 -56.0000 NaN

4 Add the intersection points to the map:

plotm(newlat,newlong,'LineStyle','none',...
 'Marker','diamond','MarkerEdgeColor','r',...
 'MarkerFaceColor','r','MarkerSize',9)

Bearing lines have been added to the map for illustration purposes. Notice that each pair of
objects results in only one intersection, since all are lines of bearing.

5 What if instead, you had ranges from the three points, A, B, and C, of 13 nmi, 9 nmi, and 7.5 nmi,
respectively?

[newlat,newlong] = navfix([lata latb latc],[lona lonb lonc],...
 [13 9 7.5],[0 0 0])

newlat =

 Fix Position

10-17

 3.0739 2.9434
 3.2413 3.0329
 3.0443 3.0880

newlong =

 -55.9846 -56.0501
 -56.0355 -55.9937
 -56.0168 -55.8413

Here's what these points look like:

Three of these points look reasonable, three do not.
6 What if, instead of a range from Point A, you had a bearing to it of 284°?

[newlat,newlong] = navfix([lata latb latc],[lona lonb lonc],...
 [284 9 7.5],[1 0 0])

newlat =

 3.0526 2.9892
 3.0592 3.0295
 3.0443 3.0880

newlong =

 -56.0096 -55.7550
 -56.0360 -55.9168
 -56.0168 -55.8413

10 Mapping Applications

10-18

Again, visual inspection of the results indicates which three of the six possible points seem like
reasonable positions.

7 When using the dead reckoning position (3.05°N,56.0°W), the closer, more reasonable candidate
from each pair of intersecting objects is chosen:

drlat = 3.05; drlon = -56;
[newlat,newlong] = navfix([lata latb latc],[lona lonb lonc],...
 [284 9 7.5],[1 0 0],drlat,drlon)

newlat =

 3.0526
 3.0592
 3.0443

newlong =

 -56.0096
 -56.0360
 -56.0168

See Also

More About
• “Navigation” on page 10-9
• “Display Navigational Tracks” on page 10-23
• “Plan the Shortest Path” on page 10-20
• “Dead Reckoning” on page 10-26

 Fix Position

10-19

Plan the Shortest Path
You know that the shortest path between two geographic points is a great circle. Sailors and aviators
are interested in minimizing distance traveled, and hence time elapsed. You also know that the rhumb
line is a path of constant heading, the natural means of traveling. In general, to follow a great circle
path, you would have to continuously alter course. This is impractical. However, you can approximate
a great circle path by rhumb line segments so that the added distance is minor and the number of
course changes minimal.

Surprisingly, very few rhumb line track legs are required to closely approximate the distance of the
great circle path.

Consider the voyage from Norfolk, Virginia (37°N,76°W), to Cape St. Vincent, Portugal (37°N,9°W),
one of the most heavily trafficked routes in the Atlantic. A due-east rhumb line track is 3,213 nautical
miles, while the optimal great circle distance is 3,141 nautical miles.

Although the rhumb line path is only a little more than 2% longer, this is an additional 72 miles over
the course of the trip. For a 12-knot tanker, this results in a 6-hour delay, and in shipping, time is
money. If just three rhumb line segments are used to approximate the great circle, the total distance
of the trip is 3,147 nautical miles. Our tanker would suffer only a half-hour delay compared to a
continuous rhumb line course. Here is the code for computing the three types of tracks between
Norfolk and St. Vincent:

figure('color','w');
ha = axesm('mapproj','mercator',...
 'maplatlim',[25 55],'maplonlim',[-80 0]);
axis off, gridm on, framem on;
setm(ha,'MLineLocation',15,'PLineLocation',15);
mlabel on, plabel on;
load coastlines;
hg = geoshow(coastlat,coastlon,'displaytype','line','color','b');

% Define point locs for Norfolk, VA and St. Vincent, Portugal
norfolk = [37,-76];
stvincent = [37, -9];
geoshow(norfolk(1),norfolk(2),'DisplayType','point',...
 'markeredgecolor','k','markerfacecolor','k','marker','o')
text(-0.61,0.66,'Norfolk','HorizontalAlignment','left')
geoshow(stvincent(1),stvincent(2),'DisplayType','point',...
 'markeredgecolor','k','markerfacecolor','k','marker','o')
text(0.54,0.66,'St. Vincent','HorizontalAlignment','right')

% Compute and draw 100 points for great circle
gcpts = track2('gc',norfolk(1),norfolk(2),...
 stvincent(1),stvincent(2));
geoshow(gcpts(:,1),gcpts(:,2),'DisplayType','line',...
 'color','red','linestyle','--')
text(-0.02,0.85,'Great circle: 3,141 nm (optimal)',...
 'color','r','HorizontalAlignment','center')

% Compute and draw 100 points for rhumb line
rhpts = track2('rh',norfolk(1),norfolk(2),...
 stvincent(1),stvincent(2));
geoshow(rhpts(:,1),rhpts(:,2),'DisplayType','line',...
 'color',[.7 .1 0],'linestyle','-.')
text(-0.02,0.66,'Direct course: 3,213 nm',...

10 Mapping Applications

10-20

 'color',[.7 .1 0],'HorizontalAlignment','center')

% Compute and draw path along three waypoints
[latpts,lonpts] = gcwaypts(norfolk(1),norfolk(2),...
 stvincent(1),stvincent(2),3);
geoshow(latpts,lonpts,'DisplayType','line',...
 'color',[.4 .2 0],'linestyle','-')
text(-0.02,0.75,'3-leg approximation: 3,149 nm',...
 'color',[.4 .2 0],'HorizontalAlignment','center')

The resulting tracks and distances are shown below:

The Mapping Toolbox function gcwaypts calculates waypoints in navigation track format in order to
approximate a great circle with rhumb line segments. It uses this syntax:

[latpts,lonpts] = gcwaypts(lat1,lon1,lat2,lon2,numlegs)

All the inputs for this function are scalars a (starting and an ending position). The numlegs input is
the number of equal-length legs desired, which is 10 by default. The outputs are column vectors
representing waypoints in navigational track format ([heading distance]). The size of each of
these vectors is [(numlegs+1) 1]. Here are the points for this example:

[latpts,lonpts] = gcwaypts(norfolk(1),norfolk(2),...
stvincent(1),stvincent(2),3) % Compute 3 waypoints

latpts =

 37.0000
 41.5076
 41.5076
 37.0000

lonpts =

 -76.0000
 -54.1777
 -30.8223
 -9.0000

 Plan the Shortest Path

10-21

These points represent waypoints along the great circle between which the approximating path
follows rhumb lines. Four points are needed for three legs, because the final point at Cape St. Vincent
must be included.

Now we can compute the distance in nautical miles (nm) along each track and via the waypoints:

drh = distance('rh',norfolk,stvincent); % Get rhumb line dist (deg)
dgc = distance('gc',norfolk,stvincent); % Get gt. circle dist (deg)
% Compute headings and distances for the waypoint legs
[course distnm] = legs(latpts,lonpts,'rh');

Finally, compare the distances:

distrhnm = deg2nm(drh) % Nautical mi along rhumb line
distgcnm = deg2nm(dgc) % Nautical mi along great circle
distlegsnm = sum(distnm) % Total dist along the 3 legs
rhgcdiff = distrhnm - distgcnm % Excess rhumb line distance
trgcdiff = distlegsnm - distgcnm % Excess distance along legs

distrhnm =

 3.2127e+003

distgcnm =

 3.1407e+003

distlegsnm =

 3.1490e+003

rhgcdiff =

 71.9980

trgcdiff =

 8.3446

Following just three rhumb line legs reduces the distance travelled from 72 nm to 8.3 nm compared
to a great circle course.

See Also

More About
• “Navigation” on page 10-9
• “Fix Position” on page 10-11
• “Display Navigational Tracks” on page 10-23
• “Dead Reckoning” on page 10-26

10 Mapping Applications

10-22

Display Navigational Tracks
Navigational tracks are most useful when graphically displayed. Traditionally, the navigator identifies
and plots waypoints on a Mercator projection and then connects them with a straightedge, which on
this projection results in rhumb line tracks. In the previous example, waypoints were chosen to
approximate a great circle route, but they can be selected for a variety of other reasons.

Let's say that after arriving at Cape St. Vincent, your tanker must traverse the Straits of Gibraltar
and then travel on to Port Said, the northern terminus of the Suez Canal. On the scale of the
Mediterranean Sea, following great circle paths is of little concern compared to ensuring that the
many straits and passages are safely transited. The navigator selects appropriate waypoints and plots
them.

To accomplish this with Mapping Toolbox functions, you can display a map axes with a Mercator
projection, select appropriate map latitude and longitude limits to isolate the area of interest, plot
coastline data, and interactively mouse-select the waypoints with the inputm function. The track
function will generate points to connect these waypoints, which can then be displayed with plotm.

For illustration, assume that the waypoints are known (or were gathered using inputm). To learn
about using inputm, see “Pick Locations Interactively” on page 4-125, or inputm in the Mapping
Toolbox reference pages.

waypoints = [36 -5; 36 -2; 38 5; 38 11; 35 13; 33 30; 31.5 32]

waypoints =

 36.0000 -5.0000
 36.0000 -2.0000
 38.0000 5.0000
 38.0000 11.0000
 35.0000 13.0000
 33.0000 30.0000
 31.5000 32.0000

load coastlines
axesm('MapProjection','mercator',...
'MapLatLimit',[30 47],'MapLonLimit',[-10 37])
framem
plotm(coastlat,coastlon)

[lttrk,lntrk] = track(waypoints);
plotm(lttrk,lntrk,'r')

Although these track segments are straight lines on the Mercator projection, they are curves on
others:

 Display Navigational Tracks

10-23

The segments of a track like this are called legs. Each of these legs can be described in terms of
course and distance. The function legs will take the waypoints in navigational track format and
return the course and distance required for each leg. Remember, the order of the points in this
format determines the direction of travel. Courses are therefore calculated from each waypoint to its
successor, not the reverse.

[courses,distances] = legs(waypoints)

courses =

 90.0000
 70.3132
 90.0000
 151.8186
 98.0776
 131.5684

distances =

 145.6231
 356.2117
 283.6839
 204.2073
 854.0092
 135.6415

Since this is a navigation function, the courses are all in degrees and the distances are in nautical
miles. From these distances, speeds required to arrive at Port Said at a given time can be calculated.
Southbound traffic is allowed to enter the canal only once per day, so this information might be
economically significant, since unnecessarily high speeds can lead to high fuel costs.

See Also

More About
• “Navigation” on page 10-9
• “Fix Position” on page 10-11

10 Mapping Applications

10-24

• “Plan the Shortest Path” on page 10-20
• “Dead Reckoning” on page 10-26

 Display Navigational Tracks

10-25

Dead Reckoning
When sailors first ventured out of sight of land, they faced a daunting dilemma. How could they find
their way home if they didn't know where they were? The practice of dead reckoning is an attempt to
deal with this problem. The term is derived from deduced reckoning.

Briefly, dead reckoning is vector addition plotted on a chart. For example, if you have a fix at
(30°N,10°W) at 0800, and you proceed due west for 1 hour at 10 knots, and then you turn north and
sail for 3 hours at 7 knots, you should be at (30.35°N,10.19°W) at 1200.

However, a sailor shoots the sun at local apparent noon and discovers that the ship's latitude is
actually 30.29°N. What's worse, he lives before the invention of a reliable chronometer, and so he
cannot calculate his longitude at all from this sighting. What happened?

Leaving aside the difficulties in speed determination and the need to tack off course, even modern
craft have to contend with winds and currents. However, despite these limitations, dead reckoning is
still used for determining position between fixes and for forecasting future positions. This is because
dead reckoning provides a certainty of assumptions that estimations of wind and current drift cannot.

When navigators establish a fix from some source, be it from piloting, celestial, or satellite
observations, they plot a dead reckoning (DR) track, which is a plot of the intended positions of the
ship forward in time. In practice, dead reckoning is usually plotted for 3 hours in advance, or for the
time period covered by the next three expected fixes. In open ocean conditions, hourly fixes are
sufficient; in coastal pilotage, three-minute fixes are common.

Specific DR positions, which are sometimes called DRs, are plotted according to the Rules of DR:

• DR at every course change
• DR at every speed change
• DR every hour on the hour
• DR every time a fix or running fix is obtained

10 Mapping Applications

10-26

• DR 3 hours ahead or for the next three expected fixes
• DR for every line of position (LOP), either visual or celestial

For example, the navigator plots these DRs:

Notice that the 1523 DR does not coincide with the LOP at 1523. Although note is taken of this
variance, one line is insufficient to calculate a new fix.

Mapping Toolbox function dreckon calculates the DR positions for a given set of courses and speeds.
The function provides DR positions for the first three rules of dead reckoning. The approach is to
provide a set of waypoints in navigational track format corresponding to the plan of intended
movement.

The time of the initial waypoint, or fix, is also needed, as well as the speeds to be employed along
each leg. Alternatively, a set of speeds and the times for which each speed will apply can be provided.
dreckon returns the positions and times required of these DRs:

• dreckon calculates the times for position of each course change, which will occur at the
waypoints

• dreckon calculates the positions for each whole hour
• If times are provided for speed changes, dreckon calculates positions for these times if they do

not occur at course changes

Imagine you have a fix at midnight at the point (10°N,0°):

waypoints(1,:) = [10 0]; fixtime = 0;

You intend to travel east and alter course at the point (10°N,0.13°E) and head for the point
(10.1°N,0.18°E). On the first leg, you will travel at 5 knots, and on the second leg you will speed up to
7 knots.

waypoints(2,:) = [10 .13];
waypoints(3,:) = [10.1 .18];
speeds = [5;7];

To determine the DR points and times for this plan, use dreckon:

 Dead Reckoning

10-27

[drlat,drlon,drtime] = dreckon(waypoints,fixtime,speeds);
[drlat drlon drtime]

ans =

 10.0000 0.0846 1.0000 % Position at 1 am
 10.0000 0.1301 1.5373 % Time of course change
 10.0484 0.1543 2.0000 % Position at 2 am
 10.1001 0.1801 2.4934 % Time at final waypoint

Here is an illustration of this track and its DR points:

However, you would like to get to the final point a little earlier to make a rendezvous. You decide to
recalculate your DRs based on speeding up to 7 knots a little earlier than planned. The first
calculation tells you that you were going to increase speed at the turn, which would occur at a time
1.5373 hours after midnight, or 1:32 a.m. (at time 0132 in navigational time format). What time
would you reach the rendezvous if you increased your speed to 7 knots at 1:15 a.m. (0115, or 1.25
hours after midnight)?

To indicate times for speed changes, another input is required, providing a time interval after the fix
time at which each ordered speed is to end. The first speed, 5 knots, is to end 1.25 hours after
midnight. Since you don't know when the rendezvous will be made under these circumstances, set
the time for the second speed, 7 knots, to end at infinity. No DRs will be returned past the last
waypoint.

spdtimes = [1.25; inf];
[drlat,drlon,drtime] = dreckon(waypoints,fixtime,...
 speeds,spdtimes);
[drlat,drlon,drtime]

ans =

 10.0000 0.0846 1.0000 % Position at 1 am
 10.0000 0.1058 1.2500 % Position at speed change
 10.0000 0.1301 1.4552 % Time of course change
 10.0570 0.1586 2.0000 % Position at 2 am
 10.1001 0.1801 2.4113 % Time at final waypoint

This following illustration shows the difference:

10 Mapping Applications

10-28

The times at planned positions after the speed change are a little earlier; the position at the known
time (2 a.m.) is a little farther along. With this plan, you will arrive at the rendezvous about 4 1/2
minutes earlier, so you may want to consider a greater speed change.

See Also

More About
• “Navigation” on page 10-9
• “Fix Position” on page 10-11
• “Plan the Shortest Path” on page 10-20
• “Display Navigational Tracks” on page 10-23
• “Drift Correction” on page 10-30

 Dead Reckoning

10-29

Drift Correction
Dead reckoning is a reasonably accurate method for predicting position if the vehicle is able to
maintain the planned course. Aircraft and ships can be pushed off the planned course by winds and
current. An important step in navigational planning is to calculate the required drift correction.

In the standard drift correction problem, the desired course and wind are known, but the heading
needed to stay on course is unknown. This problem is well suited to vector analysis. The wind velocity
is a vector of known magnitude and direction. The vehicle's speed relative to the moving air mass is a
vector of known magnitude, but unknown direction. This heading must be chosen so that the sum of
the vehicle and wind velocities gives a resultant in the specified course direction. The ground speed
can be larger or smaller than the air speed because of headwind or tailwind components. A navigator
would like to know the required heading, the associated wind correction angle, and the resulting
ground speed.

What heading puts an aircraft on a course of 250° when the wind is 38 knots from 285°? The aircraft
flies at an airspeed of 145 knots.

course = 250; airspeed = 145; windfrom = 285; windspeed = 38;
[heading,groundspeed,windcorrangle] = ...
driftcorr(course,airspeed,windfrom,windspeed)

heading =

 258.65

groundspeed =

 112.22

windcorrangle =

 8.65

The required heading is about 9° to the right of the course. There is a 33-knot headwind component.

10 Mapping Applications

10-30

A related problem is the calculation of the wind speed and direction from observed heading and
course. The wind velocity is just the vector difference of the ground speed and the velocity relative to
the air mass.

[windfrom,windspeed] = ...
driftvel(course,groundspeed,heading,airspeed)

windfrom =

 285.00

windspeed =

 38.00

See Also

More About
• “Navigation” on page 10-9
• “Fix Position” on page 10-11
• “Plan the Shortest Path” on page 10-20
• “Display Navigational Tracks” on page 10-23
• “Dead Reckoning” on page 10-26

 Drift Correction

10-31

Time Zones
Time zones used for navigation are uniform 15° extents of longitude. The timezone function returns
a navigational time zone, that is, one based solely on longitude with no regard for statutory divisions.
So, for example, Chicago, Illinois, lies in the statutory U.S. Central time zone, which has irregular
boundaries devised for political or convenience reasons. However, from a navigational standpoint,
Chicago's longitude places it in the S (Sierra) time zone. The zone's description is +6, which indicates
that 6 hours must be added to local time to get Greenwich, or Z (Zulu) time. So, if it is noon, standard
time in Chicago, it is 12+6, or 6 p.m., at Greenwich.

Each 15° navigational time zone has a distinct description and designating letter. The exceptions to
this are the two zones on either side of the date line, M and Y (Mike and Yankee). These zones are
only 7-1/2° wide, since on one side of the date line, the description is +12, and on the other, it is -12.

Navigational time zones are very important for celestial navigation calculations. Although there are
no Mapping Toolbox functions designed specifically for celestial navigation, a simple example can be
devised.

It is possible with a sextant to determine local apparent noon. This is the moment when the Sun is at
its zenith from your point of view. At the exact center longitude of a time zone, the phenomenon
occurs exactly at noon, local time. Since the Sun traverses a 15° time zone in 1 hour, it crosses one
degree every 4 minutes. So if you observe local apparent noon at 11:54, you must be 1.5° east of your
center longitude.

You must know what time zone you are in before you can even attempt a fix. This concept has been
understood since the spherical nature of the Earth was first accepted, but early sailors had no ability
to keep accurate time on ship, and so were unable to determine their longitude. The invention of
accurate chronometers in the 18th century solved this problem.

The timezone function is quite simple. It returns zd, an integer for use in calculations, zltr, a
character vector of the zone designator, and zone, a character vector fully naming the zone. For
example, the information for a longitude 123°E is the following:

10 Mapping Applications

10-32

[zd,zltr,zone] = timezone(123)

zd =

 -8

zltr =

 H

zone =
 -8 H

Returning to the simple celestial navigation example, the center longitude of this zone is:

-(zd*15)

ans =

 120

This means that at our longitude, 123°E, we should experience local apparent noon at 11:48 a.m., 12
minutes early.

See Also

More About
• “Navigation” on page 10-9

 Time Zones

10-33

Map Projections — Alphabetical List

11

aitoff
Aitoff projection

Classification
Modified Azimuthal

Identifier
aitoff

Graticule
Meridians: Central meridian is a straight line half the length of the Equator. Other meridians are
complex curves, equally spaced along the Equator, and concave toward the central meridian.

Parallels: Equator is straight. Other parallels are complex curves, equally spaced along the central
meridian, and concave toward the nearest pole.

Poles: Points.

Symmetry: About the Equator and central meridian.

Features
This projection is neither conformal nor equal area. The only point free of distortion is the center
point. Distortion of shape and area are moderate throughout. This projection has less angular
distortion on the outer meridians near the poles than pseudoazimuthal projections

Parallels
There is no standard parallel for this projection.

Remarks
• This projection was created by David Aitoff in 1889. It is a modification of the Equidistant

Azimuthal projection. The Aitoff projection inspired the similar Hammer projection, which is equal
area.

• This implementation of the Aitoff projection is applicable only for coordinates that are referenced
to a sphere. If you want to project coordinates that are referenced to an ellipsoid, using the
projfwd or projinv functions, then create a projcrs object instead of a map projection
structure. You can create a projcrs object for the Aitoff projection using the ESRI authority code
54043. For example: projcrs(54043,'Authority','ESRI').

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('aitoff', 'Frame', 'on', 'Grid', 'on');

11 Map Projections — Alphabetical List

11-2

geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 aitoff

11-3

eqaconic
Albers Equal-Area Conic Projection

Classification
Conic

Identifier
eqaconic

Graticule
Meridians: Equally spaced straight lines converging to a common point, usually beyond the pole. The
angles between the meridians are less than the true angles.

Parallels: Unequally spaced concentric circular arcs centered on the point of convergence. Spacing of
parallels decreases away from the central latitudes.

Poles: Normally circular arcs, enclosing the same angle as the displayed parallels.

Symmetry: About any meridian.

Features
This is an equal-area projection. Scale is true along the one or two selected standard parallels. Scale
is constant along any parallel; the scale factor of a meridian at any given point is the reciprocal of
that along the parallel to preserve equal-area. This projection is free of distortion along the standard
parallels. Distortion is constant along any other parallel. This projection is neither conformal nor
equidistant.

Parallels
The cone of projection has interesting limiting forms. If a pole is selected as a single standard
parallel, the cone is a plane and a Lambert Azimuthal Equal-Area projection results. If two parallels
are chosen, not symmetric about the Equator, then a Lambert Equal-Area Conic projection results. If
a pole is selected as one of the standard parallels, then the projected pole is a point, otherwise the
projected pole is an arc. If the Equator is chosen as a single parallel, the cone becomes a cylinder and
a Lambert Equal-Area Cylindrical projection is the result. Finally, if two parallels equidistant from the
Equator are chosen as the standard parallels, a Behrmann or other equal-area cylindrical projection
is the result. Suggested parallels for maps of the conterminous U.S. are [29.5 45.5]. The default
parallels are [15 75].

Remarks
This projection was presented by Heinrich Christian Albers in 1805.

11 Map Projections — Alphabetical List

11-4

Limitations
Longitude data greater than 135º east or west of the central meridian is trimmed.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqaconic', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See Also
eqaconicstd on page 11-6

Introduced before R2006a

 eqaconic

11-5

eqaconicstd
Albers Equal-Area Conic Projection — Standard

Classification
Conic

Identifier
eqaconicstd

Graticule
Meridians: Equally spaced straight lines converging to a common point, usually beyond the pole. The
angles between the meridians are less than the true angles.

Parallels: Unequally spaced concentric circular arcs centered on the point of convergence. Spacing of
parallels decreases away from the central latitudes.

Poles: Normally circular arcs, enclosing the same angle as the displayed parallels.

Symmetry: About any meridian.

Features
This function implements the Albers Equal Area Conic projection directly on a reference ellipsoid,
consistent with the industry-standard definition of this projection. See eqaconic on page 11-4 for an
alternative implementation based on rotating the authalic sphere.

This is an equal area projection. Scale is true along the one or two selected standard parallels. Scale
is constant along any parallel; the scale factor of a meridian at any given point is the reciprocal of
that along the parallel to preserve equal area. The projection is free of distortion along the standard
parallels. Distortion is constant along any other parallel. This projection is neither conformal nor
equidistant.

Parallels
The cone of projection has interesting limiting forms. If a pole is selected as a single standard
parallel, the cone is a plane and a Lambert Azimuthal Equal-Area projection results. If two parallels
are chosen, not symmetric about the Equator, then a Lambert Equal-Area Conic projection results. If
a pole is selected as one of the standard parallels, then the projected pole is a point, otherwise the
projected pole is an arc. If the Equator is chosen as a single parallel, the cone becomes a cylinder and
a Lambert Equal-Area Cylindrical projection is the result. Finally, if two parallels equidistant from the
Equator are chosen as the standard parallels, a Behrmann or other equal-area cylindrical projection
is the result. Suggested parallels for maps of the conterminous U.S. are [29.5 45.5]. The default
parallels are [15 75].

11 Map Projections — Alphabetical List

11-6

Remarks
• This projection was presented by Heinrich Christian Albers in 1805 and it is also known as a

Conical Orthomorphic projection. The cone of projection has interesting limiting forms. If a pole is
selected as a single standard parallel, the cone is a plane, and a Lambert Equal Area Conic
projection is the result. If the Equator is chosen as a single parallel, the cone becomes a cylinder
and a Lambert Cylindrical Equal Area Projection is the result. Finally, if two parallels equidistant
from the Equator are chosen as the standard parallels, a Behrmann or other cylindrical equal area
projection is the result.

• Mapping Toolbox uses a different implementation of the standard Albers equal-area conic
projection for displaying coordinates on map axes than for projecting coordinates using the
projfwd or projinv function. These implementations may produce differing results.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqaconicstd', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See also
eqaconic on page 11-4

Introduced before R2006a

 eqaconicstd

11-7

apianus
Apianus II Projection

Classification
Pseudocylindrical

Identifier
apianus

Graticule
Meridians: Equally spaced elliptical curves converging at the poles.

Parallels: Equally spaced straight lines.

Poles: Points.

Symmetry: About the Equator and central meridian.

Features
Scale is constant along any parallel or pair of parallels equidistant from the Equator, as well as along
the central meridian. The Equator is free of angular distortion. This projection is not equal-area,
equidistant, or conformal.

Parallels
There is no standard parallel for this projection.

Remarks
• This projection was first described in 1524 by Peter Apian (or Bienewitz).
• This implementation of the Apianus II projection is applicable only for coordinates that are

referenced to a sphere.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('apianus', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-8

Introduced before R2006a

 apianus

11-9

balthsrt
Balthasart Cylindrical Projection

Classification
Cylindrical

Identifier
balthsrt

Graticule
Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing is closest
near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is an orthographic projection onto a cylinder secant at the 50º parallels. It is equal-area, but
distortion of shape increases with distance from the standard parallels. Scale is true along the
standard parallels and constant between two parallels equidistant from the Equator. This projection is
not equidistant.

Standard Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
50º.

Remarks
The Balthasart Cylindrical projection was presented in 1935 and is a special form of the Equal-Area
Cylindrical projection secant at 50ºN and S.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('balthsrt', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-10

Introduced before R2006a

 balthsrt

11-11

behrmann
Behrmann Cylindrical Projection

Classification
Cylindrical

Identifier
behrmann

Graticule
Meridians: Equally spaced straight parallel lines 0.42 as long as the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing is closest
near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is an orthographic projection onto a cylinder secant at the 30º parallels. It is equal-area, but
distortion of shape increases with distance from the standard parallels. Scale is true along the
standard parallels and constant between two parallels equidistant from the Equator. This projection is
not equidistant.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
30º.

Remarks
This projection is named for Walter Behrmann, who presented it in 1910 and is a special form of the
Equal-Area Cylindrical projection secant at 30ºN and S.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('behrmann', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-12

Introduced before R2006a

 behrmann

11-13

bsam
Bolshoi Sovietskii Atlas Mira Projection

Classification
Cylindrical

Identifier
bsam

Graticule
Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing increases
toward the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is a perspective projection from a point on the Equator opposite a given meridian onto a cylinder
secant at the 30º parallels. It is not equal-area, equidistant, or conformal. Scale is true along the
standard parallels and constant between two parallels equidistant from the Equator. There is no
distortion along the standard parallels, but it increases moderately away from these parallels,
becoming severe at the poles.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
30º.

Remarks
• This projection was first described in 1937, when it was used for maps in the Bolshoi Sovietskii

Atlas Mira (Great Soviet World Atlas). It is commonly abbreviated as the BSAM projection. It is a
special form of the Braun Perspective Cylindrical projection secant at 30ºN and S.

• This implementation of the Bolshoi Sovietskii Atlas Mira projection is applicable only for
coordinates that are referenced to a sphere.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('bsam', 'Frame', 'on', 'Grid', 'on');

11 Map Projections — Alphabetical List

11-14

geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 bsam

11-15

bonne
Bonne Projection

Classification
Pseudoconic

Identifier
bonne

Graticule
Central Meridian: A straight line.

Meridians: Complex curves connecting points equally spaced along each parallel and concave toward
the central meridian.

Parallels: Concentric circular arcs spaced at true distances along the central meridian.

Poles: Points.

Symmetry: About the central meridian.

Features
This is an equal-area projection. The curvature of the standard parallel is identical to that on a cone
tangent at that latitude. The central meridian and the central parallel are free of distortion. This
projection is not conformal.

Parallels
This projection has one standard parallel, which is 30ºN by default. It has two interesting limiting
forms. If a pole is employed as the standard parallel, a Werner projection results; if the Equator is
used, a Sinusoidal projection results.

Remarks
This projection dates in a rudimentary form back to Claudius Ptolemy (about A.D. 100). It was further
developed by Bernardus Sylvanus in 1511. It derives its name from its considerable use by Rigobert
Bonne, especially in 1752.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('bonne', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-16

Introduced before R2006a

 bonne

11-17

braun
Braun Perspective Cylindrical Projection

Classification
Cylindrical

Identifier
braun

Graticule
Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing increases
toward the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is an perspective projection from a point on the Equator opposite a given meridian onto a
cylinder secant at standard parallels. It is not equal-area, equidistant, or conformal. Scale is true
along the standard parallels and constant between two parallels equidistant from the Equator. There
is no distortion along the standard parallels, but it increases moderately away from these parallels,
becoming severe at the poles.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, any latitude may be chosen; the default is
arbitrarily set to 0º.

Remarks
• This projection was first described by Braun in 1867. It is less well known than the specific forms

of it called the Gall Stereographic and the Bolshoi Sovietskii Atlas Mira projections.
• This implementation of the Braun perspective cylindrical projection is applicable only for

coordinates that are referenced to a sphere.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('braun', 'Frame', 'on', 'Grid', 'on');

11 Map Projections — Alphabetical List

11-18

geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 braun

11-19

breusing
Breusing Harmonic Mean Projection

Classification
Azimuthal

Identifier
breusing

Graticule
The graticule described is for the polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole.

Parallels: Unequally spaced circles centered on the central pole. The opposite hemisphere cannot be
shown. Spacing increases (slightly) away from the central pole.

Poles: The central pole is a point, while the opposite pole cannot be shown.

Symmetry: About any meridian.

Features
This is a harmonic mean between a Stereographic and Lambert Equal-Area Azimuthal projection. It is
not equal-area, equidistant, or conformal. There is no point at which scale is accurate in all
directions. The primary feature of this projection is that it is minimum error—distortion is moderate
throughout.

Parallels
There are no standard parallels for azimuthal projections.

Remarks
• F. A. Arthur Breusing developed a geometric mean version of this projection in 1892. A. E. Young
modified this to the harmonic mean version presented here in 1920. This projection is virtually
indistinguishable from the Airy Minimum Error Azimuthal projection, presented by George Airy in
1861.

• This implementation of the Breusing harmonic mean projection is applicable only for coordinates
that are referenced to a sphere.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('breusing', 'Frame', 'on', 'Grid', 'on');

11 Map Projections — Alphabetical List

11-20

geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 breusing

11-21

bries
Briesemeister Projection

Classification
Modified Azimuthal

Identifier
bries

Graticule
Meridians: Central meridian is straight. Other meridians are complex curves.

Parallels: Complex curves.

Poles: Points.

Symmetry: About the central meridian.

Features
This equal-area projection groups the continents about the center of the projection. The only point
free of distortion is the center point. Distortion of shape and area are moderate throughout.

Parallels
There is no standard parallel for this projection.

Remarks
• This projection was presented by William Briesemeister in 1953. It is an oblique Hammer

projection with an axis ratio of 1.75 to 1, instead of 2 to 1.
• This implementation of the Briesemeister projection is applicable only for coordinates that are

referenced to a sphere.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('bries', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-22

Introduced before R2006a

 bries

11-23

cassini
Cassini Cylindrical Projection

Classification
Cylindrical

Identifier
cassini

Graticule
Central Meridian: Straight line (includes meridian opposite the central meridian in one continuous
line).

Other Meridians: Straight lines if 90º from central meridian, complex curves concave toward the
central meridian otherwise.

Parallels: Complex curves concave toward the nearest pole.

Poles: Points along the central meridian.

Symmetry: About any straight meridian or the Equator.

Features
This is a projection onto a cylinder tangent at the central meridian. Distortion of both shape and area
are functions of distance from the central meridian. Scale is true along the central meridian and
along any straight line perpendicular to the central meridian (i.e., it is equidistant).

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel of the base projection
is by definition fixed at 0º.

Remarks
• This projection is the transverse aspect of the Plate Carrée projection, developed by César

François Cassini de Thury (1714–1784). It is still used for the topographic mapping of a few
countries.

• This implementation of the Cassini cylindrical projection is applicable only for coordinates that are
referenced to a sphere.

11 Map Projections — Alphabetical List

11-24

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('cassini', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See also
cassinistd on page 11-26

Introduced before R2006a

 cassini

11-25

cassinistd
Cassini Cylindrical Projection — Standard

Identifier
cassinistd

Graticule
Central Meridian: Straight line (includes meridian opposite the central meridian in one continuous
line).

Other Meridians: Straight lines if 90º from central meridian, complex curves concave toward the
central meridian otherwise.

Parallels: Complex curves concave toward the nearest pole.

Poles: Points along the central meridian.

Symmetry: About any straight meridian or the Equator.

Features
This is a projection onto a cylinder tangent at the central meridian. Distortion of both shape and area
are functions of distance from the central meridian. Scale is true along the central meridian and
along any straight line perpendicular to the central meridian (i.e., it is equidistant).

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel of the base projection
is by definition fixed at 0º.

Remarks
• This projection is the transverse aspect of the Plate Carrée projection, developed by César

François Cassini de Thury (1714–1784). It is still used for the topographic mapping of a few
countries.

• cassinistd implements the Cassini projection directly on a sphere or reference ellipsoid, as
opposed to using the equidistant cylindrical projection in transverse mode as in function cassini
on page 11-24. Distinct forms are used for the sphere and ellipsoid, because approximations in the
ellipsoidal formulation cause it to be appropriate only within a zone that extends 3 or 4 degrees in
longitude on either side of the central meridian.

• Mapping Toolbox uses a different implementation of the standard Cassini cylindrical projection for
displaying coordinates on map axes than for projecting coordinates using the projfwd or
projinv function. These implementations may produce differing results.

11 Map Projections — Alphabetical List

11-26

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('cassinistd', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See also
cassini on page 11-24

Introduced before R2006a

 cassinistd

11-27

ccylin
Central Cylindrical Projection

Classification
Cylindrical

Identifier
ccylin

Graticule
Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing increases
toward the poles, more rapidly than that of the Mercator projection.

Poles: Cannot be shown.

Symmetry: About any meridian or the Equator.

Features
This is a perspective projection from the center of the Earth onto a cylinder tangent at the Equator. It
is not equal-area, equidistant, or conformal. Scale is true along the Equator and constant between
two parallels equidistant from the Equator. Scale becomes infinite at the poles. There is no distortion
along the Equator, but it increases rapidly away from the Equator.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
0º.

Remarks
• The origin of this projection is unknown; it has little use beyond the educational aspects of its

method of projection and as a comparison to the Mercator projection, which is not perspective.
The transverse aspect of the central cylindrical is called the Wetch projection.

• This implementation of the central cylindrical projection is applicable only for coordinates that are
referenced to a sphere.

Limitations
Data at latitudes greater than 75º is trimmed to prevent large values from dominating the display.

11 Map Projections — Alphabetical List

11-28

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('ccylin', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 ccylin

11-29

collig
Collignon Projection

Classification
Pseudocylindrical

Identifier
collig

Graticule
Meridians: Equally spaced straight lines converging at the North Pole.

Parallels: Unequally spaced straight parallel lines, farthest apart near the North Pole, closest near the
South Pole

Poles: North Pole is a point, South Pole is a line 1.41 as long as the Equator.

Symmetry: About the central meridian.

Features
This is a novelty projection showing a straight-line, equal-area graticule. Scale is true along the
15º51'N parallel, constant along any parallel, and different for any pair of parallels. Distortion is
severe in many regions, and is only absent at 15º51'N on the central meridian. This projection is not
conformal or equidistant.

Parallels
This projection has one standard parallel, which is by definition fixed at 15º51'.

Remarks
This projection was presented by Édouard Collignon in 1865.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('collig', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-30

Introduced before R2006a

 collig

11-31

craster
Craster Parabolic Projection

Classification
Pseudocylindrical

Identifier
craster

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced parabolas intersecting at the poles and concave toward the central
meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing
changes very gradually and is greatest near the Equator.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features
This is an equal-area projection. Scale is true along the 36º46' parallels and is constant along any
parallel and between any pair of parallels equidistant from the Equator. Distortion is severe near the
outer meridians at high latitudes, but less so than the Sinusoidal projection. This projection is free of
distortion only at the two points where the central meridian intersects the 36º46' parallels. This
projection is not conformal or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 36º46'.

Remarks
This projection was developed by John Evelyn Edmund Craster in 1929; it was further developed by
Charles H. Deetz and O.S. Adams in 1934. It was presented independently in 1934 by Putnins as his
P4 projection.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('craster', 'Frame', 'on', 'Grid', 'on');

11 Map Projections — Alphabetical List

11-32

geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 craster

11-33

eckert1
Eckert I Projection

Classification
Pseudocylindrical

Identifier
eckert1

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced straight converging lines broken at the Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to the central meridian.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
Scale is true along the 47º10' parallels and is constant along any parallel, between any pair of
parallels equidistant from the Equator, and along any given meridian. It is not free of distortion at any
point, and the break at the Equator introduces excessive distortion there; regardless of the
appearance here, the Tissot indicatrices are of indeterminate shape along the Equator. This novelty
projection is not equal-area or conformal.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 47º10'.

Remarks
• This projection was presented by Max Eckert in 1906.
• This implementation of the Eckert I projection is applicable only for coordinates that are

referenced to a sphere. If you want to project coordinates that are referenced to an ellipsoid,
using the projfwd or projinv functions, then create a projcrs object instead of a map
projection structure. You can create a projcrs object for the Eckert I projection using the ESRI
authority code 54015. For example: projcrs(54015,'Authority','ESRI').

11 Map Projections — Alphabetical List

11-34

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert1', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 eckert1

11-35

eckert2
Eckert ll Projection

Classification
Pseudocylindrical

Identifier
eckert2

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced straight converging lines broken at the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is
widest near the Equator.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
This is an equal-area projection. Scale is true along the 55º10' parallels and is constant along any
parallel and between any pair of parallels equidistant from the Equator. It is not free of distortion at
any point except at 55º10'N and S along the central meridian; the break at the Equator introduces
excessive distortion there. Regardless of the appearance here, the Tissot indicatrices are of
indeterminate shape along the Equator. This novelty projection is not conformal or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 55º10'.

Remarks
This projection was presented by Max Eckert in 1906.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert2', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-36

Introduced before R2006a

 eckert2

11-37

eckert3
Eckert lll Projection

Classification
Pseudocylindrical

Identifier
eckert3

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced semiellipses concave toward the central meridian. The outer
meridians, 180º east and west of the central meridian, are semicircles.

Parallels: Equally spaced straight parallel lines, perpendicular to the central meridian.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
Scale is true along the 35º58' parallels and is constant along any parallel and between any pair of
parallels equidistant from the Equator. No point is free of all scale distortion, but the Equator is free
of angular distortion. This projection is not equal-area, conformal, or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 35º58'.

Remarks
• This projection was presented by Max Eckert in 1906.
• This implementation of the Eckert III projection is applicable only for coordinates that are

referenced to a sphere. If you want to project coordinates that are referenced to an ellipsoid,
using the projfwd or projinv functions, then create a projcrs object instead of a map
projection structure. You can create a projcrs object for the Eckert III projection using the ESRI
authority code 54013. For example: projcrs(54013,'Authority','ESRI').

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert3', 'Frame', 'on', 'Grid', 'on');

11 Map Projections — Alphabetical List

11-38

geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 eckert3

11-39

eckert4
Eckert IV Projection

Classification
Pseudocylindrical

Identifier
eckert4

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced semiellipses concave toward the central meridian. The outer
meridians, 180º east and west of the central meridian, are semicircles.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is
greatest toward the Equator.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
This is an equal-area projection. Scale is true along the 40º30' parallels and is constant along any
parallel and between any pair of parallels equidistant from the Equator. It is free of distortion only at
the two points where the 40º30' parallels intersect the central meridian. This projection is not
conformal or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 40º30'.

Remarks
This projection was presented by Max Eckert in 1906.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert4', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-40

Introduced before R2006a

 eckert4

11-41

eckert5
Eckert V Projection

Classification
Pseudocylindrical

Identifier
eckert5

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves concave toward the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central meridian.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
This projection is an arithmetic average of the x and y coordinates of the Sinusoidal and Plate Carrée
projections. Scale is true along latitudes 37º55'N and S, and is constant along any parallel and
between any pair of parallels equidistant from the Equator. There is no point free of all distortion, but
the Equator is free of angular distortion. This projection is not equal-area, conformal, or equidistant.

Parallels
This projection has one standard parallel, which is by definition fixed at 0º.

Remarks
• This projection was presented by Max Eckert in 1906.
• This implementation of the Eckert V projection is applicable only for coordinates that are

referenced to a sphere. If you want to project coordinates that are referenced to an ellipsoid,
using the projfwd or projinv functions, then create a projcrs object instead of a map
projection structure. You can create a projcrs object for the Eckert V projection using the ESRI
authority code 54011. For example: projcrs(54011,'Authority','ESRI').

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert5', 'Frame', 'on', 'Grid', 'on');

11 Map Projections — Alphabetical List

11-42

geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 eckert5

11-43

eckert6
Eckert VI Projection

Classification
Pseudocylindrical

Identifier
eckert6

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is
greatest toward the Equator.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
This is an equal-area projection. Scale is true along the 49º16' parallels and is constant along any
parallel and between any pair of parallels equidistant from the Equator. It is free of distortion only at
the two points where the 49º16' parallels intersect the central meridian. This projection is not
conformal or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 49º16'.

Remarks
This projection was presented by Max Eckert in 1906.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eckert6', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-44

Introduced before R2006a

 eckert6

11-45

eqacylin
Equal-Area Cylindrical Projection

Classification
Cylindrical

Identifier
eqacylin

Graticule
Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing is closest
near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is an orthographic projection onto a cylinder secant at the standard parallels. It is equal-area,
but distortion of shape increases with distance from the standard parallels. Scale is true along the
standard parallels and constant between two parallels equidistant from the Equator. This projection is
not equidistant.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, any latitude may be chosen; the default is
arbitrarily set to 0º (the Lambert variation).

Remarks
• This projection was proposed by Johann Heinrich Lambert (1772), a prolific cartographer who

proposed seven different important projections. The form of this projection tangent at the Equator
is often called the Lambert Equal-Area Cylindrical projection. That and other special forms of this
projection are included separately in this guide, including the Gall Orthographic, the Behrmann
Cylindrical, the Balthasart Cylindrical, and the Trystan Edwards Cylindrical projections.

• Mapping Toolbox uses a different implementation of the equal-area cylindrical projection for
displaying coordinates on map axes than for projecting coordinates using the projfwd or
projinv function. These implementations may produce differing results.

11 Map Projections — Alphabetical List

11-46

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqacylin', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 eqacylin

11-47

eqdazim
Equidistant Azimuthal Projection

Classification
Azimuthal

Identifier
eqdazim

Graticule
The graticule described is for the polar aspect.

Meridians: Equally spaced straight lines intersecting at a central pole. The angles between them are
the true angles.

Parallels: Equally spaced circles, centered on the central pole. The entire Earth may be shown.

Poles: Central pole is a point. The opposite pole is a bounding circle with a radius twice that of the
Equator.

Symmetry: About any meridian.

Features
This is an equidistant projection. It is neither equal-area nor conformal. In the polar aspect, scale is
true along any meridian. The projection is distortion free only at the center point. Distortion is
moderate for the inner hemisphere, but it becomes extreme in the outer hemisphere.

Parallels
There are no standard parallels for azimuthal projections.

Remarks
• This projection may have been first used by the ancient Egyptians for star charts. Several

cartographers used it during the sixteenth century, including Guillaume Postel, who used it in
1581. Other names for this projection include Postel and Zenithal Equidistant.

• Mapping Toolbox uses a different implementation of the equidistant azimuthal projection for
displaying coordinates on map axes than for projecting coordinates using the projfwd or
projinv function. These implementations may produce differing results.

• The implementation of the equidistant azimuthal projection for displaying coordinates on map
axes is applicable only for coordinates that are referenced to a sphere. The implementation of the
equidistant azimuthal projection for projecting coordinates using the projfwd or projinv
function is applicable for coordinates referenced to either a sphere or an ellipsoid.

11 Map Projections — Alphabetical List

11-48

Limitations
This projection is available only on the sphere.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqdazim', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 eqdazim

11-49

eqdconic
Equidistant Conic Projection

Classification
Conic

Identifier
eqdconic

Graticule
Meridians: Equally spaced straight lines converging to a common point, usually beyond the pole. The
angles between the meridians are less than the true angles.

Parallels: Equally spaced concentric circular arcs centered on the point of meridional convergence.

Poles: Normally circular arcs, enclosing the same angle as the displayed parallels.

Symmetry: About any meridian.

Features
Scale is true along each meridian and the one or two selected standard parallels. Scale is constant
along any parallel. This projection is free of distortion along the two standard parallels. Distortion is
constant along any other parallel. This projection provides a compromise in distortion between
conformal and equal-area conic projections, of which it is neither.

Parallels
The cone of projection has interesting limiting forms. If a pole is selected as a single standard
parallel, the cone is a plane, and an Equidistant Azimuthal projection results. If two parallels are
chosen, not symmetric about the Equator, then an Equidistant Conic projection results. If a pole is
selected as one of the standard parallels, then the projected pole is a point, otherwise the projected
pole is an arc. If the Equator is so chosen, the cone becomes a cylinder and a Plate Carrée projection
results. If two parallels equidistant from the Equator are chosen as the standard parallels, an
Equidistant Cylindrical projection results. The default parallels are [15 75].

Remarks
In a rudimentary form, this projection dates back to Claudius Ptolemy, about A.D. 100. Improvements
were developed by Johannes Ruysch in 1508, Gerardus Mercator in the late 16th century, and Nicolas
de l'Isle in 1745. It is also known as the Simple Conic or Conic projection.

Limitations
Longitude data greater than 135º east or west of the central meridian is trimmed.

11 Map Projections — Alphabetical List

11-50

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqdconic', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See Also
eqdconicstd on page 11-52

Introduced before R2006a

 eqdconic

11-51

eqdconicstd
Equidistant Conic Projection — Standard

Identifier
eqdconicstd

Graticule
Meridians: Equally spaced straight lines converging to a common point, usually beyond the pole. The
angles between the meridians are less than the true angles.

Parallels: Equally spaced concentric circular arcs centered on the point of meridional convergence.

Poles: Normally circular arcs, enclosing the same angle as the displayed parallels.

Symmetry: About any meridian.

Features
eqdconicstd implements the Equidistant Conic projection directly on a reference ellipsoid,
consistent with the industry-standard definition of this projection. See eqdconic on page 11-50 for
an alternative implementation based on rotating the rectifying sphere.

Scale is true along each meridian and the one or two selected standard parallels. Scale is constant
along any parallel. This projection is free of distortion along the two standard parallels. Distortion is
constant along any other parallel. This projection provides a compromise in distortion between
conformal and equal-area conic projections, of which it is neither.

Parallels
The cone of projection has interesting limiting forms. If a pole is selected as a single standard
parallel, the cone is a plane, and an Equidistant Azimuthal projection results. If two parallels are
chosen, not symmetric about the Equator, then an Equidistant Conic projection results. If a pole is
selected as one of the standard parallels, then the projected pole is a point, otherwise the projected
pole is an arc. If the Equator is so chosen, the cone becomes a cylinder and a Plate Carrée projection
results. If two parallels equidistant from the Equator are chosen as the standard parallels, an
Equidistant Cylindrical projection results. The default parallels are [15 75].

Remarks
• In a rudimentary form, this projection dates back to Claudius Ptolemy, about A.D. 100.

Improvements were developed by Johannes Ruysch in 1508, Gerardus Mercator in the late 16th
century, and Nicolas de l'Isle in 1745. It is also known as the Simple Conic or Conic projection.

• Mapping Toolbox uses a different implementation of the standard equidistant conic projection for
displaying coordinates on map axes than for projecting coordinates using the projfwd or
projinv function. These implementations may produce differing results.

11 Map Projections — Alphabetical List

11-52

Limitations
Longitude data greater than 135º east or west of the central meridian is trimmed.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqdconicstd', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See Also
eqdconic on page 11-50

Introduced before R2006a

 eqdconicstd

11-53

eqdcylin
Equidistant Cylindrical Projection

Classification
Cylindrical

Identifier
eqdcylin

Graticule
Meridians: Equally spaced straight parallel lines more than half as long as the Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to and having wider spacing than the
meridians.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is a projection onto a cylinder secant at the standard parallels. Distortion of both shape and area
increase with distance from the standard parallels. Scale is true along all meridians (i.e., it is
equidistant) and the standard parallels and is constant along any parallel and along the parallel of
opposite sign.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, any latitude can be chosen; the default is
arbitrarily set to 30º.

Remarks
• This projection was first used by Marinus of Tyre about A.D. 100. Special forms of this projection

are the Plate Carrée, with a standard parallel at 0º, and the Gall Isographic, with standard
parallels at 45ºN and S. Other names for this projection include Equirectangular, Rectangular,
Projection of Marinus, La Carte Parallélogrammatique, and Die Rechteckige Plattkarte.

• By default, the standard parallels are at +/- 30 degrees in geodetic latitude.
• When projecting a sphere, the origin vector is used to specify a triaxial rigid-body rotation.
• When projecting an ellipsoid:

• The origin longitude (2nd element of the origin vector) determines which meridian maps to the
line x == false easting

11 Map Projections — Alphabetical List

11-54

• The origin latitude (1st element of the origin vector) is used to shift the natural origin off the
equator via a constant y-offset, in addition to any false northing that may be specified.

• The grid convergence is fixed at 0, even if the 3rd element of the origin vector is nonzero.
• Mapping Toolbox uses a different implementation of the equidistant cylindrical projection for

displaying coordinates on map axes than for projecting coordinates using the projfwd or
projinv function. These implementations may produce differing results.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqdcylin', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 eqdcylin

11-55

fournier
Fournier Projection

Classification
Pseudocylindrical

Identifier
fournier

Graticule
Meridians: Equally spaced elliptical curves converging at the poles.

Parallels: Straight lines.

Poles: Points.

Symmetry: About the Equator and central meridian.

Features
This projection is equal-area. Scale is constant along any parallel or pair of parallels equidistant from
the Equator. This projection is neither equidistant nor conformal.

Parallels
There is no standard parallel for this projection.

Remarks
This projection was first described in 1643 by Georges Fournier. This is actually his second
projection, the Fournier II.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('fournier', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-56

Introduced before R2006a

 fournier

11-57

giso
Gall Isographic Projection

Classification
Cylindrical

Identifier
giso

Graticule
Meridians: Equally spaced straight parallel lines more than half as long as the Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to and having wider spacing than the
meridians.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is a projection onto a cylinder secant at the 45º parallels. Distortion of both shape and area
increase with distance from the standard parallels. Scale is true along all meridians (i.e., it is
equidistant) and the two standard parallels, and is constant along any parallel and along the parallel
of opposite sign.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
45º.

Remarks
• This projection is a specific case of the Equidistant Cylindrical projection, with standard parallels

at 45ºN and S.
• On the sphere, this projection can have an arbitrary, oblique aspect, as controlled by the Origin

property of the map axes. On the ellipsoid, only the equatorial aspect is supported.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('giso', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-58

Introduced before R2006a

 giso

11-59

gortho
Gall Orthographic Projection

Classification
Cylindrical

Identifier
gortho

Graticule
Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing is closest
near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is an orthographic projection onto a cylinder secant at the 45º parallels. It is equal-area, but
distortion of shape increases with distance from the standard parallels. Scale is true along the
standard parallels and constant between two parallels equidistant from the Equator. This projection is
not equidistant.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
45º.

Remarks
This projection is named for James Gall, who originated it in 1855 and is a special form of the Equal-
Area Cylindrical projection secant at 45ºN and S. This projection is also known as the Peters
projection.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('gortho', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-60

Introduced before R2006a

 gortho

11-61

gstereo
Gall Stereographic Projection

Classification
Cylindrical

Identifier
gstereo

Graticule
Meridians: Equally spaced straight parallel lines 0.77 as long as the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing increases
toward the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is a perspective projection from a point on the Equator opposite a given meridian onto a cylinder
secant at the 45º parallels. It is not equal-area, equidistant, or conformal. Scale is true along the
standard parallels and constant between two parallels equidistant from the Equator. There is no
distortion along the standard parallels, but it increases moderately away from these parallels,
becoming severe at the poles.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
45º.

Remarks
• This projection was presented by James Gall in 1855. It is also known simply as the Gall

projection. It is a special form of the Braun Perspective Cylindrical projection secant at 45ºN and
S.

• This implementation of the Gall stereographic projection is applicable only for coordinates that
are referenced to a sphere. If you want to project coordinates that are referenced to an ellipsoid,
using the projfwd or projinv functions, then create a projcrs object instead of a map
projection structure. You can create a projcrs object for the Gall stereographic projection using
the ESRI authority code 54016. For example: projcrs(54016,'Authority','ESRI').

11 Map Projections — Alphabetical List

11-62

• Mapping Toolbox uses a different implementation of the Gall stereographic projection for
displaying coordinates on map axes than for projecting coordinates using the projfwd or
projinv function. These implementations may produce differing results.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('gstereo', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 gstereo

11-63

globe
Frame for 3-D map display

Classification
Spherical

Identifier
globe

Graticule
This map display is based on a coordinate transformation and is not a true map projection. Meridians,
parallels, and displayed map data appear in a 3-D view that depends on the view and camera settings
of the map axes. Change the view interactively or by using the view function. Change the camera
settings using the camposm, camtargm, and camupm functions.

Features
In the 3-D sense, globe is true in scale, equal-area, conformal, minimum error, and equidistant
everywhere.

While globe has none of the distortions inherent in planar projections, it cannot be displayed without
distortion or in its entirety. In order to render the globe in a figure window, either a perspective or
orthographic transformation must be applied, both of which necessarily involve setting a viewpoint,
hiding the back side and distortions of shape, scale, and angles.

Parallels
The globe requires no standard parallels.

Remarks
The globe display allows you to visualize terrain relief or other data for an entire planet viewed from
space. Its underlying transformation maps latitude, longitude, and elevation to a 3-D Cartesian frame.
The globe display is different from other transformations because it can render relative relief of
elevations above, below, or on a sphere.

When displayed, the globe looks like an orthographic azimuthal projection, provided that the
Projection property of the map axes is set to 'orthographic'.

Examples

11 Map Projections — Alphabetical List

11-64

Display Geoid Heights on Globe

Display geoid heights from the EGM96 geoid model over a 3-D globe. First, get geoid heights and a
geographic postings reference object. Load coastline latitude and longitude data.

[N,R] = egm96geoid;
load coastlines

Create a frame for the 3-D globe display using axesm. Set the line of sight for the globe using view.
Turn off the axes background using axis off. Then, display the geoid heights and coastline data.

axesm('globe','Grid','on')
view(60,60)
axis off
meshm(N,R)
plotm(coastlat,coastlon)

Display Polygon on Globe

Display a polygon on a globe by converting the polygon to a data grid.

Create a sample polygon that contains a hole and rests on the surface of the globe. To do this,
generate the vertices of its external and internal boundaries using the outlinegeoquad function.
Specify the geographic limits as the first two arguments, and the vertex spacing in degrees as the

 globe

11-65

next two arguments. Reverse the order of the internal boundary vertices using the flip function, so
they are in a counterclockwise order.

[latE,lonE] = outlinegeoquad([-35 35],[-30 30],0.25,0.25);
[latI,lonI] = outlinegeoquad([-15 15],[-15 15],0.25,0.25);
latI = flip(latI);
lonI = flip(lonI);

Combine the vertices into a single list by separating the boundaries with NaN values.

lat = [latE NaN latI];
lon = [lonE NaN lonI];

The vectors lat and lon represent the boundaries of a polygon that contain a hole. Display the
boundaries on the globe as a filled polygon by converting the polygon to a data grid.

To do this, create a geographic cells reference object for the globe and a grid of ones. Replace
elements of the grid with the polygon data using the vec2mtx function. The new grid contains 0s to
indicate the inside region of the polygon, 1s to indicate the boundaries, and 2s to indicate the outside
region of the polygon.

R = georefcells([-90 90],[-180 180],0.25,0.25);
V = ones(R.RasterSize);
[V,R] = vec2mtx(lat,lon,V,R,'filled');

Create a globe using the axesm function. Display the data grid as an image using the geoshow
function. Adjust the colormap so the inside region of the polygon is purple and the outside region is
white. Change the camera line of sight using the view function, so the polygon is displayed on the
near side of the globe.

axesm('globe','Grid','on')
geoshow(V,R,'DisplayType','texturemap')
colormap([0.5 0.5 0.8; 0 0 0; 1 1 1])
axis off
view(100,20)

11 Map Projections — Alphabetical List

11-66

The appearance of polygons on the globe is dependent on the camera line of sight and the globe
transparency. For example, make the globe slightly transparent using the alpha function.

alpha(0.6)

 globe

11-67

When you view the polygon from the near side of the globe, the external boundary vertices appear in
a clockwise order. When you view the polygon from the far side of the globe, the external boundary
vertices appear in a counterclockwise order. When you rotate the globe so the polygon appears on
both the near side and far side, then the polygon appears to intersect itself.

See Also
axesm | geoshow | outlinegeoquad | vec2mtx

11 Map Projections — Alphabetical List

11-68

Topics
“Create and Display Polygons” on page 2-12
“The Globe Display Compared with the Orthographic Projection” on page 5-39

Introduced before R2006a

 globe

11-69

gnomonic
Gnomonic Projection

Classification
Azimuthal

Identifier
gnomonic

Graticule
The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole. The angles displayed are the
true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. Spacing increases rapidly away from
this pole. The Equator and the opposite hemisphere cannot be shown

Pole: The central pole is a point; the other pole is not shown.

Symmetry: About any meridian.

Features
This is a perspective projection from the center of the globe on a plane tangent at the center point,
which is a pole in the common polar aspect, but can be any point. Less than one hemisphere can be
shown with this projection, regardless of its center point. The significant property of this projection is
that all great circles are straight lines. This is useful in navigation, as a great circle is the shortest
path between two points on the globe. Only the center point enjoys true scale and zero distortion.
This projection is neither conformal nor equal-area.

Parallels
There are no standard parallels for azimuthal projections.

Remarks
• This projection may have been first developed by Thales around 580 B.C. Its name is derived from

the gnomon, the face of a sundial, since the meridians radiate like hour markings. This projection
is also known as a gnomic or central projection.

• This implementation of the gnomonic projection is applicable only for coordinates that are
referenced to a sphere.

• Mapping Toolbox uses a different implementation of the gnomonic projection for displaying
coordinates on map axes than for projecting coordinates using the projfwd or projinv function.
These implementations may produce differing results.

11 Map Projections — Alphabetical List

11-70

Limitations
Data greater than 65º distant from the center point is trimmed.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('gnomonic', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 gnomonic

11-71

goode
Goode Homolosine Projection

Classification
Pseudocylindrical

Identifier
goode

Graticule
Central Meridian: Straight line 0.44 as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves between the 40º44'11.8'' parallels and elliptical
arcs elsewhere, all concave toward the central meridian. The result is a slight, visible bend in the
meridians at 40º44'11.8'' N and S.

Parallels: Straight parallel lines, perpendicular to the central meridian. Equally spaced between the
40º44'11.8'' parallels, with gradually decreasing spacing outside these parallels.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features
This is an equal-area projection. Scale is true along all parallels and the central meridian between
40º44'11.8'' N and S, and is constant along any parallel and between any pair of parallels equidistant
from the Equator for all latitudes. Its distortion is identical to that of the Sinusoidal projection
between 40º44'11.8'' N and S, and to that of the Mollweide projection elsewhere. This projection is
not conformal or equidistant.

Parallels
This projection has one standard parallel, which is by definition fixed at 0º.

Remarks
This projection was developed by J. Paul Goode in 1916. It is sometimes called simply the Homolosine
projection, and it is usually used in an interrupted form. It is a merging of the Sinusoidal and
Mollweide projections.

Limitations
This projection is available in an uninterrupted form only.

11 Map Projections — Alphabetical List

11-72

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('goode', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 goode

11-73

hammer
Hammer Projection

Classification
Modified Azimuthal

Identifier
hammer

Graticule
Meridians: Central meridian is a straight line half the length of the Equator. Other meridians are
complex curves, equally spaced along the Equator, and concave toward the central meridian.

Parallels: Equator is straight. Other parallels are complex curves, equally spaced along the central
meridian, and concave toward the nearest pole.

Poles: Points.

Symmetry: About the Equator and central meridian.

Features
This projection is equal-area. The only point free of distortion is the center point. Distortion of shape
is moderate throughout. This projection has less angular distortion on the outer meridians near the
poles than pseudoazimuthal projections

Parallels
There is no standard parallel for this projection.

Remarks
• This projection was presented by H. H. Ernst von Hammer in 1892. It is a modification of the

Lambert Azimuthal Equal Area projection. Inspired by Aitoff projection, it is also known as the
Hammer-Aitoff. It in turn inspired the Briesemeister, a modified oblique Hammer projection. John
Bartholomew's Nordic projection is an oblique Hammer centered on 45 degrees north and the
Greenwich meridian. The Hammer projection is used in whole-world maps and astronomical maps
in galactic coordinates.

• This implementation of the Hammer projection is applicable only for coordinates that are
referenced to a sphere.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('hammer', 'Frame', 'on', 'Grid', 'on');

11 Map Projections — Alphabetical List

11-74

geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 hammer

11-75

hatano
Hatano Asymmetrical Equal-Area Projection

Classification
Pseudocylindrical

Identifier
hatano

Graticule
Central Meridian: Straight line 0.48 as long as the Equator.

Other Meridians: Equally spaced elliptical arcs concave toward the central meridian. The eccentricity
of each ellipse changes at the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is
not symmetrical about the Equator.

Poles: The North Pole is a line two-thirds the length of the Equator; the South Pole is a line three-
fourths the length of the Equator.

Symmetry: About the central meridian but not the Equator.

Features
This is an equal-area projection. Scale is true along 40º42'N and 38º27'S, and is constant along any
parallel but generally not between pairs of parallels equidistant from the Equator. It is free of
distortion only along the central meridian at 40º42'N and 38º27'S. This projection is not conformal or
equidistant.

Parallels
Because of the asymmetrical nature of this projection, two standard parallels must be specified. The
standard parallels are by definition fixed at 40º42'N and 38º27'S.

Remarks
This projection was presented by Masataka Hatano in 1972.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('hatano', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-76

Introduced before R2006a

 hatano

11-77

kavrsky5
Kavraisky V Projection

Classification
Pseudocylindrical

Identifier
kavrsky5

Graticule
Meridians: Complex curves converging at the poles. A sine function is used for y, but the meridians
are not sine curves.

Parallels: Unequally spaced straight lines.

Poles: Points.

Symmetry: About the Equator and the central meridian.

Features
This is an equal-area projection. Scale is true along the fixed standard parallels at 35º, and 0.9 true
along the Equator. This projection is neither conformal nor equidistant.

Parallels
The fixed standard parallels are at 35º.

Remarks
This projection was described by V. V. Kavraisky in 1933.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('kavrsky5', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-78

Introduced before R2006a

 kavrsky5

11-79

kavrsky6
Kavraisky VI Projection

Classification
Pseudocylindrical

Identifier
kavrsky6

Graticule
Central Meridian: Straight line half the length of the Equator.

Meridians: Sine curves (60º segments).

Parallels: Unequally spaced straight lines.

Poles: Straight lines half the length of the Equator.

Symmetry: About the Equator and the central meridian.

Features
This is an equal-area projection. Scale is constant along any parallel or pair of equidistant parallels.
This projection is neither conformal nor equidistant.

Parallels
There are no standard parallels for this projection.

Remarks
This projection was described by V. V. Kavraisky in 1936. It is also called the Wagner I, for Karlheinz
Wagner, who described it in 1932.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('kavrsky6', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-80

Introduced before R2006a

 kavrsky6

11-81

eqaazim
Lambert Azimuthal Equal-Area Projection

Classification
Azimuthal

Identifier
eqaazim

Graticule
The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole. The angles displayed are the
true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. The entire Earth can be shown.
Spacing decreases away from the central pole.

Pole: The central pole is a point; the other pole is a bounding circle with 1.41 the radius of the
Equator.

Symmetry: About any meridian.

Features
This nonperspective projection is equal-area. Only the center point is free of distortion, but distortion
is moderate within 90º of this point. Scale is true only at the center point, increasing tangentially and
decreasing radially with distance from the center point. This projection is neither conformal nor
equidistant.

Parallels
There are no standard parallels for azimuthal projections.

Remarks
• This projection was presented by Johann Heinrich Lambert in 1772. It is also known as the

Zenithal Equal-Area and the Zenithal Equivalent projection, and the Lorgna projection in its polar
aspect.

• Mapping Toolbox uses a different implementation of the Lambert azimuthal equal-area projection
for displaying coordinates on map axes than for projecting coordinates using the projfwd or
projinv function. These implementations may produce differing results.

11 Map Projections — Alphabetical List

11-82

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('eqaazim', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

 eqaazim

11-83

lambert
Lambert Conformal Conic Projection

Classification
Conic

Identifier
lambert

Graticule
Meridians: Equally spaced straight lines converging at one of the poles. The angles between the
meridians are less than the true angles.

Parallels: Unequally spaced concentric circular arcs centered on the pole of convergence. Spacing of
parallels increases away from the central latitudes.

Poles: The pole nearest a standard parallel is a point, the other cannot be shown.

Symmetry: About any meridian.

Features
Scale is true along the one or two selected standard parallels. Scale is constant along any parallel and
is the same in every direction at any point. This projection is free of distortion along the standard
parallels. Distortion is constant along any other parallel. This projection is conformal everywhere but
the poles; it is neither equal-area nor equidistant.

Parallels
The cone of projection has interesting limiting forms. If a pole is selected as a single standard
parallel, the cone is a plane, and a Stereographic Azimuthal projection results. If two parallels are
chosen, not symmetric about the Equator, then a Lambert Conformal Conic projection results. If a
pole is selected as one of the standard parallels, then the projected pole is a point, otherwise the
projected pole is an arc. If the Equator or two parallels equidistant from the Equator are chosen as
the standard parallels, the cone becomes a cylinder, and a Mercator projection results. The default
parallels are [15 75].

Remarks
This projection was presented by Johann Heinrich Lambert in 1772 and is also known as a Conical
Orthomorphic projection.

11 Map Projections — Alphabetical List

11-84

Limitations
Longitude data greater than 135º east or west of the central meridian is trimmed. The default map
limits are [0 90] to avoid extreme area distortion.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('lambert', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See Also
lambertstd on page 11-86

 lambert

11-85

lambertstd
Lambert Conformal Conic Projection — Standard

Classification
Conic

Identifier
lambertstd

Graticule
Meridians: Equally spaced straight lines converging at one of the poles. The angles between the
meridians are less than the true angles.

Parallels: Unequally spaced concentric circular arcs centered on the pole of convergence. Spacing of
parallels increases away from the central latitudes.

Poles: The pole nearest a standard parallel is a point, the other cannot be shown.

Symmetry: About any meridian.

Features
lambertstd implements the Lambert Conformal Conic projection directly on a reference ellipsoid,
consistent with the industry-standard definition of this projection. See lambert on page 11-84 for an
alternative implementation based on rotating the authalic sphere.

Scale is true along the one or two selected standard parallels. Scale is constant along any parallel and
is the same in every direction at any point. This projection is free of distortion along the standard
parallels. Distortion is constant along any other parallel. This projection is conformal everywhere but
the poles; it is neither equal-area nor equidistant.

Parallels
The cone of projection has interesting limiting forms. If a pole is selected as a single standard
parallel, the cone is a plane, and a Stereographic Azimuthal projection results. If two parallels are
chosen, not symmetric about the Equator, then a Lambert Conformal Conic projection results. If a
pole is selected as one of the standard parallels, then the projected pole is a point, otherwise the
projected pole is an arc. If the Equator or two parallels equidistant from the Equator are chosen as
the standard parallels, the cone becomes a cylinder, and a Mercator projection results. The default
parallels are [15 75].

Remarks
• This projection was presented by Johann Heinrich Lambert in 1772 and is also known as a Conical

Orthomorphic projection.

11 Map Projections — Alphabetical List

11-86

• Mapping Toolbox uses a different implementation of the standard Lambert conformal conic
projection for displaying coordinates on map axes than for projecting coordinates using the
projfwd or projinv function. These implementations may produce differing results.

Limitations
Longitude data greater than 135º east or west of the central meridian is trimmed. The default map
limits are [0 90] to avoid extreme area distortion.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('lambertstd', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See Also
lambert on page 11-84

Introduced before R2006a

 lambertstd

11-87

lambcyln
Lambert Equal-Area Cylindrical Projection

Classification
Cylindrical

Identifier
lambcyln

Graticule
Meridians: Equally spaced straight parallel lines 0.32 as long as the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing is closest
near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is an orthographic projection onto a cylinder tangent at the Equator. It is equal-area, but
distortion of shape increases with distance from the Equator. Scale is true along the Equator and
constant between two parallels equidistant from the Equator. This projection is not equidistant.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
0º.

Remarks
This projection is named for Johann Heinrich Lambert and is a special form of the Equal-Area
Cylindrical projection tangent at the Equator.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('lambcyln', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-88

Introduced before R2006a

 lambcyln

11-89

loximuth
Loximuthal Projection

Classification
Pseudocylindrical

Identifier
loximuth

Graticule
Central Meridian: Straight line at least half as long as the Equator. Actual length depends on the
choice of central latitude. Length is 0.5 when the central latitude is the Equator, for example, and
0.65 for central latitudes of 40º.

Other Meridians: Complex curves intersecting at the poles and concave toward the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central meridian.

Poles: Points.

Symmetry: About the central meridian. Symmetry about the Equator only when it is the central
latitude.

Features
This projection has the special property that from the central point (the intersection of the central
latitude with the central meridian), rhumb lines (loxodromes) are shown as straight, true to scale, and
correct in azimuth from the center. This differs from the Mercator projection, in that rhumb lines are
here shown in true scale and that unlike the Mercator, this projection does not maintain true azimuth
for all points along the rhumb lines. Scale is true along the central meridian and is constant along any
parallel, but not, generally, between parallels. It is free of distortion only at the central point and can
be severely distorted in places. However, this projection is designed for its specific special property,
in which distortion is not a concern.

Parallels
For this projection, only one standard parallel is specified: the central latitude described above.
Specification of this central latitude defines the center of the loximuthal projection. The default value
is 0º.

Remarks
• This projection was presented by Karl Siemon in 1935 and independently by Waldo R. Tobler in

1966. The Bordone Oval projection of 1520 was very similar to the Equator-centered loximuthal.

11 Map Projections — Alphabetical List

11-90

• This implementation of the loximuthal projection is applicable only for coordinates that are
referenced to a sphere. If you want to project coordinates that are referenced to an ellipsoid,
using the projfwd or projinv functions, then create a projcrs object instead of a map
projection structure. You can create a projcrs object for the loximuthal projection using the
ESRI authority code 54023. For example: projcrs(54023,'Authority','ESRI').

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('loximuth', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 loximuth

11-91

flatplrp
McBryde-Thomas Flat-Polar Parabolic Projection

Classification
Pseudocylindrical

Identifier
flatplrp

Graticule
Central Meridian: Straight line 0.48 as long as the Equator.

Other Meridians: Equally spaced parabolic curves concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is
greatest near the Equator.

Poles: Lines one-third as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
This is an equal-area projection. Scale is true along the 45º30' parallels and is constant along any
parallel and between any pair of parallels equidistant from the Equator. Distortion is severe near the
outer meridians at high latitudes, but less so than on the pointed-polar projections. It is free of
distortion only at the two points where the central meridian intersects the 45º30' parallels. This
projection is not conformal or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 45º30'.

Remarks
This projection was presented by F. Webster McBryde and Paul D. Thomas in 1949.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('flatplrp', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-92

Introduced before R2006a

 flatplrp

11-93

flatplrq
McBryde-Thomas Flat-Polar Quartic Projection

Classification
Pseudocylindrical

Identifier
flatplrq

Graticule
Central Meridian: Straight line 0.45 as long as the Equator.

Other Meridians: Equally spaced quartic (fourth-order equation) curves concave toward the central
meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is
greatest near the Equator.

Poles: Lines one-third as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
This is an equal-area projection. Scale is true along the 33º45' parallels and is constant along any
parallel and between any pair of parallels equidistant from the Equator. Distortion is severe near the
outer meridians at high latitudes, but less so than on the pointed-polar projections. It is free of
distortion only at the two points where the central meridian intersects the 33º45' parallels. This
projection is not conformal or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 33º45'.

Remarks
This projection was presented by F. Webster McBryde and Paul D. Thomas in 1949, and is also known
simply as the Flat-Polar Quartic projection.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('flatplrq', 'Frame', 'on', 'Grid', 'on');

11 Map Projections — Alphabetical List

11-94

geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 flatplrq

11-95

flatplrs
McBryde-Thomas Flat-Polar Sinusoidal Projection

Classification
Pseudocylindrical

Identifier
flatplrs

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves intersecting at the poles and concave toward the
central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is
widest near the Equator.

Poles: Lines one-third as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
This projection is equal-area. Scale is true along the 55º51' parallels and is constant along any
parallel and between any pair of parallels equidistant from the Equator. It is free of distortion only at
the two points where the central meridian intersects the 55º51' parallels. This projection is not
conformal or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 55º51'.

Remarks
This projection was presented by F. Webster McBryde and Paul D. Thomas in 1949.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('flatplrs', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-96

Introduced before R2006a

 flatplrs

11-97

mercator
Mercator Projection

Classification
Cylindrical

Identifier
mercator

Graticule
Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing increases
toward the poles.

Poles: Cannot be shown.

Symmetry: About any meridian or the Equator.

Features
This is a projection with parallel spacing calculated to maintain conformality. It is not equal-area,
equidistant, or perspective. Scale is true along the standard parallels and constant between two
parallels equidistant from the Equator. It is also constant in all directions near any given point. Scale
becomes infinite at the poles. The appearance of the Mercator projection is unaffected by the
selection of standard parallels; they serve only to define the latitude of true scale.

The Mercator, which may be the most famous of all projections, has the special feature that all rhumb
lines, or loxodromes (lines that make equal angles with all meridians, i.e., lines of constant heading),
are straight lines. This makes it an excellent projection for navigational purposes. However, the
extreme area distortion makes it unsuitable for general maps of large areas.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, any latitude less than 86º may be chosen;
the default is arbitrarily set to 0º.

Remarks
• The Mercator projection is named for Gerardus Mercator, who presented it for navigation in 1569.

It is now known to have been used for the Tunhuang star chart as early as 940 by Ch'ien Lo-Chih.
It was first used in Europe by Erhard Etzlaub in 1511. It is also, but rarely, called the Wright
projection, after Edward Wright, who developed the mathematics behind the projection in 1599.

11 Map Projections — Alphabetical List

11-98

• Mapping Toolbox uses a different implementation of the Mercator projection for displaying
coordinates on map axes than for projecting coordinates using the projfwd or projinv function.
These implementations may produce differing results.

Limitations
Data at latitudes greater than 86º is trimmed to prevent large y-values from dominating the display.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('mercator', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 mercator

11-99

miller
Miller Cylindrical Projection

Classification
Cylindrical

Identifier
miller

Graticule
Meridians: Equally spaced straight parallel lines 0.73 as long as the Equator.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing increases
toward the poles, less rapidly than that of the Mercator projection.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is a projection with parallel spacing calculated to maintain a look similar to the Mercator
projection while reducing the distortion near the poles and allowing the poles to be displayed. It is
not equal-area, equidistant, conformal, or perspective. Scale is true along the Equator and constant
between two parallels equidistant from the Equator. There is no distortion near the Equator, and it
increases moderately away from the Equator, but it becomes severe at the poles.

The Miller Cylindrical projection is derived from the Mercator projection; parallels are spaced from
the Equator by calculating the distance on the Mercator for a parallel at 80% of the true latitude and
dividing the result by 0.8. The result is that the two projections are almost identical near the Equator.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
0º.

Remarks
• This projection was presented by Osborn Maitland Miller of the American Geographical Society in

1942. It is often used in place of the Mercator projection for atlas maps of the world, for which it
is somewhat more appropriate.

• Mapping Toolbox uses a different implementation of the Miller projection for displaying
coordinates on map axes than for projecting coordinates using the projfwd or projinv function.
These implementations may produce differing results.

11 Map Projections — Alphabetical List

11-100

• The implementation of the Miller projection for displaying coordinates on map axes is applicable
only for coordinates that are referenced to a sphere. The implementation of the Miller projection
for projecting coordinates using the projfwd or projinv function is applicable for coordinates
referenced to either a sphere or an ellipsoid.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('miller', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 miller

11-101

mollweid
Mollweide Projection

Classification
Pseudocylindrical

Identifier
mollweid

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Meridians 90º east and west of the central meridian form a circle. The others are
equally spaced semiellipses intersecting at the poles and concave toward the central meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is
greatest toward the Equator, but the spacing changes gradually.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features
This is an equal-area projection. Scale is true along the 40º44' parallels and is constant along any
parallel and between any pair of parallels equidistant from the Equator. It is free of distortion only at
the two points where the 40º44' parallels intersect the central meridian. This projection is not
conformal or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 40º44'.

Remarks
This projection was presented by Carl B. Mollweide in 1805. Its other names include the
Homolographic, the Homalographic, the Babinet, and the Elliptical projections. It is occasionally used
for thematic world maps, and it is combined with the Sinusoidal to produce the Goode Homolosine
projection.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('mollweid', 'Frame', 'on', 'Grid', 'on');

11 Map Projections — Alphabetical List

11-102

geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 mollweid

11-103

murdoch1
Murdoch I Conic Projection

Classification
Conic

Identifier
murdoch1

Graticule
Meridians: Equally spaced straight lines converging at one of the poles.

Parallels: Equally spaced concentric circular arcs.

Poles: Arcs, one of which might become a point in the limit.

Symmetry: About any meridian.

Features
This is an equidistant projection that is nearly minimum-error. Scale is true along any meridian and is
constant along any parallel. Scale is also true along two standard parallels. These must be calculated,
however (see remark on parallels below). The total area of the mapped area is correct, but it is not
equal-area everywhere.

Parallels
The parallels for this projection are not standard parallels, but rather limiting parallels. The special
feature of this map, correct total area, holds between these parallels. The default parallels are [15
75].

Remarks
• Described by Patrick Murdoch in 1758.
• This implementation of the Murdoch I conic projection is applicable only for coordinates that are

referenced to a sphere.

Limitations
Longitude data greater than 135º east or west of the central meridian is trimmed.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('murdoch1', 'Frame', 'on', 'Grid', 'on');

11 Map Projections — Alphabetical List

11-104

geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 murdoch1

11-105

murdoch3
Murdoch III Minimum Error Conic Projection

Classification
Conic

Identifier
murdoch3

Graticule
Meridians: Equally spaced straight lines converging at one of the poles.

Parallels: Equally spaced concentric circular arcs.

Poles: Arcs, one of which might become a point in the limit.

Symmetry: About any meridian.

Features
This is an equidistant projection that is minimum-error. Scale is true along any meridian and is
constant along any parallel. Scale is also true along two standard parallels. These must be calculated,
however (see remark on parallels below). The total area of the mapped area is correct, but it is not
equal-area everywhere.

Parallels
The parallels for this projection are not standard parallels, but rather limiting parallels. The special
feature of this map, correct total area, holds between these parallels. The default parallels are [15
75].

Remarks
• Described by Patrick Murdoch in 1758, with errors corrected by Everett in 1904.
• This implementation of the Murdoch III minimum error conic projection is applicable only for

coordinates that are referenced to a sphere.

Limitations
Longitude data greater than 135º east or west of the central meridian is trimmed.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('murdoch3', 'Frame', 'on', 'Grid', 'on');

11 Map Projections — Alphabetical List

11-106

geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 murdoch3

11-107

ortho
Orthographic Projection

Classification
Azimuthal

Identifier
ortho

Graticule
The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole. The angles displayed are the
true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. Spacing decreases away from this
pole. The opposite hemisphere cannot be shown.

Pole: The central pole is a point; the other pole is not shown.

Symmetry: About any meridian.

Features
This is a perspective projection on a plane tangent at the center point from an infinite distance (that
is, orthogonally). The center point is a pole in the common polar aspect, but can be any point. This
projection has two significant properties. It looks like a globe, providing views of the Earth
resembling those seen from outer space. Additionally, all great and small circles are either straight
lines or elliptical arcs on this projection. Scale is true only at the center point and is constant in the
circumferential direction along any circle having the center point as its center. Distortion increases
rapidly away from the center point, the only place that is distortion-free. This projection is neither
conformal nor equal-area.

Parallels
There are no standard parallels for azimuthal projections.

Remarks
• This projection appears to have been developed by the Egyptians and Greeks by the second

century B.C.
• This implementation of the orthographic projection is applicable only for coordinates that are

referenced to a sphere. If you want to project coordinates that are referenced to an ellipsoid,
using the projfwd or projinv functions, then create a projcrs object instead of a map

11 Map Projections — Alphabetical List

11-108

projection structure. You can create a projcrs object for the orthographic projection using the
ESRI authority code 102037. For example: projcrs(102037,'Authority','ESRI').

• Mapping Toolbox uses a different implementation of the orthographic projection for displaying
coordinates on map axes than for projecting coordinates using the projfwd or projinv function.
These implementations may produce differing results.

Limitations
Data greater than 89º distant from the center point is trimmed.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('ortho', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 ortho

11-109

pcarree
Plate Carree Projection

Classification
Cylindrical

Identifier
pcarree

Graticule
Meridians: Equally spaced straight parallel lines half as long as the Equator.

Parallels: Equally spaced straight parallel lines, perpendicular to and having the same spacing as the
meridians.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is a projection onto a cylinder tangent at the Equator. Distortion of both shape and area
increases with distance from the Equator. Scale is true along all meridians (i.e., it is equidistant) and
the Equator and is constant along any parallel and along the parallel of opposite sign.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
0º.

Remarks
• This projection, like the more general Equidistant Cylindrical, is credited to Marinus of Tyre,

thought to have invented it about A.D. 100. It may, in fact, have been originated by Erastosthenes,
who lived approximately 275–195 B.C. The Plate Carrée has the most simply constructed graticule
of any projection. It was used frequently in the 15th and 16th centuries and is quite common today
in very simple computer mapping programs. It is the simplest and limiting form of the Equidistant
Cylindrical projection. Another name for the Plate Carrée projection is the Simple Cylindrical. Its
transverse aspect is the Cassini projection.

• On the sphere, this projection can have an arbitrary, oblique aspect, as controlled by the Origin
property of the map axes. On the ellipsoid, only the equatorial aspect is supported.

11 Map Projections — Alphabetical List

11-110

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('pcarree', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 pcarree

11-111

polycon
Polyconic Projection

Classification
Polyconic

Identifier
polycon

Graticule
Central Meridian: A straight line.

Meridians: Complex curves spaced equally along the Equator and each parallel, and concave toward
the central meridian.

Parallels: The Equator is a straight line. All other parallels are nonconcentric circular arcs spaced at
true distances along the central meridian.

Poles: Normally circular arcs, enclosing the same angle as the displayed parallels.

Symmetry: About the Equator or the central meridian.

Features
For this projection, each parallel has a curvature identical to its curvature on a cone tangent at that
latitude. Since each parallel has its own cone, this is a “polyconic” projection. Scale is true along the
central meridian and along each parallel. This projection is free of distortion only along the central
meridian; distortion can be severe at extreme longitudes. This projection is neither conformal nor
equal-area.

Parallels
By definition, this projection has no standard parallels, since every parallel is a standard parallel.

Remarks
This projection was apparently originated about 1820 by Ferdinand Rudolph Hassler. It is also known
as the American Polyconic and the Ordinary Polyconic projection.

Limitations
Longitude data greater than 75º east or west of the central meridian is trimmed.

11 Map Projections — Alphabetical List

11-112

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('polycon', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See Also
polyconstd on page 11-114

Introduced before R2006a

 polycon

11-113

polyconstd
Polyconic Projection — Standard

Classification
Polyconic

Identifier
polyconstd

Graticule
Central Meridian: A straight line.

Meridians: Complex curves spaced equally along the Equator and each parallel, and concave toward
the central meridian.

Parallels: The Equator is a straight line. All other parallels are nonconcentric circular arcs spaced at
true distances along the central meridian.

Poles: Normally circular arcs, enclosing the same angle as the displayed parallels.

Symmetry: About the Equator or the central meridian.

Features
polyconstd implements the Polyconic projection directly on a reference ellipsoid, consistent with
the industry-standard definition of this projection. See polycon on page 11-112 for an alternative
implementation based on rotating the rectifying sphere.

For this projection, each parallel has a curvature identical to its curvature on a cone tangent at that
latitude. Since each parallel has its own cone, this is a “polyconic” projection. Scale is true along the
central meridian and along each parallel. This projection is free of distortion only along the central
meridian; distortion can be severe at extreme longitudes. This projection is neither conformal nor
equal-area.

Parallels
By definition, this projection has no standard parallels, since every parallel is a standard parallel.

Remarks
• This projection was apparently originated about 1820 by Ferdinand Rudolph Hassler. It is also

known as the American Polyconic and the Ordinary Polyconic projection.
• Mapping Toolbox uses a different implementation of the standard polyconic projection for

displaying coordinates on map axes than for projecting coordinates using the projfwd or
projinv function. These implementations may produce differing results.

11 Map Projections — Alphabetical List

11-114

Limitations
Longitude data greater than 75º east or west of the central meridian is trimmed.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('polyconstd', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

See Also
polycon on page 11-112

Introduced before R2006a

 polyconstd

11-115

putnins5
Putnins P5 Projection

Classification
Pseudocylindrical

Identifier
putnins5

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced portions of hyperbolas intersecting at the poles and concave toward
the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central meridian.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features
Scale is true along the 21º14' parallels and is constant along any parallel, between any pair of
parallels equidistant from the Equator, and along the central meridian. It is not free of distortion at
any point. This projection is not equal-area, conformal, or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 21º14'.

Remarks
• This projection was presented by Reinholds V. Putnins in 1934.
• This implementation of the Putnins P5 projection is applicable only for coordinates that are

referenced to a sphere.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('putnins5', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-116

Introduced before R2006a

 putnins5

11-117

quartic
Quartic Authalic Projection

Classification
Pseudocylindrical

Identifier
quartic

Graticule
Central Meridian: Straight line 0.45 as long as the Equator.

Other Meridians: Equally spaced quartic (fourth-order equation) curves concave toward the central
meridian.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing
changes gradually and is greatest near the Equator.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features
This is an equal-area projection. Scale is true along the Equator and is constant along any parallel
and between any pair of parallels equidistant from the Equator. Distortion is severe near the outer
meridians at high latitudes, but less so than on the Sinusoidal projection. It is free of distortion along
the Equator. This projection is not conformal or equidistant.

Parallels
This projection has one standard parallel, which is by definition fixed at 0º.

Remarks
This projection was presented by Karl Siemon in 1937 and independently by Oscar Sherman Adams in
1945.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('quartic', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-118

Introduced before R2006a

 quartic

11-119

robinson
Robinson Projection

Classification
Pseudocylindrical

Identifier
robinson

Graticule
Central Meridian: Straight line 0.51 as long as the Equator.

Other Meridians: Equally spaced, resemble elliptical arcs and are concave toward the central
meridian.

Parallels: Straight parallel lines, perpendicular to the central meridian. Spacing is equal between the
38º parallels, decreasing outside these limits.

Poles: Lines 0.53 as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
Scale is true along the 38º parallels and is constant along any parallel or between any pair of
parallels equidistant from the Equator. It is not free of distortion at any point, but distortion is very
low within about 45º of the center and along the Equator. This projection is not equal-area,
conformal, or equidistant; however, it is considered to look right for world maps, and hence is widely
used by Rand McNally, the National Geographic Society, and others. This feature is achieved through
the use of tabular coordinates rather than mathematical formulae for the graticules.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 38º.

Remarks
• This projection was presented by Arthur H. Robinson in 1963, and is also called the Orthophanic

projection, which means right appearing.
• This implementation of the Robinson projection is applicable only for coordinates that are

referenced to a sphere. If you want to project coordinates that are referenced to an ellipsoid,
using the projfwd or projinv functions, then create a projcrs object instead of a map
projection structure. You can create a projcrs object for the Robinson projection using the ESRI
authority code 54030. For example: projcrs(54030,'Authority','ESRI').

11 Map Projections — Alphabetical List

11-120

• Mapping Toolbox uses a different implementation of the Robinson projection for displaying
coordinates on map axes than for projecting coordinates using the projfwd or projinv function.
These implementations may produce differing results.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('robinson', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 robinson

11-121

sinusoid
Sinusoidal projection

Classification
Pseudocylindrical

Identifier
sinusoid

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves intersecting at the poles and concave toward the
central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central meridian.

Poles: Points.

Symmetry: About the central meridian or the Equator.

Features
This projection is equal-area. Scale is true along every parallel and along the central meridian. There
is no distortion along the Equator or along the central meridian, but it becomes severe near the outer
meridians at high latitudes.

Parallels
This projection has one standard parallel, which is by definition fixed at 0º.

Remarks
• This projection was developed in the 16th century. It was used by Jean Cossin in 1570 and by

Jodocus Hondius in Mercator atlases of the early 17th century. It is the oldest pseudocylindrical
projection currently in use, and is sometimes called the Sanson-Flamsteed or the Mercator Equal-
Area projection.

• Mapping Toolbox uses a different implementation of the sinusoidal projection for displaying
coordinates on map axes than for projecting coordinates using the projfwd or projinv function.
These implementations may produce differing results.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('sinusoid', 'Frame', 'on', 'Grid', 'on');

11 Map Projections — Alphabetical List

11-122

geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 sinusoid

11-123

stereo
Stereographic Projection

Classification
Azimuthal

Identifier
stereo

Graticule
The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole. The angles displayed are the
true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. Spacing increases gradually away
from this pole.

Pole: The central pole is a point; the other pole is not shown.

Symmetry: About any meridian.

Features
This is a perspective projection on a plane tangent at the center point from the point antipodal to the
center point. The center point is a pole in the common polar aspect, but can be any point. This
projection has two significant properties. It is conformal, being free from angular distortion.
Additionally, all great and small circles are either straight lines or circular arcs on this projection.
Scale is true only at the center point and is constant along any circle having the center point as its
center. This projection is not equal-area.

Parallels
There are no standard parallels for azimuthal projections.

Remarks
• The polar aspect of this projection appears to have been developed by the Egyptians and Greeks

by the second century B.C.
• Mapping Toolbox uses a different implementation of the stereographic projection for displaying

coordinates on map axes than for projecting coordinates using the projfwd or projinv function.
These implementations may produce differing results.

11 Map Projections — Alphabetical List

11-124

Limitations
Data greater than 90º distant from the center point is trimmed.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('stereo', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

 stereo

11-125

modsine
Tissot Modified Sinusoidal Projection

Classification
Pseudocylindrical

Identifier
modsine

Graticule
Meridians: Sine curves converging at the Poles.

Parallels: Equally spaced straight lines.

Poles: Points.

Symmetry: About the Equator and the central meridian

Features
This is an equal-area projection. Scale is constant along any parallel or any pair of equidistant
parallels, and along the central meridian. It is not equidistant or conformal.

Parallels
There are no standard parallels for this projection.

Remarks
This projection was first described by N. A. Tissot in 1881

Limitations
This projection is available only for the sphere.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('modsine', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-126

Introduced before R2006a

 modsine

11-127

tranmerc
Transverse Mercator Projection

Classification
Cylindrical

Identifier
tranmerc

Features
This conformal projection is the transverse form of the Mercator projection and is also known as the
Gauss-Krueger projection. It is not equal area, equidistant, or perspective.

The scale is constant along the central meridian, and increases to the east and west. The scale at the
central meridian can be set true to scale, or reduced slightly to render the mean scale of the overall
map more correctly.

Remarks
• The uniformity of scale along its central meridian makes transverse Mercator an excellent choice

for mapping areas that are elongated north-to-south. Its best known application is the definition of
Universal Transverse Mercator (UTM) coordinates. Each UTM zone spans only 6 degrees of
longitude, but the northern half extends from the equator all the way to 84 degrees north and the
southern half extends from 80 degrees south to the equator. Other map grids based on transverse
Mercator include many of the state plane zones in the U.S. and the U.K. National Grid.

• Mapping Toolbox uses a different implementation of the transverse Mercator projection for
displaying coordinates on map axes than for projecting coordinates using the projfwd or
projinv function. These implementations may produce differing results.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('tranmerc', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-128

Introduced before R2006a

 tranmerc

11-129

trystan
Trystan Edwards Cylindrical Projection

Classification
Cylindrical

Identifier
trystan

Graticule
Meridians: Equally spaced straight parallel lines.

Parallels: Unequally spaced straight parallel lines, perpendicular to the meridians. Spacing is closest
near the poles.

Poles: Straight lines equal in length to the Equator.

Symmetry: About any meridian or the Equator.

Features
This is an orthographic projection onto a cylinder secant at the 37º24' parallels. It is equal-area, but
distortion of shape increases with distance from the standard parallels. Scale is true along the
standard parallels and constant between two parallels equidistant from the Equator. This projection is
not equidistant.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, the standard parallel is by definition fixed at
37º24'.

Remarks
This projection is named for Trystan Edwards, who presented it in 1953. It is a special form of the
Equal-Area Cylindrical projection secant at 37º24'N and S.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('trystan', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

11 Map Projections — Alphabetical List

11-130

Introduced before R2006a

 trystan

11-131

ups
Universal Polar Stereographic System

Classification
Azimuthal

Identifier
ups

Graticule
The graticule described is for the southern zone.

Meridians: Equally spaced straight lines centered on the South Pole. The angles displayed are the
true angles between meridians.

Parallels: Unequally spaced circles centered on the South Pole. Spacing increases gradually away
from the circle of true scale along latitude 87 degrees, 7 minutes N. The opposite pole cannot be
shown.

Poles: The South Pole is a point. The North Pole is not shown.

Symmetry: About any meridian.

Features
This is a perspective projection on a plane tangent to either the North or South Pole. It is conformal,
being free from angular distortion. Additionally, all great and small circles are either straight lines or
circular arcs on this projection. Scale is true along latitudes 87 degrees, 7 minutes N or S, and is
constant along any other parallel. This projection is not equal area.

Parallels
The parallels 87 degrees, 7 minutes N and S are lines of true scale by virtue of the scale factor. There
are no standard parallels for azimuthal projections.

Remarks
• This projection is a special case of the stereographic projection in the polar aspect. It is used as

part of the Universal Transverse Mercator (UTM) system to extend coverage to the poles. This
projection has two zones: “North” for latitudes 84º N to 90º N, and “South” for latitudes 80º S to
90º S. The defaults for this projection are: scale factor is 0.994, false easting and northing are
2,000,000 meters. The international ellipsoid in units of meters is used as the geoid model.

• Mapping Toolbox uses a different implementation of the UPS projection for displaying coordinates
on map axes than for projecting coordinates using the projfwd or projinv function. These
implementations may produce differing results.

11 Map Projections — Alphabetical List

11-132

Introduced in R2006a

 ups

11-133

utm
Universal Transverse Mercator System

Classification
Cylindrical

Identifier
utm

Graticule
Meridians: Complex curves concave toward the central meridian.

Parallels: Complex curves concave toward the nearest pole.

Poles: Not shown.

Symmetry: About the central meridian or the Equator.

Features
This is a conformal projection with parameters chosen to minimize distortion over a defined set of
small areas. It is not equal area, equidistant, or perspective. Scale is true along two straight lines on
the map approximately 180 kilometers east and west of the central meridian, and is constant along
other straight lines equidistant from the central meridian. Scale is less than true between, and
greater than true outside the lines of true scale.

Parallels
There are no standard parallels for this projection. There are two lines of zero distortion by virtue of
the scale factor.

Remarks
The UTM system divides the world between 80º S and 84º degrees N into a set of quadrangles called
zones. Zones generally cover 6 degrees of longitude and 8 degrees of latitude. Each zone has a set of
defined projection parameters, including central meridian, false eastings and northings and the
reference ellipsoid. The projection equations are the Gauss-Krüger versions of the Transverse
Mercator. The projected coordinates form a grid system, in which a location is specified by the zone,
easting and northing.

The UTM system was introduced in the 1940s by the U.S. Army. It is widely used in topographic and
military mapping.

Introduced in R2006a

11 Map Projections — Alphabetical List

11-134

vgrint1
Van der Grinten I Projection

Classification
Polyconic

Identifier
vgrint1

Graticule
Central Meridian: A straight line.

Meridians: Circular curves spaced equally along the equator and concave toward the central
meridian.

Parallels: The Equator is a straight line. All other parallels are circular arcs concave toward the
nearest pole.

Poles: Points.

Symmetry: About the Equator or the central meridian.

Features
In this projection, the world is enclosed in a circle. Scale is true along the Equator and increases
rapidly away from the Equator. Area distortion is extreme near the poles. This projection is neither
conformal nor equal-area.

Parallels
There are no standard parallels for this projection.

Remarks
• This projection was presented by Alphons J. Van der Grinten in 1898. He obtained a U.S. patent for

it in 1904. It is also known simply as the Van der Grinten projection (without the “I”).
• Mapping Toolbox uses a different implementation of the Van der Grinten I projection for displaying

coordinates on map axes than for projecting coordinates using the projfwd or projinv function.
These implementations may produce differing results.

• The implementation of the Van der Grinten I projection for displaying coordinates on map axes is
applicable only for coordinates that are referenced to a sphere. The implementation of the Van der
Grinten I projection for projecting coordinates using the projfwd or projinv function is
applicable for coordinates referenced to either a sphere or an ellipsoid.

 vgrint1

11-135

Limitations
This projection is available only for the sphere.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('vgrint1', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

11 Map Projections — Alphabetical List

11-136

vperspec
Vertical Perspective Azimuthal Projection

Classification
Azimuthal

Identifier
vperspec

Graticule
The graticule described is for a polar aspect.

Meridians: Equally spaced straight lines intersecting at the central pole. The angles displayed are
true angles between meridians.

Parallels: Unequally spaced circles centered on the central pole. Spacing decreases away from this
pole. The opposite hemisphere cannot be shown, nor can distant parts of the closer hemisphere. The
limit of visibility depends on the observation altitude.

Poles: The central pole is a point. The other pole is not shown.

Symmetry: About any meridian.

Features
This is a perspective projection on a plane tangent at the center point from a finite distance. Scale is
true only at the center point, and is constant in the circumferential direction along any circle having
the center point as its center. Distortion increases rapidly away from the center point, the only point
which is distortion free. This projection is neither conformal nor equal area.

Remarks
• This projection provides views of the globe resembling those seen from a spacecraft in orbit. The

Orthographic projection is a limiting form with the observer at an infinite distance.
• This projection requires a view altitude parameter, which specifies the observer's altitude above

the origin point. Because this parameter is unique to this projection and because the projection
does not need any standard parallels, a special workaround is used. Rather than add an extra map
axes property just for vperspec, the MapParallels property is repurposed instead. You should
assign the desired view altitude value to the MapParallels property. Provide a scalar value for
length in the same units as the earth radius or semi-major axis length used in the map axes
reference ellipsoid ('Geoid') property.

• This implementation of the vertical perspective azimuthal projection is applicable only for
coordinates that are referenced to a sphere.

 vperspec

11-137

Limitations
Data more distant than the limit of visibility is trimmed.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('vperspec', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

11 Map Projections — Alphabetical List

11-138

wagner4
Wagner IV Projection

Classification
Pseudocylindrical

Identifier
wagner4

Graticule
Central Meridian: Straight line half as long as the Equator.

Other Meridians: Equally spaced portions of ellipses concave toward the central meridian. The
meridians 103º55' east and west of the central meridian are circular arcs.

Parallels: Unequally spaced straight parallel lines, perpendicular to the central meridian. Spacing is
greatest toward the Equator.

Poles: Lines half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
This is an equal-area projection. Scale is true along the 42º59' parallels and is constant along any
parallel and between any pair of parallels equidistant from the Equator. Distortion is not as extreme
near the outer meridians at high latitudes as for pointed-polar pseudocylindrical projections, but
there is considerable distortion throughout the polar regions. It is free of distortion only at the two
points where the 42º59' parallels intersect the central meridian. This projection is not conformal or
equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. The standard parallel is by definition fixed at 42º59'.

Remarks
This projection was presented by Karlheinz Wagner in 1932.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('wagner4', 'Frame', 'on', 'Grid', 'on');

 wagner4

11-139

geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

11 Map Projections — Alphabetical List

11-140

werner
Werner Projection

Classification
Pseudoconic

Identifier
werner

Graticule
Central Meridian: A straight line.

Meridians: Complex curves connecting points equally spaced along each parallel and concave toward
the central meridian.

Parallels: Concentric circular arcs spaced at true distances along the central meridian, centered on
one of the poles.

Poles: Points.

Symmetry: About the central meridian.

Features
This is an equal-area projection. It is a Bonne projection with one of the poles as its standard parallel.
The central meridian is free of distortion. This projection is not conformal. Its heart shape gives it the
additional descriptor cordiform.

Parallels
The standard parallel for this projection is set to 90º N.

Remarks
This projection was developed by Johannes Stabius (Stab) about 1500 and was promoted by Johannes
Werner in 1514. It is also called the Stab-Werner projection.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('werner', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

 werner

11-141

Introduced before R2006a

11 Map Projections — Alphabetical List

11-142

wetch
Wetch Cylindrical Projection

Classification
Cylindrical

Identifier
wetch

Graticule
Central Meridian: Straight line (includes meridian opposite the central meridian in one continuous
line).

Other Meridians: Straight lines if 90º from central meridian, complex curves concave toward the
central meridian otherwise.

Parallels: Complex curves concave toward the nearest pole.

Poles: Points along the central meridian.

Symmetry: About any straight meridian or the Equator.

Features
This is a perspective projection from the center of the Earth onto a cylinder tangent to the central
meridian. It is not equal-area, equidistant, or conformal. Scale is true along the central meridian and
constant between two points equidistant in x and y from the central meridian. There is no distortion
along the central meridian, but it increases rapidly away from the central meridian in the y-direction.

Parallels
For cylindrical projections, only one standard parallel is specified. The other standard parallel is the
same latitude with the opposite sign. For this projection, which is the transverse aspect of the Central
Cylindrical, the standard parallel of the base projection is by definition fixed at 0º.

Remarks
• This is the transverse aspect of the Central Cylindrical projection discussed by J. Wetch in the

early 19th century.
• This implementation of the Wetch cylindrical projection is applicable only for coordinates that are

referenced to a sphere.

 wetch

11-143

Limitations
To prevent large y-values from dominating the display, data at y-values that would correspond to
latitudes of greater than 75º in the normal aspect of the Central Cylindrical projection is trimmed.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('wetch', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

11 Map Projections — Alphabetical List

11-144

wiechel
Wiechel Projection

Classification
Pseudoazimuthal

Identifier
wiechel

Graticule
The graticule described is for a polar aspect.

Meridians: Equally spaced semicircles from pole to pole, concave toward the west.

Parallels: Concentric circles.

Pole: The central pole is a point; the other pole is a bounding circle.

Symmetry: Radially about the center point.

Features
This equal-area projection is a novelty map, usually centered at a pole, showing semicircular
meridians in a pinwheel arrangement. Scale is correct along the meridians. This projection is not
conformal.

Parallels
There are no standard parallels for azimuthal projections.

Remarks
• This projection was presented by H. Wiechel in 1879.
• This implementation of the Wiechel projection is applicable only for coordinates that are

referenced to a sphere.

Limitations
Data greater than 65º distant from the center point is trimmed.

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('wiechel', 'Frame', 'on', 'Grid', 'on');

 wiechel

11-145

geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

11 Map Projections — Alphabetical List

11-146

winkel
Winkel I Projection

Classification
Pseudocylindrical

Identifier
winkel

Graticule
Central Meridian: Straight line at least half as long as the Equator.

Other Meridians: Equally spaced sinusoidal curves concave toward the central meridian.

Parallels: Equally spaced straight parallel lines, perpendicular to the central meridian.

Poles: Lines at least half as long as the Equator.

Symmetry: About the central meridian or the Equator.

Features
This projection is an arithmetical average of the x and y coordinates of the Sinusoidal and Equidistant
Cylindrical projections. Scale is true along the standard parallels and is constant along any parallel
and between any pair of parallels equidistant from the Equator. There is no point free of distortion.
This projection is not equal-area, conformal, or equidistant.

Parallels
For this projection, only one standard parallel is specified. The other standard parallel is the same
latitude with the opposite sign. Any latitude may be chosen; the default is set to 50º28'.

Remarks
• This projection was developed by Oswald Winkel in 1914. Its limiting form is the Eckert V when a

standard parallel of 0º is chosen.
• This implementation of the Winkel I projection is applicable only for coordinates that are

referenced to a sphere. If you want to project coordinates that are referenced to an ellipsoid,
using the projfwd or projinv functions, then create a projcrs object instead of a map
projection structure. You can create a projcrs object for the Winkel I projection using the ESRI
authority code 54018. For example: projcrs(54018,'Authority','ESRI').

 winkel

11-147

Example
landareas = shaperead('landareas.shp','UseGeoCoords',true);
axesm ('winkel', 'Frame', 'on', 'Grid', 'on');
geoshow(landareas,'FaceColor',[1 1 .5],'EdgeColor',[.6 .6 .6]);
tissot;

Introduced before R2006a

11 Map Projections — Alphabetical List

11-148

	Getting Started
	Mapping Toolbox Product Description
	Acknowledgments
	Create Your First World Map
	Tour Boston with the Map Viewer App
	Open the Map Viewer App

	Getting More Help
	Ways to Get Mapping Toolbox Help

	Understanding Map Data
	What Is a Map?
	What Is Geospatial Data?
	Vector Geodata
	Inspect and Display Vector Map Data
	Raster Geodata
	Digital Elevation Data
	Remotely Sensed Image Data

	Display Shaded Relief Map Using Raster Data
	Combine Vector and Raster Geodata on the Same Map
	Combining Raster Data and Vector Data on the Same Map

	Create and Display Polygons
	Simple Polygon
	Polygons with Holes or Multiple Regions
	Polygons Using Geographic Coordinates
	Filled Region of Polygons Using Geographic Coordinates

	Segments Versus Polygons
	Geographic Data Structures
	Shapefiles
	The Contents of Geographic Data Structures
	Examining a Geographic Data Structure
	How to Construct Geographic Data Structures
	Mapping Toolbox Version 1 Display Structures

	Georeferenced Raster Data
	Reference Objects
	Referencing Matrices
	Referencing Vectors

	Construct a Global Data Grid
	Precompute the Size of a Data Grid
	Geolocated Data Grids
	Define Geolocated Data Grid

	Geographic Interpretations of Geolocated Grids
	Type 1: Values Associated with the Upper Left Grid Coordinate
	Type 2: Values Centered Within Four Adjacent Coordinates
	Ordering of Cells
	Transform Regular to Geolocated Grids
	Transforming Geolocated to Regular Grids

	Spatially Reference Imported Rasters
	Differentiate Between Cells and Postings
	Spatially Reference an Image
	Spatially Reference an Elevation Grid

	Mosaic Spatially Referenced Raster Tiles
	Mosaic Rasters of Cells
	Mosaic Rasters of Postings

	Unprojecting a Digital Elevation Model (DEM)
	Georeferencing an Image to an Orthotile Base Layer
	Find Geospatial Data Online
	Find Vector Geodata
	Find Geospatial Raster Data
	Download Data
	Use Web Map Service Data

	Functions that Read and Write Geospatial Data
	Export Vector Geodata
	Exporting Vector Data to KML
	Export KML Files for Viewing in Earth Browsers
	Generate a Single Placemark Using kmlwritepoint
	Generate Placemarks from Addresses
	Export Point Geostructs to Placemarks

	Select Shapefile Data to Read
	Example 1: Predicate Function in Separate File
	Example 2: Predicate as Function Handle
	Example 3: Predicate as Anonymous Function
	Example 4: Predicate (Anonymous Function) Defined Within Cell Array
	Example 5: Parametrizing the Selector; Predicate as Nested Function

	Exporting Images and Raster Grids to GeoTIFF
	Converting Coastline Data (GSHHG) to Shapefile Format

	Understanding Geospatial Geometry
	The Shape of the Earth
	Ellipsoid Shape
	Geoid Shape

	Reference Spheroids
	referenceSphere Objects
	referenceEllipsoid Objects
	World Geodetic System 1984
	Ellipsoid Vectors
	oblateSpheroid Objects

	Work with Reference Spheroids
	Map Projections
	Curves and Areas
	3-D Coordinate Transformations

	Latitude and Longitude
	Plot Latitude and Longitude

	Relationship Between Points on Sphere
	Length and Distance Units
	Choosing Units of Length
	Converting Units of Length

	Compute Conversion Ratio Between Units of Length
	Angle Representations and Angular Units
	Radians and Degrees
	Default and Variable Angle Units
	Degrees, Minutes, and Seconds
	Converting Angle Units that Vary at Run Time

	Angles as Binary and Formatted Numbers
	Formatting Latitudes and Longitudes

	Convert from Linear Measurements to Spherical Measurements
	Distances on the Sphere
	Arc Length as an Angle in the distance and reckon Functions
	Summary: Available Distance and Angle Conversion Functions

	Great Circles
	Rhumb Lines
	Azimuth
	Calculate Azimuth

	Elevation
	Generate Vector Data for Points Along Great Circle or Rhumb Line Tracks
	Reckoning
	Calculate Distance Between Two Points in Geographic Space
	Small Circles
	Calculate Vector Data for Points Along a Small Circle
	Generate Small Circles
	Measure Area of Spherical Quadrangles
	Plotting a 3-D Dome as a Mesh Over a Globe
	Choose a 3-D Coordinate System
	Earth-Centered Earth-Fixed Coordinates
	Geodetic Coordinates
	East-North-Up Coordinates
	North-East-Down Coordinates
	Azimuth-Elevation-Range Coordinates
	Tips

	Vectors in 3-D Coordinate Systems
	Tips

	Find Ellipsoidal Height from Orthometric Height
	Find Ellipsoidal Height from Orthometric and Geoid Height

	Creating and Viewing Maps
	Introduction to Mapping Graphics
	Continent, Country, Region, and State Maps Made Easy
	Set Background Colors for Map Displays
	Create Simple Maps Using worldmap
	Create Simple Maps Using usamap
	The Map Axes
	Tips to Working with Map Axes

	Access and Change Map Axes Properties
	Map Limit Properties
	Specify Map Projection Origin and Frame Limits Automatically
	Create Cylindrical Projection Using Map Limit Properties
	Create Conic Projection Using Map Limit Properties
	Create Southern Hemisphere Conic Projection
	Create North-Polar Azimuthal Projection
	Create South-Polar Azimuthal Projection
	Create Equatorial Azimuthal Projection
	Create General Azimuthal Projection
	Create Long Narrow Oblique Mercator Projection

	Switch Between Projections
	Change Projection Updating Meridian and Parallel Labels
	Change Projection Resetting Frame Limits

	Reprojection of Graphics Objects
	Auto-Reprojection of Mapped Objects and Its Limitations
	Reprojectability of Maps Generated Using geoshow

	Create Maps Using geoshow
	Creating Maps Using MAPSHOW
	Change Map Projections Using geoshow
	Change Map Projection with Vector Data Using geoshow
	Change Map Projection with Raster Data Using geoshow

	Use Geographic and Nongeographic Objects in Map Axes
	The Map Frame
	Plot Regions of Robinson Frame and Grid Using Map Limits
	Map and Frame Limits
	The Map Grid
	Control Grid Spacing
	Layer Grids
	Limit Grid Lines
	Label Grids

	Summary of Polygon Display Functions
	Display Vector Data as Points and Lines
	Display Vector Maps as Lines or Patches
	Types of Data Grids and Raster Display Functions
	Fit Gridded Data to the Graticule
	Fit Gridded Data to Fine and Coarse Graticules

	Create 3-D Displays with Raster Data
	Create Map Displays with Geographic Data
	Creating Map Displays with Data in Projected Coordinate Reference System
	Pick Locations Interactively
	Create an Interactive Map for Selecting Point Features
	Create Small Circle and Track Annotations on Maps Interactively
	Interactively Display Text Annotations on a Map
	Work with Objects by Name
	Manipulate Displayed Map Objects By Name

	Making Three-Dimensional Maps
	Sources of Terrain Data
	Digital Terrain Elevation Data from NGA
	Digital Elevation Model Files from USGS

	Determine and Visualize Visibility Across Terrain
	Compute Line of Sight

	Light a Terrain Map of a Region
	Surface Relief Shading
	Create Monochrome Shaded Relief Map

	Colored Surface Shaded Relief
	Create Colored Shaded Relief Map

	Relief Mapping with Light Objects
	Illuminate Color 3-D Relief Maps with Light Objects

	Drape Data on Elevation Maps
	Combine Elevation Maps with Other Kinds of Data
	Drape Data over Terrain with Different Gridding

	Drape Geoid Heights Over Topography
	Combine Dissimilar Grids by Converting Regular Grid to Geolocated Data Grid
	Drape Geolocated Grid on Regular Data Grid via Texture Mapping
	The Globe Display Compared with the Orthographic Projection
	Access Basemaps and Terrain for Geographic Globe
	Use Installed Basemap
	Download Basemaps
	Add Custom Basemaps
	Access Terrain
	Specify Basemaps and Terrain

	Create Interactive Basemap Picker
	Visualize Aircraft Line-of-Sight Over Terrain
	Visualize UAV Flight Path on 2-D and 3-D Maps

	Customizing and Printing Maps
	Inset Maps
	Graphic Scales
	North Arrows
	Thematic Maps
	Choropleth Maps
	Stem Maps
	Contour Maps
	Scatter Maps

	Create Choropleth Map of Population Density
	Contour Colormaps
	Colormaps for Political Maps
	Explore Colormaps for Political Maps
	Labeling Colorbars
	Editing Colorbars

	Scale Maps for Printing

	Manipulating Geospatial Data
	Extract and Join Polygons or Line Segments
	Link Line Segments with Common Endpoints into Polygons
	Geographic Interpolation of Vectors
	Interpolate Vertices Between Known Data Points
	Interpolate Coordinates at Specific Locations
	Vector Intersections
	Calculate Intersections of Small Circles
	Calculate Intersection of Rhumb Line Tracks
	Calculate Intersections of Vector Data
	Calculate Area of Geographic Polygons
	Polygon Set Logic
	Overlay Polygons Using Set Logic
	Remove Longitude Coordinate Discontinuities at Date Line Crossings
	Polygon Buffer Zones
	Generate Buffer Internal to Polygon

	Trim Vectors to Preserve Polygonal Patches
	Simplify Vector Coordinate Data
	Simplify Polygon and Line Data
	Convert Vector Data to Raster Format
	Creating Data Grids from Vector Data

	Rasterize Polygons Interactively
	Data Grids as Logical Variables
	Compute Elevation Profile Along Straight Line
	Compute Gradient, Slope, and Aspect from Regular Data Grid

	Using Map Projections and Coordinate Systems
	Map Projections and Distortions
	Use Inverse Projection to Recover Geographic Coordinates
	Projection Distortions

	Quantitative Properties of Map Projections
	The Three Main Families of Map Projections
	Unwrapping the Sphere to a Plane
	Cylindrical Projections
	Conic Projections
	Azimuthal Projections

	Projection Aspect
	The Orientation Vector
	Control the Map Projection Aspect with an Orientation Vector

	Projection Parameters
	Projection Characteristics Maps Can Have

	Visualize Spatial Error Using Tissot Indicatrices
	Visualize Projection Distortions using Tissot Indicatrices

	Visualize Projection Distortions Using Isolines
	Quantify Map Distortions at Point Locations
	Use distortcalc to Determine Map Projection Geometric Distortions

	Rotational Transformations on the Globe
	Reorient Vector Data with rotatem
	Reorient Gridded Data

	Create a UTM Map
	Create a UTM Map

	Set UTM Parameters Interactively
	Work in UTM Without a Displayed Map
	Use the Transverse Aspect to Map Across UTM Zones
	Summary and Guide to Projections
	Cylindrical Projections
	Pseudocylindrical Projections
	Conic Projections
	Pseudoconic Projections
	Polyconic Projections
	Azimuthal Projections
	Pseudoazimuthal Projections
	Modified Azimuthal Projections

	Transform Coordinates to a Different Projected CRS
	Project and Display Raster Data
	Project Raster Data
	Unproject Raster Data

	Creating Web Map Service Maps
	Basic WMS Terminology
	Basic Workflow for Creating WMS Maps
	Workflow Summary
	Create a Map of Elevation in Europe

	Search the WMS Database
	Introduction to the WMS Database
	Find Temperature Data in the WMS Database

	Refine Your Search
	Refine Search by Text
	Refine Search by Geographic Limits

	Update Your Layer
	Retrieve Your Map
	Map Retrieval Methods
	Understand Coordinate Reference System Codes
	Retrieve Your Map with wmsread
	Use wmsread with Optional Parameters
	Add a Legend to Your Map
	Retrieve Your Map with WebMapServer.getMap

	Modify Your Map Request
	Set Map Request Geographic Limits and Time
	Edit Web Map Request URL Manually

	Overlay Multiple Layers
	Create Composite Map of Multiple Layers from One Server
	Combine Layers from One Server with Data from Other Sources
	Drape Orthoimagery Over DEM

	Animate Data Layers
	Create Movie of Terra/MODIS Maps
	Create Animated GIF File of WMS Maps
	Animate Time-Lapse Radar Observations

	Display Animation of Radar Images over GOES Backdrop
	Retrieve Data from Web Map Server
	Merge Elevation Data with Rasterized Vector Data
	Display Merged Elevation and Bathymetry Layer (SRTM30 Plus)
	Drape WMS Imagery onto Elevation Data

	Save Your Favorite Servers
	Explore Other Layers using a Capabilities Document
	Write WMS Images to a KML File
	Search for Layers Outside the Database
	Troubleshoot WMS Servers
	Connection Errors
	Wrong Scale
	Problems with Geographic Limits
	Problems with Server Changing LayerName
	Non-EPSG:4326 Coordinate Reference Systems
	Map Not Returned
	Unsupported WMS Version
	Other Unrecoverable Server Errors

	Troubleshoot Access to the Hosted WMS Database
	Introduction to Web Map Display
	Web Map Coordinate Systems

	Basic Workflow for Displaying Web Maps
	Workflow Summary

	Display a Web Map
	Select a Base Layer Map
	Specify a Custom Base Layer
	Specify a WMS Layer as a Base Layer
	Add an Overlay Layer to the Map
	Add Line, Polygon, and Marker Overlay Layers to Web Maps
	Remove Overlay Layers on a Web Map
	Navigate a Web Map
	Close a Web Map
	Annotate a Web Map with Measurement Information
	Compositing and Animating Web Map Service (WMS) Meteorological Layers
	Troubleshoot Common Problems with Web Maps
	Why Does My Web Map Contain Empty Tiles?
	Why Does My Web Map Lose Detail When I Zoom In?

	Mapping Applications
	Geographic Statistics for Point Locations on a Sphere
	Geographic Means
	Geographic Standard Deviation

	Equal-Areas in Geographic Statistics
	Geographic Histograms
	Converting to an Equal-Area Coordinate System

	Navigation
	What Is Navigation?
	Conventions for Navigational Functions

	Fix Position
	Some Possible Situations
	Using navfix
	A Numerical Example of Using navfix

	Plan the Shortest Path
	Display Navigational Tracks
	Dead Reckoning
	Drift Correction
	Time Zones

	Map Projections — Alphabetical List
	aitoff
	eqaconic
	eqaconicstd
	apianus
	balthsrt
	behrmann
	bsam
	bonne
	braun
	breusing
	bries
	cassini
	cassinistd
	ccylin
	collig
	craster
	eckert1
	eckert2
	eckert3
	eckert4
	eckert5
	eckert6
	eqacylin
	eqdazim
	eqdconic
	eqdconicstd
	eqdcylin
	fournier
	giso
	gortho
	gstereo
	globe
	gnomonic
	goode
	hammer
	hatano
	kavrsky5
	kavrsky6
	eqaazim
	lambert
	lambertstd
	lambcyln
	loximuth
	flatplrp
	flatplrq
	flatplrs
	mercator
	miller
	mollweid
	murdoch1
	murdoch3
	ortho
	pcarree
	polycon
	polyconstd
	putnins5
	quartic
	robinson
	sinusoid
	stereo
	modsine
	tranmerc
	trystan
	ups
	utm
	vgrint1
	vperspec
	wagner4
	werner
	wetch
	wiechel
	winkel

